1
|
Chen W, Zhang S, Su T, Nie Y, He J, Xue P, Jia J. Self-Assembly of a Series of Carbazole-Based Vinyl-benzoxazole Derivatives in Gel Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12384-12391. [PMID: 37607010 DOI: 10.1021/acs.langmuir.3c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A series of carbazole-based vinyl-benzoxazole derivatives have been synthesized in order to verify whether X-ray diffraction (XRD) simulation can give more information about intermolecular stacking in the gel phase. It was found that their gelation capabilities were strongly dependent on the length of the alkyl chain. The compounds with shorter alkyl chains have lower critical gelation concentrations (CGCs) in nonpolar alkane and alcohols with longer carbon chains. On the other hand, compounds with long alkyl chains presented small CGCs in polar methanol. Powder XRD structure solution gave more information about intermolecular stacking than the traditional way of analyzing diffraction peaks to derive approximate molecular stacking patterns. The results verified that gelators had a similar head-to-tail π-stacking between aromatic groups in gel phases although different slipping angles existed. Moreover, ordered stacking between the alkyl chains was also present.
Collapse
Affiliation(s)
- Wei Chen
- School of Life Science, Shanxi Normal University, Taiyuan 030032, PR China
| | - Sufang Zhang
- School of Life Science, Shanxi Normal University, Taiyuan 030032, PR China
| | - Tian Su
- School of Life Science, Shanxi Normal University, Taiyuan 030032, PR China
| | - Yuanjun Nie
- School of Agricultural Economics and Management, Shanxi Agricultural University, Taiyuan 030006, PR China
| | - Juan He
- School of Life Science, Shanxi Normal University, Taiyuan 030032, PR China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Junhui Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030032, PR China
| |
Collapse
|
2
|
Verma P, Singh A, Rahimi FA, Sarkar P, Nath S, Pati SK, Maji TK. Charge-transfer regulated visible light driven photocatalytic H 2 production and CO 2 reduction in tetrathiafulvalene based coordination polymer gel. Nat Commun 2021; 12:7313. [PMID: 34916503 PMCID: PMC8677803 DOI: 10.1038/s41467-021-27457-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/23/2021] [Indexed: 02/08/2023] Open
Abstract
The much-needed renewable alternatives to fossil fuel can be achieved efficiently and sustainably by converting solar energy to fuels via hydrogen generation from water or CO2 reduction. Herein, a soft processable metal-organic hybrid material is developed and studied for photocatalytic activity towards H2 production and CO2 reduction to CO and CH4 under visible light as well as direct sunlight irradiation. A tetrapodal low molecular weight gelator (LMWG) is synthesized by integrating tetrathiafulvalene (TTF) and terpyridine (TPY) derivatives through amide linkages and results in TPY-TTF LMWG. The TPY-TTF LMWG acts as a linker, and self-assembly of this gelator molecules with ZnII ions results in a coordination polymer gel (CPG); Zn-TPY-TTF. The Zn-TPY-TTF CPG shows high photocatalytic activity towards H2 production (530 μmol g-1h-1) and CO2 reduction to CO (438 μmol g-1h-1, selectivity > 99%) regulated by charge-transfer interactions. Furthermore, in situ stabilization of Pt nanoparticles on CPG (Pt@Zn-TPY-TTF) enhances H2 evolution (14727 μmol g-1h-1). Importantly, Pt@Zn-TPY-TTF CPG produces CH4 (292 μmol g-1h-1, selectivity > 97%) as CO2 reduction product instead of CO. The real-time CO2 reduction reaction is monitored by in situ DRIFT study, and the plausible mechanism is derived computationally.
Collapse
Affiliation(s)
- Parul Verma
- grid.419636.f0000 0004 0501 0005Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Ashish Singh
- grid.419636.f0000 0004 0501 0005Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Faruk Ahamed Rahimi
- grid.419636.f0000 0004 0501 0005Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Pallavi Sarkar
- grid.419636.f0000 0004 0501 0005Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Sukhendu Nath
- grid.418304.a0000 0001 0674 4228Ultrafast Spectroscopy Section, Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Swapan Kumar Pati
- grid.419636.f0000 0004 0501 0005Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064, India.
| |
Collapse
|
3
|
Li Z, Ji X, Xie H, Tang BZ. Aggregation-Induced Emission-Active Gels: Fabrications, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100021. [PMID: 34216407 DOI: 10.1002/adma.202100021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/14/2021] [Indexed: 05/07/2023]
Abstract
Chromophores that exhibit aggregation-induced emission (i.e., aggregation-induced emission luminogens [AIEgens]) emit intense fluorescence in their aggregated states, but show negligible emission as discrete molecular species in solution due to the changes in restriction and freedom of intramolecular motions. As solvent-swollen quasi-solids with both a compact phase and a free space, gels enable manipulation of intramolecular motions. Thus, AIE-active gels have attracted significant interest owing to their various distinctive properties and promising application potential. Herein, a comprehensive overview of AIE-active gels is provided. The fabrication strategies employed are detailed, and the applications of AIEgens are summarized. In addition, the gel functions arising from the AIE moieties are revealed, along with their structure-property relationships. Furthermore, the applications of AIE-active gels in diverse areas are illustrated. Finally, ongoing challenges and potential means to address them are discussed, along with future perspectives on AIE-active gels, with the overall aim of inspiring research on novel materials and ideas.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institutes, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
4
|
Zhang R, Ding Q, Zhang S, Li Y, Niu Q, Yang L, Ye J, Hu L. The effects of ultrasonication on the microstructure, gelling and tribological properties of 12-HSA soft-nanocomposite with LaF3 nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Mohamed AH. An Efficient Approach for the Synthesis of 1,2,3‐Triazole Moiety to Generate Uracil Molecular Architectures Through Cu‐Catalyzed Azide–Alkyne Cycloaddition. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Asmaa H. Mohamed
- Chemistry Department, Faculty of ScienceMinia University El‐Minia Egypt
| |
Collapse
|
6
|
Synthesis, Characterization, and Self-Assembly of a Tetrathiafulvalene (TTF)–Triglycyl Derivative. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Solvent-dependent self-assembly and morphological transition of low-molecular-weight azobenzene organogel. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Rajkamal, Pathak NP, Halder T, Dhara S, Yadav S. Partially Acetylated or Benzoylated Arabinose Derivatives as Structurally Simple Organogelators: Effect of the Ester Protecting Group on Gel Properties. Chemistry 2017. [PMID: 28639337 DOI: 10.1002/chem.201701669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sugar-based low-molecular-weight gelators (LMWGs) have been used for various applications for a long time. Herein, structurally simple, ester-protected arabinosides are reported as low-molecular-weight organogelators (LMOGs) that are able to gel aromatic solvents, as well as petrol and diesel. Studies on the mechanical strength of the gels, through detailed rheological experiments, indicate that gels from the 1,2-dibenzoylated arabinose gelator possess better mechanical properties than those from the 1,2-diacetylated gelator. These results are interpreted in terms of the tendency of the former to form fibers with comparatively lower diameter than those of the latter, based on detailed field-emission SEM and AFM studies. Investigations of the interactions responsible for the self-assembly of gelators through IR spectroscopy and wide-angle X-ray scattering reveal that the primary interactions responsible are hydrogen bonds between the hydroxyl groups and ester C=O, which is absent in the solid state of the gelators. In addition, π interactions present in the 1,2-dibenzoylated derivative result in a more regular arrangement, which, in turn, leads to better mechanical properties of the gels compared with those of the 1,2-diacetylated gelator.
Collapse
Affiliation(s)
- Rajkamal
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Navendu P Pathak
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Tanmoy Halder
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Shubhajit Dhara
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
9
|
|
10
|
Liu Y, Jia Y, Zhu E, Liu L, Qiao Y, Che G, Yin B. Supramolecular helical nanofibers formed by an achiral monopyrrolotetrathiafulvalene derivative: water-triggered gelation and chiral evolution. NEW J CHEM 2017. [DOI: 10.1039/c7nj02215h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An achiral MPTTF-based gelator could form left- and right-handed supramolecular assemblies in pure DMF, whereas it turned into an opaque gel with right-handed nanofibers after adding small amounts of water.
Collapse
Affiliation(s)
- Yucun Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Yu Jia
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Enwei Zhu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Lihui Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Yu Qiao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
- College of Chemistry
| | - Bingzhu Yin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules
- Yanbian University
- Ministry of Education
- Yanji
- China
| |
Collapse
|
11
|
Ramin MA, Baillet J, Benizri S, Latxague L, Barthélémy P. Uracile based glycosyl-nucleoside-lipids as low molecular weight organogelators. NEW J CHEM 2016. [DOI: 10.1039/c6nj02675c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new low molecular weight alcogel based on glycosyl-nucleoside-lipids is reported. This material features high elastic moduli and thixotropic properties.
Collapse
Affiliation(s)
| | - Julie Baillet
- Univ. Bordeaux
- INSERM
- U1212
- CNRS UMR 5320
- ARNA Laboratory
| | | | | | | |
Collapse
|