1
|
Makam AA, Dubey A, Maharana S, Gandasi NR. Algorithm for semi-automatic detection of insulin granule exocytosis in human pancreatic β-cells. Heliyon 2024; 10:e38307. [PMID: 39421365 PMCID: PMC11483283 DOI: 10.1016/j.heliyon.2024.e38307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Image processing and analysis are two significant areas that are highly important for interpreting enormous amounts of data obtained from microscopy-based experiments. Several image analysis tools exist for the general detection of fundamental cellular processes, but tools to detect highly distinct cellular functions are few. One such process is exocytosis, which involves the release of vesicular content out of the cell. The size of the vesicles and the inherent differences in the imaging parameters demand specific analysis platforms for detecting exocytosis. In this direction, we have developed an image-processing algorithm based on Lagrangian particle tracking. The tool was developed to ensure that there is efficient detection of punctate structures initially developed by mathematical equations, fluorescent beads and cellular images with fluorescently labelled vesicles that can exocytose. The detection of these punctate structures using the tool was compared with other existing tools, such as find maxima in ImageJ and manual detection. The tool not only met the precision of existing solutions but also expedited the process, resulting in a more time-efficient solution. During exocytosis, there is a sudden dip in the intensity of the fluorescently labelled vesicles that look like punctate structures. The algorithm precisely locates the vesicles' coordinates and quantifies the variations in their respective intensities. Subsequently, the algorithm processes and retrieves pertinent information from large datasets surpassing that of conventional methods under our evaluation, affirming its efficacy. Furthermore, the tool exhibits adaptability for the image analysis of diverse cellular processes, requiring only minimal modifications to ensure accurate detection of exocytosis.
Collapse
Affiliation(s)
- Aishwarya A. Makam
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, 560012, India
| | - Abhimanyu Dubey
- Department of Chemical Engineering, Indian Institute of Science (IISc), Bengaluru, 560012, India
| | - Shovamayee Maharana
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bengaluru, 560012, India
| | - Nikhil R. Gandasi
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, 560012, India
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123, Uppsala, Sweden
| |
Collapse
|
2
|
Zhao W, Zhou J, Hu H, Xu C, Xu Q. The role of crosslinking density in surface stress and surface energy of soft solids. SOFT MATTER 2022; 18:507-513. [PMID: 34919111 DOI: 10.1039/d1sm01600h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface stress and surface energy are two fundamental parameters that determine the surface properties of any material. While it is commonly believed that the surface stress and surface energy of liquids are identical, the relationship between the two parameters in soft polymeric gels remains debatable. In this work, we measured the surface stress and surface energy of soft silicone gels with varying weight ratios of crosslinkers in soft wetting experiments. Above a critical density, k0, the surface stress was found to increase significantly with crosslinking density while the surface energy remained unchanged. In this regime, we can estimate a non-zero surface elastic modulus that also increases with the ratio of crosslinkers. By comparing the surface mechanics of the soft gels with their bulk rheology, the surface properties near the critical density k0 were found to be closely related to the underlying percolation transition of the polymer networks.
Collapse
Affiliation(s)
- Weiwei Zhao
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Jianhui Zhou
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Haitao Hu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Chang Xu
- School of Physical Science, University of Science and Technology of China, Hefei, China
| | - Qin Xu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
- HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
3
|
Lejeune E, Khang A, Sansom J, Sacks MS. FM-Track: A fiducial marker tracking software for studying cell mechanics in a three-dimensional environment. SOFTWAREX 2020; 11:100417. [PMID: 34291145 PMCID: PMC8291167 DOI: 10.1016/j.softx.2020.100417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tracking the deformation of fiducial markers in the vicinity of living cells embedded in compliant synthetic or biological gels is a powerful means to study cell mechanics and mechanobiology in three-dimensional environments. However, current approaches to track and quantify three-dimensional (3D) fiducial marker displacements remain ad-hoc, can be difficult to implement, and may not produce reliable results. Herein, we present a compact software package entitled "FM-Track," written in the popular Python language, to facilitate feature-based particle tracking tailored for 3D cell micromechanical environment studies. FM-Track contains functions for pre-processing images, running fiducial marker tracking, and post-processing and visualization. FM-Track can thus aid the study of cellular mechanics and mechanobiology by providing an extensible software platform to more reliably extract complex local 3D cell contractile information in transparent compliant gel systems.
Collapse
Affiliation(s)
- Emma Lejeune
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
- The Department of Mechanical Engineering, Boston University, Boston MA, United States
| | - Alex Khang
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
| | - Jacob Sansom
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
- The Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin TX, United States
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
| |
Collapse
|
4
|
Rosowski KA, Boltyanskiy R, Xiang Y, Van den Dries K, Schwartz MA, Dufresne ER. Vinculin and the mechanical response of adherent fibroblasts to matrix deformation. Sci Rep 2018; 8:17967. [PMID: 30568231 PMCID: PMC6299284 DOI: 10.1038/s41598-018-36272-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
Cells respond to the mechanics of their environment. Mechanical cues include extracellular matrix (ECM) stiffness and deformation, which are primarily sensed through integrin-mediated adhesions. We investigated the impact of ECM deformation on cellular forces, measuring the time-evolution of traction forces of isolated mouse fibroblasts in response to stretch and release. Stretch triggered a marked increase of traction stresses and apparent stiffness. Expression of the focal adhesion protein vinculin not only increased baseline traction forces, but also increased dissipation of mechanical energy, which was correlated with the cells’ failure to recover baseline traction forces after release of stretch.
Collapse
Affiliation(s)
- Kathryn A Rosowski
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Rostislav Boltyanskiy
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Yingjie Xiang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Koen Van den Dries
- Cardiovascular Research Center and Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT, 06511, USA.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin A Schwartz
- Cardiovascular Research Center and Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT, 06511, USA.,Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland. .,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
5
|
Cristofolini L, Orsi D, Isa L. Characterization of the dynamics of interfaces and of interface-dominated systems via spectroscopy and microscopy techniques. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Patel M, Leggett SE, Landauer AK, Wong IY, Franck C. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields. Sci Rep 2018; 8:5581. [PMID: 29615650 PMCID: PMC5882970 DOI: 10.1038/s41598-018-23488-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.
Collapse
Affiliation(s)
- Mohak Patel
- School of Engineering, Brown University, Providence, RI, 02912, USA.
| | - Susan E Leggett
- School of Engineering, Brown University, Providence, RI, 02912, USA.,Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA.,Pathobiology Graduate Program, Brown University, Providence, RI, 02912, USA
| | | | - Ian Y Wong
- School of Engineering, Brown University, Providence, RI, 02912, USA.,Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA.,Pathobiology Graduate Program, Brown University, Providence, RI, 02912, USA
| | - Christian Franck
- School of Engineering, Brown University, Providence, RI, 02912, USA. .,Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
7
|
Xu Q, Style RW, Dufresne ER. Surface elastic constants of a soft solid. SOFT MATTER 2018; 14:916-920. [PMID: 29383365 DOI: 10.1039/c7sm02431b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solid interfaces have intrinsic elasticity. However, in most experiments, this is obscured by bulk stresses. Through microscopic observations of the contact-line geometry of a partially wetting droplet on an anisotropically stretched substrate, we measure two surface-elastic constants that quantify the linear dependence of the surface stress of a soft polymer gel on its strain. With these two parameters, one can predict surface stresses for general deformations of the material in the linear-elastic limit.
Collapse
Affiliation(s)
- Qin Xu
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| | - Robert W Style
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|