1
|
Desai N, Pande S, Vora L, Kommineni N. Correction to "Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration". ACS APPLIED BIO MATERIALS 2024; 7:6325-6331. [PMID: 39162584 PMCID: PMC11409221 DOI: 10.1021/acsabm.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
2
|
Akhtar M, Peng P, Bernhardt A, Gelinsky M, Ur Rehman MA, Boccaccini AR, Basu B. Gelatin Methacryloyl (GelMA) - 45S5 Bioactive Glass (BG) Composites for Bone Tissue Engineering: 3D Extrusion Printability and Cytocompatibility Assessment Using Human Osteoblasts. ACS Biomater Sci Eng 2024; 10:5122-5135. [PMID: 39038164 DOI: 10.1021/acsbiomaterials.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
3D extrusion printing has been widely investigated for low-volume production of complex-shaped scaffolds for tissue regeneration. Gelatin methacryloyl (GelMA) is used as a baseline material for the synthesis of biomaterial inks, often with organic/inorganic fillers, to obtain a balance between good printability and biophysical properties. The present study demonstrates how 45S5 bioactive glass (BG) addition and GelMA concentrations can be tailored to develop GelMA composite scaffolds with good printability and buildability. The experimental results suggest that 45S5 BG addition consistently decreases the compression stiffness, irrespective of GelMA concentration, albeit within 20% of the baseline scaffold (without 45S5 BG). The optimal addition of 2 wt % 45S5 BG in 7.5 wt % GelMA was demonstrated to provide the best combination of printability and buildability in the 3D extrusion printing route. The degradation decreases and the swelling kinetics increases with 45S5 BG addition, irrespective of GelMA concentration. Importantly, the dissolution in simulated body fluid over 3 weeks clearly promoted the nucleation and growth of crystalline calcium phosphate particles, indicating the potential of GelMA-45S5 BG to promote biomineralization. The cytocompatibility assessment using human osteoblasts could demonstrate uncompromised cell proliferation or osteogenic marker expression over 21 days in culture for 3D printable 7.5 wt % GelMA -2 wt % 45S5 BG scaffolds when compared to 7.5 wt % GelMA. The results thus encourage further investigations of the GelMA/45S5 BG composite system for bone tissue engineering applications.
Collapse
Affiliation(s)
- Memoona Akhtar
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Peixi Peng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Bikramjit Basu
- Laboratory for Biomaterials Science and Translational Research, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Desai N, Pande S, Vora LK, Kommineni N. Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:4270-4292. [PMID: 38950103 PMCID: PMC11253102 DOI: 10.1021/acsabm.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.
Collapse
Affiliation(s)
- Nimeet Desai
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Shreya Pande
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Nagavendra Kommineni
- Center
for Biomedical Research, Population Council, New York, New York 10065, United States
| |
Collapse
|
4
|
Gao J, Ren J, Ye H, Chu W, Ding X, Ding L, Fu Y. Thymosin beta 10 loaded ZIF-8/sericin hydrogel promoting angiogenesis and osteogenesis for bone regeneration. Int J Biol Macromol 2024; 267:131562. [PMID: 38626832 DOI: 10.1016/j.ijbiomac.2024.131562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Angiogenesis is pivotal for osteogenesis during bone regeneration. A hydrogel that promotes both angiogenesis and osteogenesis is essential in bone tissue engineering. However, creating scaffolds with the ideal balance of biodegradability, osteogenic, and angiogenic properties poses a challenge. Thymosin beta 10 (TMSB10), known for its dual role in angiogenesis and osteogenesis differentiation, faces limitations due to protein activity preservation. To tackle this issue, ZIF-8 was engineered as a carrier for TMSB10 (TMSB10@ZIF-8), and subsequently integrated into the self-assembled sericin hydrogel. The efficacy of the composite hydrogel in bone repair was assessed using a rat cranial defect model. Characterization of the nanocomposites confirmed the successful synthesis of TMSB10@ZIF-8, with a TMSB10 encapsulation efficiency of 88.21 %. The sustained release of TMSB10 from TMSB10@ZIF-8 has significantly enhanced tube formation in human umbilical vein endothelial cells (HUVECs) in vitro and promoted angiogenesis in the chicken chorioallantoic membrane (CAM) model in vivo. It has markedly improved the osteogenic differentiation ability of MC 3 T3-E1 cells in vitro. 8 weeks post-implantation, the TMSB10@ZIF-8/ Sericin hydrogel group exhibited significant bone healing (86.77 ± 8.91 %), outperforming controls. Thus, the TMSB10@ZIF-8/Sericin hydrogel, leveraging ZIF-8 for TMSB10 delivery, emerges as a promising bone regeneration scaffold with substantial clinical application potential.
Collapse
Affiliation(s)
- Jia Gao
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin 130000, PR China
| | - Hanjie Ye
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Wenhui Chu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Xuankai Ding
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Lingzhi Ding
- Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yongqian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
5
|
Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA. Advances in guided bone regeneration membranes: a comprehensive review of materials and techniques. Biomed Phys Eng Express 2024; 10:032003. [PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Collapse
Affiliation(s)
- Mohammed Ali
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Hasmaliza Mohamad
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Faheem Ullah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
- Department of Biological Sciences, Biopolymer Research Centre (BRC), National University of Medical Sciences, 46000, Rawalpindi, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Butto Women University Peshawar, Charsadda Road Laramma, 25000, Peshawar, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
7
|
Li L, Lu P, Liu Y, Yang J, Li S. Three-Dimensional-Bioprinted Bioactive Glass/Cellulose Composite Scaffolds with Porous Structure towards Bone Tissue Engineering. Polymers (Basel) 2023; 15:polym15092226. [PMID: 37177373 PMCID: PMC10180722 DOI: 10.3390/polym15092226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, three-dimensional (3D) bioactive glass/lignocellulose (BG/cellulose) composite scaffolds were successfully fabricated by the 3D-bioprinting technique with N-methylmorpholine-N-oxide (NMMO) as the ink solvent. The physical structure, morphology, mechanical properties, hydroxyapatite growth and cell response to the prepared BG/cellulose scaffolds were investigated. Scanning electron microscopy (SEM) images showed that the BG/cellulose scaffolds had uniform macropores of less than 400 μm with very rough surfaces. Such BG/cellulose scaffolds have excellent mechanical performance to resist compressive force in comparison with pure cellulose scaffolds and satisfy the strength requirement of human trabecular bone (2-12 MPa). Furthermore, BG significantly increased the excellent hydroxyapatite-forming capability of the cellulose scaffolds as indicated by the mineralization of the scaffolds in simulated body fluid (SBF). The BG/cellulose scaffolds showed low cytotoxicity to human bone marrow mesenchymal stem cells (hBMSCs) in the CCK8 assay. The cell viability reached maximum (percent of the control group) when the weight ratio of cellulose to BG was 2 in the scaffold. Therefore, the 3D-printed BG/cellulose scaffolds show a potential application in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Lei Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Pengfei Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuting Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Shengjuan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
8
|
Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater 2023; 20:137-163. [PMID: 35663339 PMCID: PMC9142858 DOI: 10.1016/j.bioactmat.2022.05.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
| | - Mohammad Sadegh Nourbakhsh
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
9
|
Conde-González A, Glinka M, Dutta D, Wallace R, Callanan A, Oreffo ROC, Bradley M. Rapid fabrication and screening of tailored functional 3D biomaterials: Validation in bone tissue repair - Part II. BIOMATERIALS ADVANCES 2023; 145:213250. [PMID: 36563509 DOI: 10.1016/j.bioadv.2022.213250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Regenerative medicine strategies place increasingly sophisticated demands on 3D biomaterials to promote tissue formation at sites where tissue would otherwise not form. Ideally, the discovery/fabrication of the 3D scaffolds needs to be high-throughput and uniform to ensure quick and in-depth analysis in order to pinpoint appropriate chemical and mechanical properties of a biomaterial. Herein we present a versatile technique to screen new potential biocompatible acrylate-based 3D scaffolds with the ultimate aim of application in tissue repair. As part of this process, we identified an acrylate-based 3D porous scaffold that promoted cell proliferation followed by accelerated tissue formation, pre-requisites for tissue repair. Scaffolds were fabricated by a facile freeze-casting and an in-situ photo-polymerization route, embracing a high-throughput synthesis, screening and characterization protocol. The current studies demonstrate the dependence of cellular growth and vascularization on the porosity and intrinsic chemical nature of the scaffolds, with tuneable 3D scaffolds generated with large, interconnected pores suitable for cellular growth applied to skeletal reparation. Our studies showed increased cell proliferation, collagen and ALP expression, while chorioallantoic membrane assays indicated biocompatibility and demonstrated the angiogenic nature of the scaffolds. VEGRF2 expression in vivo observed throughout the 3D scaffolds in the absence of growth factor supplementation demonstrates a potential for angiogenesis. This novel platform provides an innovative approach to 3D scanning of synthetic biomaterials for tissue regeneration.
Collapse
Affiliation(s)
| | - Michael Glinka
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Deepanjalee Dutta
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Robert Wallace
- Orthopaedics and Trauma, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
10
|
Yang TH, Chou YC, Ju CP, Chern Lin JH. Osteoregenerative efficacy of a novel synthetic, resorbable Ca/P/S-based bone graft substitute in intra- and peri-articular fractures: a brief medical image-based report. J Orthop Surg Res 2022; 17:500. [DOI: 10.1186/s13018-022-03385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/05/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background
When a fracture goes into or around a joint, it usually damages the cartilage at the ends of bones and other joint tissue. As a result, the affected joints are prone to traumatic arthritis, leading to stiffness. Repairing bone damage, maintaining joint integrity, and avoiding subchondral and metaphyseal defects caused by comminuted fractures is often a great challenge for orthopedic surgeons. Tissue engineering of synthetic bone substitutes has proven beneficial to the attachment and proliferation of bone cells, promoting the formation of mature tissues with sufficient mechanical strength and has become a promising alternative to autograft methods. The purpose of this study is to retrospectively evaluate the clinical outcome and efficacy of a novel synthetic, highly biocompatible, and fully resorbable Ca/P/S-based bone substitute based on medical image findings.
Materials and methods
A synthetic, inorganic and highly porous Ca/P/S-based bone-substituting material (Ezechbone® Granule, CBS-400) has been developed by National Cheng-Kung University. We collected fourteen cases of complex intra- and peri-articular fractures with Ezechbone® Granule bone grafting between 2019/11 and 2021/11. We studied the evidence of bone healing by reviewing, interpreting and analyzing the medical image recordings.
Results
In the present study, CBS-400 was observed to quickly integrate into surrounding bone within three weeks after grafting during the initial callus formation of the early stage of repair. All of these cases healed entirely within three months. In addition, the patient may return to daily life function after 3.5 months of follow-up and rehabilitation treatment.
Conclusions
Ezechbone® Granule CBS-400 was proved capable of promoting bone healing and early rehabilitation to prevent soft tissue adhesions and joint contractures. Moreover, it has a high potential for avoiding ectopic bone formation or abnormal synostosis.
Trial registration
The Institutional Review Board at National Cheng Kung University Hospital (NCKUH) approved the study protocol (A-ER-109-031, 3-13-2020).
Collapse
|
11
|
Evaluation of Mechanical Properties of Porous Chitosan/Gelatin/Polycaprolactone Bone Scaffold Prepared by Microwave Foaming Method. Polymers (Basel) 2022; 14:polym14214668. [PMID: 36365664 PMCID: PMC9658864 DOI: 10.3390/polym14214668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bone tissue may suffer from bone injury and bone defects due to accidents or diseases. Since the demand for autologous bone and allograft tissue far exceeds the supply, bone scaffolds have taken the lead. The use of bone scaffolds is one of the measures to help heal or regenerate bone tissue. Therefore, a new bone scaffold was proposed in this study, which has a simpler preparation process and stronger performance. This study proposes bone scaffolds with an attempt to use polymers that are synthesized separately with three types of minerals as the filler using the microwave foaming method as follows. A 0.1 wt% of montmorillonite (MMT), zinc oxide (ZnO), or titanium dioxide (TiO2) is added to chitosan (CS)/gelatin mixtures, respectively, after which sodium bicarbonate is added as a foaming agent, thereby forming porous gels. The polymer synthesized from three minerals was used as filler. The following microwave foaming method was adopted: 0.1 wt% MMT, ZnO, or TiO2 was added to the CS/gelatin mixture, and then sodium bicarbonate was added as a foaming agent to form a porous gel. Next, porous gels and polycaprolactone were combined in a self-made mold in order to form bone scaffolds. A stereo microscope is used to observe the morphology of bone scaffolds, after which the pore size analysis, pore connectivity, swell property, porosity, and compressive strength are tested, examining the effects of the mineral type on bone scaffolds. The test results indicate that with MMT being the filler and sodium bicarbonate being the foaming agent, the resulting bone scaffolds yield a porous structure with a pore size between 120 μm and 370 μm. Besides, the incorporation of polycaprolactone also provides samples of 1MCG-P, 2MCG-P, and 5MCG-P with a certain compressive strength of 150–170 MPa. To sum up, the test results substantiate that a combination of the microwave foaming method and MMT generates a porous structure for bone scaffolds (1MCG-P, 2MCG-P, and 5MCG-P), involving a porosity of 38%, an inter-connected porous structure, and the compressive strength that exceeds 150 MPa.
Collapse
|
12
|
Wu HY, Lin YH, Lee AKX, Kuo TY, Tsai CH, Shie MY. Combined Effects of Polydopamine-Assisted Copper Immobilization on 3D-Printed Porous Ti6Al4V Scaffold for Angiogenic and Osteogenic Bone Regeneration. Cells 2022; 11:cells11182824. [PMID: 36139399 PMCID: PMC9497129 DOI: 10.3390/cells11182824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have demonstrated that biological compounds and trace elements such as dopamine (DA) and copper ions (Cu) could be modified onto the surfaces of scaffolds using a one-step immersion process which is simple, inexpensive and, most importantly, non-cytotoxic. The development and emergence of 3D printing technologies such as selective laser melting (SLM) have also made it possible for us to fabricate bone scaffolds with precise structural designs using metallic compounds. In this study, we fabricated porous titanium scaffolds (Ti) using SLM and modified the surface of Ti with polydopamine (PDA) and Cu. There are currently no other reported studies with such a combination for osteogenic and angiogenic-related applications. Results showed that such modifications did not affect general appearances and microstructural characteristics of the porous Ti scaffolds. This one-step immersion modification allowed us to modify the surfaces of Ti with different concentrations of Cu ions, thus allowing us to fabricate individualized scaffolds for different clinical scenarios. The modification improved the hydrophilicity and surface roughness of the scaffolds, which in turn led to promote cell behaviors of Wharton’s jelly mesenchymal stem cells. Ti itself has high mechanical strength, therefore making it suitable for surgical handling and clinical applications. Furthermore, the scaffolds were able to release ions in a sustained manner which led to an upregulation of osteogenic-related proteins (bone alkaline phosphatase, bone sialoprotein and osteocalcin) and angiogenic-related proteins (vascular endothelial growth factor and angiopoietin-1). By combining additive manufacturing, Ti6Al4V scaffolds, surface modification and Cu ions, the novel hybrid 3D-printed porous scaffold could be fabricated with ease and specifically benefited future bone regeneration in the clinic.
Collapse
Affiliation(s)
- Hsi-Yao Wu
- School of Dentistry, China Medical University, Taichung 406040, Taiwan
| | - Yen-Hong Lin
- X-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
| | - Alvin Kai-Xing Lee
- Department of Education, China Medical University Hospital, Taichung 404332, Taiwan
| | - Ting-You Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung 406040, Taiwan
- X-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22967979 (ext. 3700)
| |
Collapse
|
13
|
Hassani A, Avci ÇB, Kerdar SN, Amini H, Amini M, Ahmadi M, Sakai S, Bagca BG, Ozates NP, Rahbarghazi R, Khoshfetrat AB. Interaction of alginate with nano-hydroxyapatite-collagen using strontium provides suitable osteogenic platform. J Nanobiotechnology 2022; 20:310. [PMID: 35765003 PMCID: PMC9238039 DOI: 10.1186/s12951-022-01511-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hydrogels based on organic/inorganic composites have been at the center of attention for the fabrication of engineered bone constructs. The establishment of a straightforward 3D microenvironment is critical to maintaining cell-to-cell interaction and cellular function, leading to appropriate regeneration. Ionic cross-linkers, Ca2+, Ba2+, and Sr2+, were used for the fabrication of Alginate-Nanohydroxyapatite-Collagen (Alg-nHA-Col) microspheres, and osteogenic properties of human osteoblasts were examined in in vitro and in vivo conditions after 21 days. Results Physicochemical properties of hydrogels illustrated that microspheres cross-linked with Sr2+ had reduced swelling, enhanced stability, and mechanical strength, as compared to the other groups. Human MG-63 osteoblasts inside Sr2+ cross-linked microspheres exhibited enhanced viability and osteogenic capacity indicated by mineralization and the increase of relevant proteins related to bone formation. PCR (Polymerase Chain Reaction) array analysis of the Wnt (Wingless-related integration site) signaling pathway revealed that Sr2+ cross-linked microspheres appropriately induced various signaling transduction pathways in human osteoblasts leading to osteogenic activity and dynamic growth. Transplantation of Sr2+ cross-linked microspheres with rat osteoblasts into cranium with critical size defect in the rat model accelerated bone formation analyzed with micro-CT and histological examination. Conclusion Sr2+ cross-linked Alg-nHA-Col hydrogel can promote functionality and dynamic growth of osteoblasts. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01511-9.
Collapse
Affiliation(s)
- Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sajed Nazif Kerdar
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meisam Amini
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Bakiye Goker Bagca
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran. .,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran.
| |
Collapse
|
14
|
Hassani A, Khoshfetrat AB, Rahbarghazi R, Sakai S. Collagen and nano-hydroxyapatite interactions in alginate-based microcapsule provide an appropriate osteogenic microenvironment for modular bone tissue formation. Carbohydr Polym 2022; 277:118807. [PMID: 34893227 DOI: 10.1016/j.carbpol.2021.118807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 01/24/2023]
Abstract
The addition of nano-hydroxyapatite (nHA) and collagen (Col) to the alginate (Alg) microcapsule hydrogel reduced swelling and degradation ratios while the compressive strength increased compared to Alg, Alg-Col, and Alg-nHA groups. MTT assay and Calcein-AM staining revealed an enhanced MG-63 osteoblasts viability in the Alg-nHA-Col hydrogel compared to the other groups. SEM showed the attachment of MG-63 osteoblasts inside Alg-Col hydrogels. Non-significant differences were found in antioxidant capacity of cells inside the Alg-nHA-Col hydrogel compared to the Alg group. Hematoxylin-Eosin staining showed the distribution of MG-63 osteoblasts inside microspheres. Calcium deposits, alkaline phosphatase (ALP) activity with the increase of intracellular calcium were found in Alg-nHA-Col group. Western blotting showed that levels of osteocalcin, ColA2, Sox-9, and ColA1 also significantly increased compared to the Alg, Alg-Col, Alg-nHA groups. The present study demonstrated that the addition of mineral nHA and protein (Col) into the Alg improves osteogenic potential and provides a 3D platform for modular bone tissue engineering.
Collapse
Affiliation(s)
- Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| |
Collapse
|
15
|
|
16
|
A Collagen(Col)/nano-hydroxyapatite (nHA) biological composite bone scaffold with double multi-level interface reinforcement. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Precise Tuning of Polymeric Fiber Dimensions to Enhance the Mechanical Properties of Alginate Hydrogel Matrices. Polymers (Basel) 2021; 13:polym13132202. [PMID: 34279346 PMCID: PMC8271374 DOI: 10.3390/polym13132202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/26/2023] Open
Abstract
Hydrogels based on biopolymers, such as alginate, are commonly used as scaffolds in tissue engineering applications as they mimic the features of the native extracellular matrix (ECM). However, in their native state, they suffer from drawbacks including poor mechanical performance and a lack of biological functionalities. Herein, we have exploited a crystallization-driven self-assembly (CDSA) methodology to prepare well-defined one-dimensional micellar structures with controlled lengths to act as a mimic of fibrillar collagen in native ECM and improve the mechanical strength of alginate-based hydrogels. Poly(ε-caprolactone)-b-poly(methyl methacrylate)-b-poly(N, N-dimethyl acrylamide) triblock copolymers were self-assembled into 1D cylindrical micelles with precise lengths using CDSA epitaxial growth and subsequently combined with calcium alginate hydrogel networks to obtain nanocomposites. Rheological characterization determined that the inclusion of the cylindrical structures within the hydrogel network increased the strength of the hydrogel under shear. Furthermore, the strain at flow point of the alginate-based hydrogel was found to increase with nanoparticle content, reaching an improvement of 37% when loaded with 500 nm cylindrical micelles. Overall, this study has demonstrated that one-dimensional cylindrical nanoparticles with controlled lengths formed through CDSA are promising fibrillar collagen mimics to build ECM scaffold models, allowing exploration of the relationship between collagen fiber size and matrix mechanical properties.
Collapse
|
18
|
Wang P, Perche F, Midoux P, Cabral CSD, Malard V, Correia IJ, Ei-Hafci H, Petite H, Logeart-Avramoglou D, Pichon C. In Vivo bone tissue induction by freeze-dried collagen-nanohydroxyapatite matrix loaded with BMP2/NS1 mRNAs lipopolyplexes. J Control Release 2021; 334:188-200. [PMID: 33895201 DOI: 10.1016/j.jconrel.2021.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
Messenger RNA (mRNA) activated matrices (RAMs) are interesting to orchestrate tissue and organ regeneration due to the in-situ and sustained production of functional proteins. However, the immunogenicity of in vitro transcribed mRNA and the paucity of proper in vivo mRNA delivery vector need to be overcome to exert the therapeutic potential of RAM. We developed a dual mRNAs system for in vitro osteogenesis by co-delivering NS1 mRNA with BMP2 mRNA to inhibit RNA sensors and enhance BMP-2 expression. Next, we evaluated a lipopolyplex (LPR) formulation platform for in vivo mRNA delivery and adapted the LPRs for RAM preparation. The LPR formulated BMP2/NS1 mRNAs were incorporated into an optimized collagen-nanohydroxyapatite scaffold and freeze-dried to prepare ready-to-use RAMs. The loaded BMP2/NS1 mRNAs lipopolyplexes maintained their spherical morphology in the RAM, thanks to the core-shell structure of LPR. The mRNAs release from RAMs lasted for 16 days resulting in an enhanced prolonged transgene expression period compared to direct cell transfection. Once subcutaneously implanted in mice, the BMP2/NS1 mRNAs LPRs containing RAMs (RAM-BMP2/NS1) induced significant new bone tissue than those without NS1 mRNA, eight weeks post implantation. Overall, our results demonstrate that the BMP2/NS1 dual mRNAs system is suitable for osteogenic engagement, and the freeze-dried RAM-BMP2/NS1 could be promising off-the-shelf products for clinical orthopedic practice.
Collapse
Affiliation(s)
- Pinpin Wang
- Center for Molecular Biophysics (CBM), UPR 4301 CNRS, Orléans, France; Shenzhen Institute of Advanced Technology, Chinese Academy Sciences, Shenzhen, China
| | - Federico Perche
- Center for Molecular Biophysics (CBM), UPR 4301 CNRS, Orléans, France
| | - Patrick Midoux
- Center for Molecular Biophysics (CBM), UPR 4301 CNRS, Orléans, France
| | - Cátia S D Cabral
- Centro de Investigação em Ciências da Saúde (CICS), Universidade da Beira Interior, Covilha, Portugal
| | - Virginie Malard
- Center for Molecular Biophysics (CBM), UPR 4301 CNRS, Orléans, France
| | - Ilídio J Correia
- Centro de Investigação em Ciências da Saúde (CICS), Universidade da Beira Interior, Covilha, Portugal; Departamento Engenharia Química, Universidade de Coimbra, Coimbra, Portugal
| | - Hanane Ei-Hafci
- Université de Paris, CNRS UMR 7052, INSERM U1271, B3OA, Paris, France
| | - Hervé Petite
- Université de Paris, CNRS UMR 7052, INSERM U1271, B3OA, Paris, France
| | | | - Chantal Pichon
- Center for Molecular Biophysics (CBM), UPR 4301 CNRS, Orléans, France; Faculty of Science and Techniques, University of Orléans, Orléans, France.
| |
Collapse
|
19
|
Carvalho MS, Cabral JMS, da Silva CL, Vashishth D. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix. Polymers (Basel) 2021; 13:polym13071095. [PMID: 33808184 PMCID: PMC8036283 DOI: 10.3390/polym13071095] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Engineering biomaterials that mimic the extracellular matrix (ECM) of bone is of significant importance since most of the outstanding properties of the bone are due to matrix constitution. Bone ECM is composed of a mineral part comprising hydroxyapatite and of an organic part of primarily collagen with the rest consisting on non-collagenous proteins. Collagen has already been described as critical for bone tissue regeneration; however, little is known about the potential effect of non-collagenous proteins on osteogenic differentiation, even though these proteins were identified some decades ago. Aiming to engineer new bone tissue, peptide-incorporated biomimetic materials have been developed, presenting improved biomaterial performance. These promising results led to ongoing research focused on incorporating non-collagenous proteins from bone matrix to enhance the properties of the scaffolds namely in what concerns cell migration, proliferation, and differentiation, with the ultimate goal of designing novel strategies that mimic the native bone ECM for bone tissue engineering applications. Overall, this review will provide an overview of the several non-collagenous proteins present in bone ECM, their functionality and their recent applications in the bone tissue (including dental) engineering field.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence: (M.S.C.); (D.V.)
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence: (M.S.C.); (D.V.)
| |
Collapse
|
20
|
Gelmi A, Schutt CE. Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Adv Healthc Mater 2021; 10:e2001125. [PMID: 32996270 PMCID: PMC11468740 DOI: 10.1002/adhm.202001125] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Stem cell fate is closely intertwined with microenvironmental and endogenous cues within the body. Recapitulating this dynamic environment ex vivo can be achieved through engineered biomaterials which can respond to exogenous stimulation (including light, electrical stimulation, ultrasound, and magnetic fields) to deliver temporal and spatial cues to stem cells. These stimuli-responsive biomaterials can be integrated into scaffolds to investigate stem cell response in vitro and in vivo, and offer many pathways of cellular manipulation: biochemical cues, scaffold property changes, drug release, mechanical stress, and electrical signaling. The aim of this review is to assess and discuss the current state of exogenous stimuli-responsive biomaterials, and their application in multipotent stem cell control. Future perspectives in utilizing these biomaterials for personalized tissue engineering and directing organoid models are also discussed.
Collapse
Affiliation(s)
- Amy Gelmi
- School of ScienceCollege of Science, Engineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Carolyn E. Schutt
- Department of Biomedical EngineeringKnight Cancer Institute Cancer Early Detection Advanced Research Center (CEDAR)Oregon Health and Science UniversityPortlandOR97201USA
| |
Collapse
|
21
|
Sun Z, Wu F, Gao H, Cui K, Xian M, Zhong J, Tian Y, Fan S, Wu G. A Dexamethasone-Eluting Porous Scaffold for Bone Regeneration Fabricated by Selective Laser Sintering. ACS APPLIED BIO MATERIALS 2020; 3:8739-8747. [PMID: 35019645 DOI: 10.1021/acsabm.0c01126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhidong Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Research Institute, Well Lead Medical Equipment Co., Ltd., Guangzhou 511434, P. R. China
| | - Fan Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou 510120, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China
| | - Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Kai Cui
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Mengyue Xian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jianglong Zhong
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China
| | - Ye Tian
- Department of Medical Devices, Guangdong Food and Drug Vocational College, Guangzhou 510520, P. R. China
| | - Song Fan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou 510120, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China
| | - Gang Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
22
|
Ashwin B, Abinaya B, Prasith T, Chandran SV, Yadav LR, Vairamani M, Patil S, Selvamurugan N. 3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering. Int J Biol Macromol 2020; 162:523-532. [DOI: 10.1016/j.ijbiomac.2020.06.157] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
|
23
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
24
|
Krishnamoorthi MK, Sarig U, Baruch L, Ting S, Reuveny S, Oh S, Goldfracht I, Gepstein L, Venkatraman SS, Tan LP, Machluf M. Robust Fabrication of Composite 3D Scaffolds with Tissue-Specific Bioactivity: A Proof-of-Concept Study. ACS APPLIED BIO MATERIALS 2020; 3:4974-4986. [PMID: 35021675 DOI: 10.1021/acsabm.0c00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The basic requirement of any engineered scaffold is to mimic the native tissue extracellular matrix (ECM). Despite substantial strides in understanding the ECM, scaffold fabrication processes of sufficient product robustness and bioactivity require further investigation, owing to the complexity of the natural ECM. A promising bioacive platform for cardiac tissue engineering is that of decellularized porcine cardiac ECM (pcECM, used here as a soft tissue representative model). However, this platform's complexity and batch-to-batch variability serve as processing limitations in attaining a robust and tunable cardiac tissue-specific bioactive scaffold. To address these issues, we fabricated 3D composite scaffolds (3DCSs) that demonstrate comparable physical and biochemical properties to the natural pcECM using wet electrospinning and functionalization with a pcECM hydrogel. The fabricated 3DCSs are non-immunogenic in vitro and support human mesenchymal stem cells' proliferation. Most importantly, the 3DCSs demonstrate tissue-specific bioactivity in inducing spontaneous cardiac lineage differentiation in human induced pluripotent stem cells (hiPSC) and further support the viability, functionality, and maturation of hiPSC-derived cardiomyocytes. Overall, this work illustrates the technology to fabricate robust yet tunable 3D scaffolds of tissue-specific bioactivity (with a proof of concept provided for cardiac tissues) as a platform for basic materials science studies and possible future R&D application in regenerative medicine.
Collapse
Affiliation(s)
- Muthu Kumar Krishnamoorthi
- School of Materials Science & Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 Singapore.,Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Udi Sarig
- School of Materials Science & Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 Singapore.,Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel.,Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Guangdong-Technion Israel Institute of Technology (GTIIT), Shantou, Guangdong Province, 515063 P.R. China
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Sherwin Ting
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, 138668 Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, 138668 Singapore
| | - Steve Oh
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, 138668 Singapore
| | - Idit Goldfracht
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Efron St 1, Haifa 31096, Israel
| | - Lior Gepstein
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Efron St 1, Haifa 31096, Israel
| | - Subramanian S Venkatraman
- School of Materials Science & Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 Singapore
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 Singapore
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| |
Collapse
|
25
|
Zhou R, Ni HJ, Peng JH, Liu N, Chen S, Shao JH, Fu QW, Liu JJ, Chen F, Qian QR. The mineralization, drug release and in vivo bone defect repair properties of calcium phosphates/PLA modified tantalum scaffolds. RSC Adv 2020; 10:7708-7717. [PMID: 35492178 PMCID: PMC9049840 DOI: 10.1039/c9ra09385k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/15/2020] [Indexed: 01/05/2023] Open
Abstract
Calcium phosphate based biomaterials have been widely studied in biomedical areas. Herein, amorphous calcium phosphate (ACP) nanospheres and hydroxyapatite (HA) nanorods were separately prepared and used for coating tantalum (Ta) scaffolds with a polymer of polylactide (PLA). We have found that different crystal phases of calcium phosphate coated on Ta scaffolds displayed different effects on the surface morphologies, mineralization and bovine serum albumin (BSA) release. The ACP-PLA and HA-PLA coated on Ta scaffold were more favorable for in vitro mineralization than bare and PLA coated Ta scaffolds, and resulted in a highly hydrophilic surfaces. Meanwhile, the osteoblast-like cells (MG63) showed favorable properties of adhesion and spreading on both ACP-PLA and HA-PLA coated Ta scaffolds. The ACP-PLA and HA-PLA coated Ta scaffolds showed a high biocompatibility and potential applications for in vivo bone defect repair. Calcium phosphate modified tantalum scaffolds displayed high performance on mineralization, sustained drug release and in vivo bone defect repair.![]()
Collapse
Affiliation(s)
- Rong Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University Shanghai 200003 P. R. China .,Department of Orthopaedics, 72nd Group Army Hospital of PLA No. 9 Chezhan Road, Wuxing District Huzhou 313000 P. R. China
| | - Hai-Jian Ni
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Jin-Hui Peng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University Shanghai 200003 P. R. China
| | - Ning Liu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University Shanghai 200003 P. R. China
| | - Shu Chen
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University Shanghai 200003 P. R. China
| | - Jia-Hua Shao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University Shanghai 200003 P. R. China
| | - Qi-Wei Fu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University Shanghai 200003 P. R. China
| | - Jun-Jian Liu
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Feng Chen
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Qi-Rong Qian
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University Shanghai 200003 P. R. China
| |
Collapse
|
26
|
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110698. [PMID: 32204012 DOI: 10.1016/j.msec.2020.110698] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/02/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Nanocomposite biomaterials are a relatively new class of materials that incorporate a biopolymeric and biodegradable matrix structure with bioactive and easily resorbable fillers which are nano-sized. This article is a review of a few polymeric nanocomposite biomaterials which are potential candidates for bone tissue regeneration. These nanocomposites have been broadly classified into two groups viz. natural and synthetic polymer based. Natural polymer-based nanocomposites include materials fabricated through reinforcement of nanoparticles and/or nanofibers in a natural polymer matrix. Several widely used natural biopolymers, such as chitosan (CS), collagen (Col), cellulose, silk fibroin (SF), alginate, and fucoidan, have been reviewed regarding their present investigation on the incorporation of nanomaterial, biocompatibility, and tissue regeneration. Synthetic polymer-based nanocomposites that have been covered in this review include polycaprolactone (PCL), poly (lactic-co-glycolic) acid (PLGA), polyethylene glycol (PEG), poly (lactic acid) (PLA), and polyurethane (PU) based nanocomposites. An array of nanofillers, such as nano hydroxyapatite (nHA), nano zirconia (nZr), nano silica (nSi), silver nano particles (AgNPs), nano titanium dioxide (nTiO2), graphene oxide (GO), that is used widely across the bone tissue regeneration research platform are included in this review with respect to their incorporation into a natural and/or synthetic polymer matrix. The influence of nanofillers on cell viability, both in vitro and in vivo, along with cytocompatibility and new tissue generation has been encompassed in this review. Moreover, nanocomposite material characterization using some commonly used analytical techniques, such as electron microscopy, spectroscopy, diffraction patterns etc., has been highlighted in this review. Biomaterial physical properties, such as pore size, porosity, particle size, and mechanical strength which strongly influences cell attachment, proliferation, and subsequent tissue growth has been covered in this review. This review has been sculptured around a case by case basis of current research that is being undertaken in the field of bone regeneration engineering. The nanofillers induced into the polymeric matrix render important properties, such as large surface area, improved mechanical strength as well as stability, improved cell adhesion, proliferation, and cell differentiation. The selection of nanocomposites is thus crucial in the analysis of viable treatment strategies for bone tissue regeneration for specific bone defects such as craniofacial defects. The effects of growth factor incorporation on the nanocomposite for controlling new bone generation are also important during the biomaterial design phase.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
27
|
Salerno A, Cesarelli G, Pedram P, Netti PA. Modular Strategies to Build Cell-Free and Cell-Laden Scaffolds towards Bioengineered Tissues and Organs. J Clin Med 2019; 8:E1816. [PMID: 31683796 PMCID: PMC6912533 DOI: 10.3390/jcm8111816] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 01/07/2023] Open
Abstract
Engineering three-dimensional (3D) scaffolds for functional tissue and organ regeneration is a major challenge of the tissue engineering (TE) community. Great progress has been made in developing scaffolds to support cells in 3D, and to date, several implantable scaffolds are available for treating damaged and dysfunctional tissues, such as bone, osteochondral, cardiac and nerve. However, recapitulating the complex extracellular matrix (ECM) functions of native tissues is far from being achieved in synthetic scaffolds. Modular TE is an intriguing approach that aims to design and fabricate ECM-mimicking scaffolds by the bottom-up assembly of building blocks with specific composition, morphology and structural properties. This review provides an overview of the main strategies to build synthetic TE scaffolds through bioactive modules assembly and classifies them into two distinct schemes based on microparticles (µPs) or patterned layers. The µPs-based processes section starts describing novel techniques for creating polymeric µPs with desired composition, morphology, size and shape. Later, the discussion focuses on µPs-based scaffolds design principles and processes. In particular, starting from random µPs assembly, we will move to advanced µPs structuring processes, focusing our attention on technological and engineering aspects related to cell-free and cell-laden strategies. The second part of this review article illustrates layer-by-layer modular scaffolds fabrication based on discontinuous, where layers' fabrication and assembly are split, and continuous processes.
Collapse
Affiliation(s)
- Aurelio Salerno
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
| | - Giuseppe Cesarelli
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Parisa Pedram
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy.
| |
Collapse
|
28
|
Xu J, Feng Y, Wu Y, Li Y, Ouyang M, Zhang X, Wang Y, Wang Y, Xu L. Noninvasive monitoring of bone regeneration using NaYF4: Yb3+, Er3+ upconversion hollow microtubes supporting PLGA-PEG-PLGA hydrogel. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Synthetic Blocks for Bone Regeneration: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20174221. [PMID: 31466409 PMCID: PMC6747264 DOI: 10.3390/ijms20174221] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
This systematic review is aimed at evaluating the effectiveness of synthetic block materials for bone augmentation in preclinical in vivo studies. An electronic search was performed on Pubmed, Scopus, EMBASE. Articles selected underwent risk-of-bias assessment. The outcomes were: new bone formation and residual graft with histomorphometry, radiographic bone density, soft tissue parameters, complications. Meta-analysis was performed to compare new bone formation in test (synthetic blocks) vs. control group (autogenous blocks or spontaneous healing). The search yielded 214 articles. After screening, 39 studies were included, all performed on animal models: rabbits (n = 18 studies), dogs (n = 4), rats (n = 7), minipigs (n = 4), goats (n = 4), and sheep (n = 2). The meta-analysis on rabbit studies showed significantly higher new bone formation for synthetic blocks with respect to autogenous blocks both at four-week (mean difference (MD): 5.91%, 95% confidence intervals (CI): 1.04, 10.79%, p = 0.02) and at eight-week healing (MD: 4.44%, 95% CI: 0.71, 8.17%, p = 0.02). Other animal models evidenced a trend for better outcomes with synthetic blocks, though only based on qualitative analysis. Synthetic blocks may represent a viable resource in bone regenerative surgery for achieving new bone formation. Differences in the animal models, the design of included studies, and the bone defects treated should be considered when generalizing the results. Clinical studies are needed to confirm the effectiveness of synthetic blocks in bone augmentation procedures.
Collapse
|
30
|
Camarero-Espinosa S, Cooper-White JJ. Combinatorial presentation of cartilage-inspired peptides on nanopatterned surfaces enables directed differentiation of human mesenchymal stem cells towards distinct articular chondrogenic phenotypes. Biomaterials 2019; 210:105-115. [DOI: 10.1016/j.biomaterials.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
|
31
|
Lin YH, Chuang TY, Chiang WH, Chen IWP, Wang K, Shie MY, Chen YW. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109887. [PMID: 31500024 DOI: 10.1016/j.msec.2019.109887] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023]
Abstract
Graphene-contained calcium silicate (CS)/polycaprolactone (PCL) scaffold (GCP) provides an alternative solution that can bring several bone formation properties, such as osteoinductive. This study finds out the optimal percentage of graphene additive to calcium silicate and polycaprolactone mixture for excellent in vitro and in vivo bone-regeneration ability, in addition, this scaffold could fabricate by 3D printing technology and demonstrates distinct mechanical, degradation, and biological behavior. With controlled structure and porosity by 3D printing, osteogenesis and proliferation capabilities of Wharton's Jelly derived mesenchymal stem cells (WJMSCs) were significantly enhanced when cultured on 3D printed GCP scaffolds. In this study, it was also discovered that fibroblast growth factor receptor (FGFR) plays an active role in modulating differentiation behavior of WJMSCs cultured on GCP scaffolds. The validation has been proved by analyzed the decreased cell proliferation, osteogenic-related protein (ALP and OC), and angiogenic-related protein (VEGF and vWF) with FGFR knockdown on all experimental groups. Moreover, this study infers that the GCP scaffold could induce the effects of proliferation, differentiation and related protein expression on WJMSCs through FGFR pathway. In summary, this research indicated the 3D-printed GCP scaffolds own the dual bioactivities to reach the osteogenesis and vascularization for bone regeneration.
Collapse
Affiliation(s)
- Yen-Hong Lin
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung City, Taiwan; 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan
| | - Tsan-Yu Chuang
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - I-Wen Peter Chen
- Department of Applied Science, National Taitung University, Taitung City, Taiwan
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan; School of Dentistry, China Medical University, Taichung City, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan; 3D Printing Medical Research Institute, Asia University, Taichung City, Taiwan.
| |
Collapse
|
32
|
He W, Fan Y, Li X. [Recent research progress of bioactivity mechanism and application of bone repair materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1107-1115. [PMID: 30129343 DOI: 10.7507/1002-1892.201807039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Large bone defect repair is a difficult problem to be solved urgently in orthopaedic field, and the application of bone repair materials is a feasible method to solve this problem. Therefore, bone repair materials have been continuously developed, and have evolved from autogenous bone grafts, allograft bone grafts, and inert materials to highly active and multifunctional bone tissue engineering scaffold materials. In this paper, the related mechanism of bone repair materials, the application of bone repair materials, and the exploration of new bone repair materials are introduced to present the research status and advance of the bone repair materials, and the development direction is also prospected.
Collapse
Affiliation(s)
- Wei He
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P.R.China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083,
| | - Xiaoming Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083,
| |
Collapse
|
33
|
Xu X, Lu Y, Li S, Guo S, He M, Luo K, Lin J. Copper-modified Ti6Al4V alloy fabricated by selective laser melting with pro-angiogenic and anti-inflammatory properties for potential guided bone regeneration applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:198-210. [DOI: 10.1016/j.msec.2018.04.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/11/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
|
34
|
Synergistic combination of natural bioadhesive bael fruit gum and chitosan/nano-hydroxyapatite: A ternary bioactive nanohybrid for bone tissue engineering. Int J Biol Macromol 2018; 119:215-224. [PMID: 30036627 DOI: 10.1016/j.ijbiomac.2018.07.128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 01/20/2023]
Abstract
In this work, we have explored the polysaccharide nature of bael fruit gum (BFG) motivated from the current findings about the substantial role of the polysaccharides in bone tissue engineering. The nanocomposite scaffold (CSH-BFG) was prepared by blending BFG, nano-hydroxyapatite (n-HA) and chitosan (CS) by co-precipitation approach and compared with n-HA and CS binary system (CSH). The analysis of different properties was carried out by SEM, TEM, FTIR, XRD and mechanical testing. The CSH-BFG scaffolds revealed a rough morphology and uniform distribution of particles along with strong chemical interactions among different components compared to the CSH scaffold. The incorporation of BFG in the scaffold resulted in significant increase of the compressive strength, compressive modulus, protein adsorption, biodegradation and swelling behaviour. The ternary system exhibited superior antibacterial activity against different bacterial pathogens compared to the binary system. The in vitro biomineralization ability was elucidated from the formation of thick apatite layer complementing the result of ARS study in the CSH-BFG nanocomposite. Our findings also revealed that BFG reinforced CSH nanocomposite exhibited enhanced cell adhesion and proliferation, osteogenic differentiation along with phenomenal cytocompatibility. Overall, our results signified that the fabricated CSH-BFG nanocomposite carries enormous potential to be applied in the bone remodelling procedures.
Collapse
|
35
|
Sun TW, Yu WL, Zhu YJ, Chen F, Zhang YG, Jiang YY, He YH. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc-Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair. Chemistry 2018; 24:8809-8821. [DOI: 10.1002/chem.201800425] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Wei-Lin Yu
- Department of Orthopedics; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
| | - Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Ying-Ying Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yao-Hua He
- Department of Orthopedics; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 P. R. China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital; School of Biomedical Engineering; Shanghai 200233 P. R. China
| |
Collapse
|
36
|
Li Z, Jia S, Xiong Z, Long Q, Yan S, Hao F, Liu J, Yuan Z. 3D-printed scaffolds with calcified layer for osteochondral tissue engineering. J Biosci Bioeng 2018; 126:389-396. [PMID: 29685821 DOI: 10.1016/j.jbiosc.2018.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
Treating full-layer injury of bone and cartilage is currently a significant challenge in orthopedic trauma repair. Joint damage typically includes chondral defects, and the underlying subchondral defect sites are difficult to repair. Tissue engineering technology could potentially be used to treat such injuries; however, results to date been unsatisfactory. The aim of this study was to design a multilayer composite scaffold containing cartilage, bone, and calcified layers to simulate physiological full-thickness bone-cartilage structure. The cartilage layer was created using an improved temperature-gradient thermally induced crystallization technology. The bone and calcified layers were synthesized using 3D printing technology. We examined the scaffold by using scanning electron microscope (SEM), X-ray diffraction (XRD), fluorescence staining, and micro computed tomography (Micro-CT), and observed clearly oriented structures in the cartilage layer, overlapping structures in the bone scaffold, and a compressed calcified layer. Biomechanical performance testing showed that the scaffolds were significantly stronger than scaffolds without a calcified layer (traditional scaffolds) in maximum tensile strength and maximum shear strength (P < 0.05). After inoculating cells onto the scaffolds, we observed similar cell adherence and proliferation to that observed in traditional scaffolds, likely because of the high porosity of the whole scaffold. Our scaffolds could be used in bone and cartilage full-thickness injury repair methods, as well as applications in the field of tissue engineering.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, PR China; Mechanical Engineering Department of Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, PR China; Xi'an Central Hospital, School of Medicine, Xi'an Jiao Tong University, West 5th Road, Xincheng District, Xi'an 710003, PR China
| | - Shuaijun Jia
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, PR China
| | - Zhuo Xiong
- Mechanical Engineering Department of Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, PR China
| | - Qianfa Long
- Xi'an Central Hospital, School of Medicine, Xi'an Jiao Tong University, West 5th Road, Xincheng District, Xi'an 710003, PR China
| | - Shaorong Yan
- Xi'an Central Hospital, School of Medicine, Xi'an Jiao Tong University, West 5th Road, Xincheng District, Xi'an 710003, PR China
| | - Fu Hao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, PR China
| | - Jian Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, PR China
| | - Zhi Yuan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, PR China.
| |
Collapse
|
37
|
Liu J, Zhou P, Long Y, Huang C, Chen D. Repair of bone defects in rat radii with a composite of allogeneic adipose-derived stem cells and heterogeneous deproteinized bone. Stem Cell Res Ther 2018; 9:79. [PMID: 29587852 PMCID: PMC5870513 DOI: 10.1186/s13287-018-0817-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background In the bone tissue engineering domain, seed cells, scaffold and cell-scaffold composites are three focuses. In this study, the feasibility of using allogeneic adipose-derived stem cells(ADSCs) combined with heterogeneous deproteinized bone (HDB) to repair segmental radial defects was investigated by observing the repair of the defect area. Methods ADSCs were cultured in vitro, purified, antigen-detected and osteogenic differentiation potency-measured; then, the ADSCs of the third generation were seeded into HDB to prepare an ADSCs-HDB composite partly with osteogenesis induced cells. Sixty Wistar rats were randomly divided into four groups with 15 in each group. A bone defect (4 mm in length) was created at the left radius in each rat. Two kinds of ADSCs-HDB composites were implanted in the ADSCs osteogenesis group or ADSCs group; HDB was implanted in the negative control group; nothing was filled in the blank control group. The bone defect repair was evaluated by gross observation, molybdenum target X-ray examination and histological analyses after surgery. Results Gross observation: the bone defect area was completely filled and difficult to recognize in the ADSCs osteogenesis group. The connection of the ADSCs group was strong, but the implants were clearly identifiable. The joints of the negative control group were slightly thick but the connection was unstable. In the blank control group, kermesinus tissue was between the two ends and bones were not connected after 8 weeks. Molybdenum target X-ray examinations: In the ADSCs osteogenesis group, evident bridges in the graft were observed in the defects in the fourth week; the defects were filled with new bone completely and a marrow cavity appeared at 8 weeks. In the ADSCs group, there were some callus formations, but the radial defect was still obvious at 8 weeks. In the negative control group, fracture lines were clear. In the blank control group, no osseous bridges were observed, which resulted in bone nonunion eventually in 8 weeks. There were significant differences in the callus density between experimental groups and the blank control group at 4 and 8 weeks (P < 0.01). Histological measures showed that the rate and quality of the new bone formation and remodelling was significantly different between the experimental and control groups. Conclusions A composite of ADSCs-HDB has a strong osteogenic ability. It can repair segmental bone defects well and is promising to serve as grafting material in bone tissue engineering.
Collapse
Affiliation(s)
- Jia Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Changsha Medical University, Changsha, 410219, China.
| | - Peng Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Changsha Medical University, Changsha, 410219, China
| | - Yu Long
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Changsha Medical University, Changsha, 410219, China
| | - Chunxia Huang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Changsha Medical University, Changsha, 410219, China
| | - Danna Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Changsha Medical University, Changsha, 410219, China.,School of Biological Science and Technology, Central South University, Changsha, 410013, China
| |
Collapse
|
38
|
Chen Q, Cao L, Wang JL, Zhao H, Lin H, Fan ZY, Dong J. Improved cell adhesion and osteogenesis using a PLTGA (poly l-lactide, 1,3-trimethylene carbonate, and glycolide) terpolymer by gelatin-assisted hydroxyapatite immobilization for bone regeneration. J Mater Chem B 2018; 6:301-311. [PMID: 32254172 DOI: 10.1039/c7tb02293j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schematic illustration of the procedures for preparing the GEL/HAP-coated PLTGA film, and representative images of the improved cellular behaviors.
Collapse
Affiliation(s)
- Qian Chen
- Department of Orthopaedic Surgery
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- China
| | - Lu Cao
- Department of Orthopaedic Surgery
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- China
| | - Jie-Lin Wang
- Department of Materials Science
- Fudan University
- Shanghai 200433
- China
| | - Hang Zhao
- Department of Materials Science
- Fudan University
- Shanghai 200433
- China
| | - Hong Lin
- Department of Orthopaedic Surgery
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- China
| | - Zhong-Yong Fan
- Department of Materials Science
- Fudan University
- Shanghai 200433
- China
| | - Jian Dong
- Department of Orthopaedic Surgery
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- China
| |
Collapse
|
39
|
|
40
|
|
41
|
Bone response to porous alumina implants coated with bioactive materials, observed using different characterization techniques. J Appl Biomater Funct Mater 2017; 15:e223-e235. [PMID: 28574101 PMCID: PMC6379886 DOI: 10.5301/jabfm.5000347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 01/16/2023] Open
Abstract
Background Implants or implantable devices should integrate into the host tissue faster
than fibrous capsule formation, in which the design of the interface is one
of the biggest challenges. Generally, bioactive materials are not viable for
load-bearing applications, so inert biomaterials are proposed. However, the
surface must be modified through techniques such as coating with bioactive
materials, roughness and sized pores. The aim of this research was to
validate an approach for the evaluation of the tissue growth on implants of
porous alumina coated with bioactive materials. Methods Porous alumina implants were coated with 45S5 Bioglass® (BG) and
hydroxyapatite (HA) and implanted in rat tibiae for a period of 28 days. Ex
vivo resections were performed to analyze osseointegration, along with
histological analysis, Scanning Electron Microscopy with Energy Dispersive
X-Ray spectroscopy (SEM-EDX) line scanning, radiography and biomechanical
testing. Results Given that the process of implant integration needs with the bone tissue to
be accelerated, it was then seen that BG acted to start the rapid
integration, and HA acted to sustaining the process. Conclusions Inert materials coated with bioglass and HA present a potential for
application as bone substitutes, preferably with pores of diameters between
100 μm and 400 μm and, restrict for smaller than 100 μm, because it prevents
pores without organized tissue formation or vacant. Designed as functional
gradient material, stand out for applications in bone tissue under load,
where, being the porous surface responsible for the osseointegration and the
inner material to bear and to transmit the loads.
Collapse
|
42
|
Zhu R, Chen YX, Ke QF, Gao YS, Guo YP. SC79-loaded ZSM-5/chitosan porous scaffolds with enhanced stem cell osteogenic differentiation and bone regeneration. J Mater Chem B 2017; 5:5009-5018. [PMID: 32264018 DOI: 10.1039/c7tb00897j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For effectively treating bone defects, the design of novel therapeutic scaffolds is an important strategy for enhancing stem cell osteogenic differentiation and new bone formation. Herein, we, for the first time, fabricated SC79-loaded ZSM-5/chitosan (ZSM-5/CS/SC79) porous scaffolds via the freeze-drying synthesis of ZSM-5/CS porous scaffolds followed by loading SC79 drug molecules. The ZSM-5/CS scaffolds possessed a three-dimensional (3D) interconnected porous structure, and the nanostructured ZSM-5 ellipsoids were uniformly dispersed on the CS films. The ZSM-5/CS/SC79 scaffolds had appropriate drug loading-release properties due to the hierarchically porous structures of ZSM-5 zeolites and the hydrogen bonding between the CS and SC97. In vitro cell tests demonstrated that both the ZSM-5/CS and ZSM-5/CS/SC79 scaffolds could promote the adhesion, spreading and proliferation of human bone mesenchymal stem cells (hBMSCs). Interestingly, the SC97 released from the scaffolds not only promoted the proliferation of hBMSCs, but also enhanced the osteogenic differentiation. As compared with the ZSM-5/CS control group, the ZSM-5/CS/SC79 scaffolds promoted the ALP activity of hBMSCs, improved the mRNA relative expression levels of osteocalcin (OCN), bone morphogenetic protein-2 (BMP-2) and alkaline phosphatise (ALP), and increased the protein level of β-catenin. The enhanced proliferation and osteogenic differentiation of hBMSCs contributed to the upregulation of Akt kinase by an activated Wnt/β-catenin signaling pathway. Moreover, in vivo animal tests indicated that SC79 released from the ZSM-5/CS/SC79 scaffolds promoted the new bone regeneration without systemic side effects in cranial defects. Therefore, ZSM-5/CS/SC79 scaffolds as novel and promising therapeutic scaffolds have promising applications in defined local bone regeneration.
Collapse
Affiliation(s)
- Rong Zhu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | | | | | | | | |
Collapse
|
43
|
Chen YX, Zhu R, Ke QF, Gao YS, Zhang CQ, Guo YP. MgAl layered double hydroxide/chitosan porous scaffolds loaded with PFTα to promote bone regeneration. NANOSCALE 2017; 9:6765-6776. [PMID: 28489093 DOI: 10.1039/c7nr00601b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poor bone formation remains a key risk factor associated with acellular scaffolds that occurs in some bone defects, particularly in patients with metabolic bone disorders and local osteoporosis. We herein fabricated for the first time layered double hydroxide-chitosan porous scaffolds loaded with PFTα (LDH-CS-PFTα scaffolds) as therapeutic bone scaffolds for the controlled release of PFTα to enhance stem cell osteogenic differentiation and bone regeneration. The LDH-CS scaffolds had three-dimensional interconnected macropores, and plate-like LDH nanoparticles were uniformly dispersed within or on the CS films. The LDH-CS scaffolds exhibited appropriate PFTα drug delivery due to hydrogen bonding among LDH, CS and PFTα. In vitro functional studies demonstrated that the PFTα molecules exhibited potent ability to induce osteogenesis of hBMSCs via the GSK3β/β-catenin pathway, and the LDH-CS-PFTα scaffolds significantly enhanced the osteogenic differentiation of hBMSCs. In vivo studies revealed significantly increased repair and regeneration of bone tissue in cranial defect model rats compared to control rats at 12 weeks post-implantation. In conclusion, the LDH-CS-PFTα scaffolds exhibited excellent osteogenic differentiation and bone regeneration capability and hold great potential for applications in defined local bone regeneration.
Collapse
Affiliation(s)
- Yi-Xuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | | | | | | | | | | |
Collapse
|
44
|
Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate–graphene composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:726-735. [DOI: 10.1016/j.msec.2016.12.071] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
|