1
|
Youn J, Patel KD, Perriman AW, Sung JS, Patel M, Bouchard LS, Patel R. Tissue adhesives based on chitosan for biomedical applications. J Mater Chem B 2024; 12:10446-10465. [PMID: 39289924 DOI: 10.1039/d4tb01362j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Chitosan bio-adhesives bond strongly with various biological tissues, such as skin, mucosa, and internal organs. Their adhesive ability arises from amino acid and hydroxyl groups in chitosan, facilitating interactions with tissue surfaces through chemical (ionic, covalent, and hydrogen) and physical (chain entanglement) bonding. As non-toxic, biodegradable, and biocompatible materials, chitosan bio-adhesives are a safe option for medical therapies. They are particularly suitable for drug delivery, wound healing, and tissue regeneration. In this review, we address chitosan-based bio-adhesives and the mechanisms associated with them. We also discuss different chitosan composite-based bio-adhesives and their biomedical applications in wound healing, drug delivery, hemostasis, and tissue regeneration. Finally, challenges and future perspectives for the clinical use of chitosan-based bio-adhesives are discussed.
Collapse
Affiliation(s)
- Jihyun Youn
- School of Medicine, CHA University, Pocheon-si, Gyeonggi-do, 11160, South Korea
- Department of Life Science and Biotechnology (LSBT), Underwood Division (UD), Underwood International College, Yonsei University, Seoul-si, 03722, South Korea
| | - Kapil D Patel
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Adam W Perriman
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Jung-Suk Sung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, 03760, Seoul, Korea.
| | - Louis-S Bouchard
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East|Box 951569, Los Angeles, CA 90095-1569, USA.
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon, 21938, South Korea.
| |
Collapse
|
2
|
Gola A, Podżus B, Gruszka K, Musiał W. Influence of Poly(Ethylene Glycol) Dimethacrylates' Chain Length on Electrical Conductivity and Other Selected Physicochemical Properties of Thermally Sensitive N-isopropylacrylamide Derivatives. Polymers (Basel) 2024; 16:2786. [PMID: 39408495 PMCID: PMC11478501 DOI: 10.3390/polym16192786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Thermosensitive polymers P1-P6 of N-isopropylacrylamide (PNIPA) and poly(ethylene glycol) dimethacrylates (PEGDMAs), av. Mn 550-20,000, were synthesized via surfactant-free precipitation polymerization (SFPP) using ammonium persulfate (APS) at 70 °C. The polymerization course was monitored by the conductivity. The hydrodynamic diameters (HDs) and the polydispersity indexes (PDIs) of the aqueous dispersion of P1-P6 in the 18-45 °C range, assessed via dynamic light scattering (DLS), were at 18° as follows (nm): 73.95 ± 19.51 (PDI 0.57 ± 0.08), 74.62 ± 0.76 (PDI 0.56 ± 0,01), 69.45 ± 1.47 (PDI 0.57 ± 0.03), 196.2 ± 2.50 (PDI 0.53 ± 0.04), 194.30 ± 3.36 (PDI 0.56 ± 0.04), 81.99 ± 0.53 (PDI 0.56 ± 0.01), 76.87 ± 0.30 (PDI 0.54 ± 0.01), respectively. The electrophoretic mobilities estimated the zeta potential (ZP) in the 18-45 °C range, and at 18 °C they were as follows (mV): -2.57 ± 0.10, -4.32 ± 0.67, -5.34 ± 0.95, --3.02 ± 0.76, -4.71 ± 2.69, -2.30 ± 0.36, -2.86 ± 0.42 for polymer dispersion P1-P6. The polymers were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), H nuclear magnetic resonance (1H NMR), thermogravimetric analysis (TG/DTA), Differential Scanning Calorimetry (DSC), and powder X-ray diffraction analysis (PXRD). The length of the cross-linker chain influences the physicochemical properties of the obtained polymers.
Collapse
Affiliation(s)
| | | | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.G.); (B.P.); (K.G.)
| |
Collapse
|
3
|
Liao J, Qiu J, Lin Y, Li Z. The application of hydrogels for enamel remineralization. Heliyon 2024; 10:e33574. [PMID: 39040369 PMCID: PMC11261051 DOI: 10.1016/j.heliyon.2024.e33574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Enamel is composed of numerous uniformly wide, well-oriented hydroxyapatite crystals. It possesses an acellular structure that cannot be repaired after undergoing damage. Therefore, remineralization after enamel defects has become a focal point of research. Hydrogels, which are materials with three-dimensional structures derived from cross-linking polymers, have garnered significant attention in recent studies. Their exceptional properties make them valuable in the application of enamel remineralization. In this review, we summarize the structure and formation of enamel, present the design considerations of hydrogels for enamel remineralization, explore diverse hydrogels types in this context, and finally, shed light on the potential future applications in this field.
Collapse
Affiliation(s)
- Jiayi Liao
- School of Stomatology, Jiangxi Medical College, Nanchang University, 330000, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, China
| | - Junhong Qiu
- School of Stomatology, Jiangxi Medical College, Nanchang University, 330000, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, China
| | - Yanfang Lin
- School of Stomatology, Jiangxi Medical College, Nanchang University, 330000, Nanchang, China
| | - Zhihua Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, 330000, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, China
| |
Collapse
|
4
|
Mitsuhashi K, Inagaki NF, Ito T. Moldable Tissue-Sealant Hydrogels Composed of In Situ Cross-Linkable Polyethylene Glycol via Thiol-Michael Addition and Carbomers. ACS Biomater Sci Eng 2024; 10:3343-3354. [PMID: 38695560 DOI: 10.1021/acsbiomaterials.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Moldable tissue-sealant hydrogels were developed herein by combining the yield stress fluidity of a Carbomer and in situ cross-linking of 3-arm PEG-thiol (PEG-SH) and 4-arm PEG-acrylate (PEG-AC). The Carbomer was mixed with each PEG oligomer to form two aqueous precursors: Carbomer/PEG-SH and Carbomer/PEG-AC. The two hydrogel precursors exhibited sufficient yield stress (>100 Pa) to prevent dripping from their placement on the tissue surface. Moreover, these hydrogel precursors exhibited rapid restructuring when the shear strain was repeatedly changed. These rheological properties contribute to the moldability of these hydrogel precursors. After mixing these two precursors, they were converted from yield-stress fluids to chemically cross-linked hydrogels, Carbomer/PEG hydrogel, via thiol-Michael addition. The gelation time was 5.0 and 11.2 min at 37 and 25 °C, respectively. In addition, the Carbomer/PEG hydrogels exhibited higher cellular viability than the pure Carbomer. They also showed stable adhesiveness and burst pressure resistance to various tissues, such as the skin, stomach, colon, and cecum of pigs. The hydrogels showed excellent tissue sealing in a cecum ligation and puncture model in mice and improved the survival rate due to their tissue adhesiveness and biocompatibility. The Carbomer/PEG hydrogel is a potential biocompatible tissue sealant that surgeons can mold. It was revealed that the combination of in situ cross-linkable PEG oligomers and yield stress fluid such as Carbomer is effective for developing the moldable tissue sealant without dripping of its hydrogel precursors.
Collapse
Affiliation(s)
- Kento Mitsuhashi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Natsuko F Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Liu S, Yu Q, Guo R, Chen K, Xia J, Guo Z, He L, Wu Q, Liu L, Li Y, Zhang B, Lu L, Sheng X, Zhu J, Zhao L, Qi H, Liu K, Yin L. A Biodegradable, Adhesive, and Stretchable Hydrogel and Potential Applications for Allergic Rhinitis and Epistaxis. Adv Healthc Mater 2023; 12:e2302059. [PMID: 37610041 DOI: 10.1002/adhm.202302059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Bioadhesive hydrogels have attracted considerable attention as innovative materials in medical interventions and human-machine interface engineering. Despite significant advances in their application, it remains critical to develop adhesive hydrogels that meet the requirements for biocompatibility, biodegradability, long-term strong adhesion, and efficient drug delivery vehicles in moist conditions. A biocompatible, biodegradable, soft, and stretchable hydrogel made from a combination of a biopolymer (unmodified natural gelatin) and stretchable biodegradable poly(ethylene glycol) diacrylate is proposed to achieve durable and tough adhesion and explore its use for convenient and effective intranasal hemostasis and drug administration. Desirable hemostasis efficacy and enhanced therapeutic outcomes for allergic rhinitis are accomplished. Biodegradation enables the spontaneous removal of materials without causing secondary damage and minimizes medical waste. Preliminary trials on human subjects provide an essential foundation for practical applications. This work elucidates material strategies for biodegradable adhesive hydrogels, which are critical to achieving robust material interfaces and advanced drug delivery platforms for novel clinical treatments.
Collapse
Affiliation(s)
- Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiao Xia
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenhu Guo
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lu He
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qian Wu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lan Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunxuan Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Bozhen Zhang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Lu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jiahua Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lingyun Zhao
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hui Qi
- Laboratory of Musculoskeletal Regenerative Medicine, Beijing Institute of Traumatology and Orthopaedics, Beijing, 100035, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Roquart M, Kharlamova A, Marcos Celada L, Norvez S, Nicolaÿ R, Corté L. PEG-Based Photo-Cross-Linked Networks with Adjustable Topologies and Mechanical Properties. Biomacromolecules 2023; 24:4454-4464. [PMID: 36780702 DOI: 10.1021/acs.biomac.2c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
We report the synthesis of networks having adjustable topologies and mechanical properties. Our approach consists of photopolymerizing poly(ethylene glycol) diacrylates (PEG-DA) in the presence of mixtures of mono- and multifunctional thiols. We show that the introduction of monothiols as non-cross-linking transfer agents provides a simple way to tune the topology of the networks and produce soft extensible networks. In a systematic study with model short PEG-DA (Mn = 700 g·mol-1), we explored how the gel point and network properties, such as the swelling ratio, the soluble fraction, the viscoelastic moduli, and the ultimate stress and strain, can be adjusted by varying the ratio of thiol to acrylate functions and the average functionality of the thiol mixture. We applied this strategy to longer chains of PEG-DA (Mn = 2300 and 3200 g·mol-1) and varied the viscoelastic and tensile responses of these networks to optimize their adhesive performance. This simple and robust approach further enriches the toolbox of thiol-acrylate polymerization and expands the application scope of PEG-based hydrogels.
Collapse
Affiliation(s)
- Maïlie Roquart
- Centre des Matériaux, MINES Paris, CNRS, PSL University, 91003 Evry, France
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - Anna Kharlamova
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - Lukas Marcos Celada
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - Sophie Norvez
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - Renaud Nicolaÿ
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - Laurent Corté
- Centre des Matériaux, MINES Paris, CNRS, PSL University, 91003 Evry, France
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| |
Collapse
|
7
|
Hashtrodylar Y, Rabbani S, Dadashzadeh S, Haeri A. Berberine-phospholipid nanoaggregate-embedded thiolated chitosan hydrogel for aphthous stomatitis treatment. Nanomedicine (Lond) 2023; 18:1227-1246. [PMID: 37712555 DOI: 10.2217/nnm-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Aim: This study aimed to develop nanoaggregates of berberine-phospholipid complex incorporated into thiolated chitosan (TCS) hydrogel for the treatment of aphthous stomatitis. Methods: The berberine-phospholipid complex was formulated through the solvent evaporation technique and assembled into nanoaggregates. TCS was synthesized through the attachment of thioglycolic acid to chitosan (CS). Nanoaggregates-TCS was prepared by the incorporation of nanoaggregates into TCS and underwent in vitro and in vivo tests. Results: Nanoaggregates-TCS exhibited prolonged release of berberine. The mucoadhesive strength of nanoaggregates-TCS increased 1.75-fold compared with CS hydrogel. In vivo studies revealed the superior therapeutic efficacy of nanoaggregates-TCS compared with that of other groups. Conclusion: Due to prolonged drug release, appropriate residence time and anti-inflammatory effects, nanoaggregates-TCS is an effective system for the treatment of aphthous stomatitis.
Collapse
Affiliation(s)
- Yasaman Hashtrodylar
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, 1313814117, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| |
Collapse
|
8
|
Tian G, Yang D, Liang C, Liu Y, Chen J, Zhao Q, Tang S, Huang J, Xu P, Liu Z, Qi D. A Nonswelling Hydrogel with Regenerable High Wet Tissue Adhesion for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212302. [PMID: 36739173 DOI: 10.1002/adma.202212302] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Indexed: 05/05/2023]
Abstract
Reducing the swelling of tissue-adhesive hydrogels is crucial for maintaining stable tissue adhesion and inhibiting tissue inflammation. However, reported strategies for reducing swelling always result in a simultaneous decrease in the tissue adhesive strength of the hydrogel. Furthermore, once the covalent bonds break in the currently reported hydrogels, they cannot be rebuilt, and the hydrogel loses its tissue adhesive ability. In this work, a nonswelling hydrogel (named as "PAACP") possessing regenerable high tissue adhesion is synthesized by copolymerizing and crosslinking poly(vinyl butyral) with acrylic acid, gelatin, and chitosan-grafted N-acetyl-l-cysteine. The tissue adhesive strength of the obtained PAACP reaches 211.4 kPa, which is approximately ten times higher than that of the reported nonswelling hydrogels, and the hydrogel can be reused for multiple cycles. The as-prepared hydrogel shows great potential in soft bioelectronics, as muscle fatigue is successfully monitored via the electrode array and strain sensor integrated on PAACP substrates. The success of these bioelectronics offers potential applicability in the long-term diagnosis of muscle-related health conditions and prosthetic manipulations.
Collapse
Affiliation(s)
- Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Dan Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shuanglong Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jianping Huang
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhiyuan Liu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
9
|
Sepasi T, Ghadiri T, Ebrahimi-Kalan A, Bani F, Talebi M, Rahbarghazi R, Khodakarimi S, Beyrampour-Basmenj H, Seidi K, Abbaspour-Ravasjani S, Sadeghi MR, Zarebkohan A, Gao H. CDX-modified chitosan nanoparticles remarkably reduce therapeutic dose of fingolimod in the EAE model of mice. Int J Pharm 2023; 636:122815. [PMID: 36907279 DOI: 10.1016/j.ijpharm.2023.122815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Fingolimod (Fin), an FDA-approved drug, is used to control relapsing-remitting multiple sclerosis (MS). This therapeutic agent faces crucial drawbacks like poor bioavailability rate, risk of cardiotoxicity, potent immunosuppressive effects, and high cost. Here, we aimed to assess the therapeutic efficacy of nano-formulated Fin in a mouse model of experimental autoimmune encephalomyelitis (EAE). Results showed the suitability of the present protocol in the synthesis of Fin-loaded CDX-modified chitosan (CS) nanoparticles (NPs) (Fin@CSCDX) with suitable physicochemical features. Confocal microscopy confirmed the appropriate accumulation of synthesized NPs within the brain parenchyma. Compared to the control EAE mice, INF-γ levels were significantly reduced in the group that received Fin@CSCDX (p < 0.05). Along with these data, Fin@CSCDX reduced the expression of TBX21, GATA3, FOXP3, and Rorc associated with the auto-reactivation of T cells (p < 0.05). Histological examination indicated a low-rate lymphocyte infiltration into the spinal cord parenchyma after the administration of Fin@CSCDX. Of note, HPLC data revealed that the concentration of nano-formulated Fin was about 15-fold less than Fin therapeutic doses (TD) with similar reparative effects. Neurological scores were similar in both groups that received nano-formulated fingolimod 1/15th of free Fin therapeutic amounts. Fluorescence imaging indicated that macrophages and especially microglia can efficiently uptake Fin@CSCDX NPs, leading to the regulation of pro-inflammatory responses. Taken together, current results indicated that CDX-modified CS NPs provide a suitable platform not only for the efficient reduction of Fin TD but also these NPs can target the brain immune cells during neurodegenerative disorders.
Collapse
Affiliation(s)
- Tina Sepasi
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Khodakarimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Polymer Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Mohammad-Reza Sadeghi
- Department of Medical Biotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
10
|
Neumann N, Thinius S, Abels G, Hartwig A, Koschek K, Boskamp L. Multifunctional hyperbranched prepolymers with tailored degree of methylation and methacrylation. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Bharadwaz A, Dhar S, Jayasuriya AC. Full factorial design of experiment-based and response surface methodology approach for evaluating variation in uniaxial compressive mechanical properties, and biocompatibility of photocurable PEGDMA-based scaffolds. Biomed Mater 2023; 18. [PMID: 36720161 DOI: 10.1088/1748-605x/acb7bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
The goal of this study is to fabricate biocompatible and minimally invasive bone tissue engineering scaffolds that allowin situphotocuring and further investigate the effect on the mechanical properties of the scaffold due to the prevailing conditions around defect sites, such as the shift in pH from the physiological environment and swelling due to accumulation of fluids during inflammation. A novel approach of incorporating a general full factorial design of experiment (DOE) model to study the effect of the local environment of the tissue defect on the mechanical properties of these injectable and photocurable scaffolds has been formulated. Moreover, the cross-interaction between factors, such as pH and immersion time, was studied as an effect on the response variable. This study encompasses the fabrication and uniaxial mechanical testing of polyethylene glycol dimethacrylate (PEGDMA) scaffolds for injectable tissue engineering applications, along with the loss in weight of the scaffolds over 72 h in a varying pH environment that mimicsin vivoconditions around a defect. The DOE model was constructed with three factors: the combination of PEGDMA and nano-hydroxyapatite referred to as biopolymer blend, the pH of the buffer solution used for immersing the scaffolds, and the immersion time of the scaffolds in the buffer solution. The response variables recorded were compressive modulus, compressive strength, and the weight loss of the scaffolds over 72 h of immersion in phosphate-buffered saline at respective pH. The statistical model analysis provided adequate information in explaining a strong interaction of the factors on the response variables. Further, it revealed a significant cross-interaction between the factors. The factors such as the biopolymer blend and pH of the buffer solution significantly affected the response variables, compressive modulus and strength. At the same time, the immersion time had a strong effect on the loss in weight from the scaffolds over 72 h of soaking in the buffer solution. The biocompatibility study done using a set of fluorescent dyes for these tissue scaffolds highlighted an enhancement in the pre-osteoblasts (OB-6) cell attachment over time up to day 14. The representative fluorescent images revealed an increase in cell attachment activity over time. This study has opened a new horizon in optimizing the factors represented in the DOE model for tunable PEGDMA-based injectable scaffold systems with enhanced bioactivity.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH 43606, United States of America
| | - Sarit Dhar
- Doctor of Medicine (M.D.) Program, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, United States of America
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH 43606, United States of America.,Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, United States of America
| |
Collapse
|
12
|
Shokrani H, Shokrani A, Seidi F, Munir MT, Rabiee N, Fatahi Y, Kucinska-Lipka J, Saeb MR. Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction. Carbohydr Polym 2022; 295:119787. [DOI: 10.1016/j.carbpol.2022.119787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022]
|
13
|
Naghibi S, Sabouri S, Hong Y, Jia Z, Tang Y. Brush-like Polymer Prodrug with Aggregation-Induced Emission Features for Precise Intracellular Drug Tracking. BIOSENSORS 2022; 12:bios12060373. [PMID: 35735521 PMCID: PMC9221197 DOI: 10.3390/bios12060373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
In this study, a brush-like polymer with aggregation-induced emission (AIE) features was synthesized for drug delivery and intracellular drug tracking. The polymer consisting of tetraphenylethene (TPE) chain-end as well as oligo-poly (ethylene glycol) (PEG) and hydrazine functionalities was successfully synthesized through copper (0)-mediated reversible-deactivation radical polymerization (Cu0-mediated RDRP). Anticancer drug doxorubicin (DOX) was conjugated to the polymer and formed a prodrug named TPE-PEGA-Hyd-DOX, which contains 11% DOX. The hydrazone between DOX and polymer backbone is a pH-sensitive linkage that can control the release of DOX in slightly acidic conditions, which can precisely control the DOX release rate. The drug release of 10% after 96 h in normal cell environments compared with about 40% after 24 h in cancer cell environments confirmed the influence of the hydrazone bond. The ratiometric design of fluorescent intensities with peaks at 410 nm (emission due to AIE feature of TPE) and 600 nm (emission due to ACQ feature of DOX) provides an excellent opportunity for this product as a precise intracellular drug tracker. Cancer cells confocal microscopy showed negligible DOX solution uptake, but an intense green emission originated from prodrug uptake. Moreover, a severe red emission in the DOX channel confirmed a promising level of drug release from the prodrug in the cytoplasm. The merged images of cancer cells confirmed the high performance of the TPE-PEGA-Hyd-DOX compound in the viewpoints of cellular uptake and drug release. This polymer prodrug successfully demonstrates low cytotoxicity in healthy cells and high performance in killing cancer cells.
Collapse
Affiliation(s)
- Sanaz Naghibi
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia;
| | - Soheila Sabouri
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (S.S.); (Y.H.)
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (S.S.); (Y.H.)
- Australia-China Joint Research Centre on Personal Health Technologies, Tonsley, SA 5042, Australia
| | - Zhongfan Jia
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia;
- Correspondence: (Z.J.); (Y.T.); Tel.: +61-8-8201-2804 (Z.J.); +61-8-8201-2138 (Y.T.)
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia;
- Australia-China Joint Research Centre on Personal Health Technologies, Tonsley, SA 5042, Australia
- Correspondence: (Z.J.); (Y.T.); Tel.: +61-8-8201-2804 (Z.J.); +61-8-8201-2138 (Y.T.)
| |
Collapse
|
14
|
Ren J, Yang H, Wu Y, Liu S, Ni K, Ran X, Zhou X, Gao W, Du G, Yang L. Dynamic reversible adhesives based on crosslinking network via Schiff base and Michael addition. RSC Adv 2022; 12:15241-15250. [PMID: 35693229 PMCID: PMC9116177 DOI: 10.1039/d2ra02299k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022] Open
Abstract
It is of practical interest to obtain polymers with complex material properties in a simplified synthetic manner for a broader range of practical applications. In this work, we constructed a dynamic reversible adhesive based on branched polyamine (PA) and p-formylphenyl acrylate (FPA) by simultaneously performing Michael addition reaction and Schiff base reaction. Branched polyamines provide a large number of amino groups as reaction sites that can react with both carbon-carbon double bonds and aldehyde groups. This enables the branched polymeric adhesive system to have a large number of Schiff base bonds within it, an important property of Schiff base bonds is that they are dynamically reversible. This allows us to prepare adhesives with hyperbranched crosslinking networks and recycling properties, and we have verified that FPA-PA adhesives do not exhibit significant fatigue after multiple recycling through the gluing-destruction-gluing process. The resulting FPA-PA adhesives produce tough bonding on multi-substrates such as steel, aluminum, glass, PVC, PTFE, birch and moso bamboo, which exhibited by lap shear strength of 2.4 MPa, 1.7 MPa, 1.4 MPa, 1.3 MPa, 0.4 MPa, 1.6 MPa, and 1.8 MPa, respectively. The feasibility of the synthesis idea of simultaneous Michael addition reaction and Schiff base reaction was demonstrated, as well as the excellent performance and great application potential of FPA-PA adhesives to be recyclable on multi-substrates.
Collapse
Affiliation(s)
- Junyu Ren
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Hongxing Yang
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Yingchen Wu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Sichen Liu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Kelu Ni
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Xin Ran
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Xiaojian Zhou
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Wei Gao
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
| | - Guanben Du
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University Kunming 650224 China
| | - Long Yang
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University Kunming 650224 China
| |
Collapse
|
15
|
Chen H, Regeard C, Salmi H, Morlet-Savary F, Giacoletto N, Nechab M, Xiao P, Dumur F, Lalevée J. Interpenetrating polymer network hydrogels using natural based dyes initiating systems: antibacterial activity and 3D/4D performance. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Zhang X, Jiang Y, Han L, Lu X. Biodegradable polymer hydrogel‐based tissue adhesives: A review. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Xin Zhang
- School of Materials Science and Engineering Key Lab of Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu Sichuan China
| | - Yanan Jiang
- School of Materials Science and Engineering Key Lab of Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu Sichuan China
| | - Lu Han
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| | - Xiong Lu
- School of Materials Science and Engineering Key Lab of Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu Sichuan China
| |
Collapse
|
17
|
Wang JH, Tsai CW, Tsai NY, Chiang CY, Lin RS, Pereira RF, Li YCE. An injectable, dual crosslinkable hybrid pectin methacrylate (PECMA)/gelatin methacryloyl (GelMA) hydrogel for skin hemostasis applications. Int J Biol Macromol 2021; 185:441-450. [PMID: 34197849 DOI: 10.1016/j.ijbiomac.2021.06.162] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Biomaterials for effective hemorrhage control are urgently needed in clinics as uncontrolled bleeding is associated with high mortality. Herein, we developed an injectable and in situ photo-crosslinkable hybrid hemostatic hydrogel by combining pectin methacrylate (PECMA) and gelatin methacryloyl (GelMA). This modular material system combines ionic- and photo-crosslinking chemistries to design interpenetrating networks (IPN) exhibiting tunable rheology, highly porous structure, and controllable swelling and mechanical properties. By simply changing the calcium (0-15 mM) and polymer (1.5-7%) content used for the sequential crosslinking of hydrogels via calcium gelation and UV-photopolymerization, it was possible to precisely modulate the injectability, degradation, and swelling ratio. Moreover, it is demonstrated that PECMA/GelMA hydrogels present good cytocompatibility and uniquely synergize the hemostatic properties of calcium ions on PECMA, the amine residues on GelMA, and the highly porous network toward rapid blood absorption and fast coagulation effect. An in vitro porcine skin bleeding model confirmed that the hydrogel could be directly injected into the wound and rapidly photo-crosslinked, circumventing the bleeding and decreasing the coagulation time by 39%. Importantly, the crosslinked hydrogel could be easily removed to prevent secondary wound injury. Overall, this injectable hybrid PECMA/GelMA hydrogel stands as a promising hemostatic material.
Collapse
Affiliation(s)
- Jing-Han Wang
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Ching-Wen Tsai
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Nian-Yun Tsai
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Chao-Ying Chiang
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Ru-Sin Lin
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Rúben F Pereira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan.
| |
Collapse
|
18
|
Research Progress of Chitosan-Based Biomimetic Materials. Mar Drugs 2021; 19:md19070372. [PMID: 34199126 PMCID: PMC8307383 DOI: 10.3390/md19070372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023] Open
Abstract
Chitosan is a linear polysaccharide produced by deacetylation of natural biopolymer chitin. Owing to its good biocompatibility and biodegradability, non-toxicity, and easy processing, it has been widely used in many fields. After billions of years of survival of the fittest, many organisms have already evolved a nearly perfect structure. This paper reviews the research status of biomimetic functional materials that use chitosan as a matrix material to mimic the biological characteristics of bivalves, biological cell matrices, desert beetles, and honeycomb structure of bees. In addition, the application of biomimetic materials in wound healing, hemostasis, drug delivery, and smart materials is briefly overviewed according to their characteristics of adhesion, hemostasis, release, and adsorption. It also discusses prospects for their application and provides a reference for further research and development.
Collapse
|
19
|
Jung HY, Le Thi P, HwangBo KH, Bae JW, Park KD. Tunable and high tissue adhesive properties of injectable chitosan based hydrogels through polymer architecture modulation. Carbohydr Polym 2021; 261:117810. [PMID: 33766329 DOI: 10.1016/j.carbpol.2021.117810] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022]
Abstract
Chitosan-based hydrogels have been widely used for various biomedical applications due to their versatile properties such as biocompatibility, biodegradability, muco-adhesiveness, hemostatic effect and so on. However, the inherent rigidity and brittleness of pure chitosan hydrogels are still unmanageable, which has limited their potential use in biomaterial research. In this study, we developed in situ forming chitosan/PEG hydrogels with improved mechanical properties, using the enzymatic crosslinking reaction of horseradish peroxidase (HRP). The effect of PEG on physico-chemical properties of hybrid hydrogels was thoroughly elucidated by varying the content (0-100 %), molecular weight (4, 10 and 20 kDa) and geometry (linear, 4-arm) of the PEG derivatives. The resulting hydrogels demonstrated excellent hemostatic ability and are highly biocompatible in vivo, comparable to commercially available fibrin glue. We suggest these chitosan/PEG hybrid hydrogels with tunable physicochemical and tissue adhesive properties have great potential for a wide range of biomedical applications in the near future.
Collapse
Affiliation(s)
- Ha Young Jung
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon, 443-749, Republic of Korea.
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon, 443-749, Republic of Korea.
| | - Kyung-Hee HwangBo
- Department of Material Development, GENOSS, 906-5 Iuidong, Yeongtong, Suwon, Republic of Korea.
| | - Jin Woo Bae
- Department of Material Development, GENOSS, 906-5 Iuidong, Yeongtong, Suwon, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon, 443-749, Republic of Korea.
| |
Collapse
|
20
|
Zeng Z, Liu D, Li D, Mo X. An injectable double cross-linked hydrogel adhesive inspired by synergistic effects of mussel foot proteins for biomedical application. Colloids Surf B Biointerfaces 2021; 204:111782. [PMID: 33930731 DOI: 10.1016/j.colsurfb.2021.111782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Hydrogel adhesives with high tissue adhesion, biodegradability and biocompatibility are benefit for promoting surgical procedures and minimizing the pain and post-surgical complications of patients. In this paper, an injectable mussel inspired double cross-linked hydrogel adhesive composed of thiolated mussel inspired chitosan (CSDS) and tetra-succinimidyl carbonate polyethylene glycol (PEG-4S) was designed and developed. CSDS was synthesized with thiol and catechol groups inspired by the synergistic effect of mussel foot proteins (mfps). The double cross-linked hydrogel was first formed by the addition of sodium periodate (or Fe3+) and then double cross-linked with PEG-4S. The results showed that the mechanical and adhesion properties of the double cross-linked hydrogels were significantly improved by the synergistic effects of the functional groups. And the prepared hydrogels showed good cytocompatibility which evaluated by determining the viability of L929 cells and human umbilical vein endothelial cells (HUVECs). Additionally, the biodegradability and biocompatibility in vivo were further confirmed by subcutaneous implantation in mice model, and the histological analysis results identified that the prepared hydrogels were in vivo biocompatible. This work presents an injectable mussel inspired double cross-linked hydrogels that can use as a potential hydrogel adhesive for biomedical application.
Collapse
Affiliation(s)
- Zhiwen Zeng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China; Institute of Medicine and Health, Guangdong Academy of Sciences, Guangdong, 510500, China; Shandong International Biotechnology Park Development Co. Ltd, 39, Keji Avenue, Yantai High-Tech Zone, 264670, Shandong Province, China.
| | - Dinghua Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China; Shandong International Biotechnology Park Development Co. Ltd, 39, Keji Avenue, Yantai High-Tech Zone, 264670, Shandong Province, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201301, China; Shandong International Biotechnology Park Development Co. Ltd, 39, Keji Avenue, Yantai High-Tech Zone, 264670, Shandong Province, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China; Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201301, China; Shandong International Biotechnology Park Development Co. Ltd, 39, Keji Avenue, Yantai High-Tech Zone, 264670, Shandong Province, China.
| |
Collapse
|
21
|
Xiong Y, Zhang X, Ma X, Wang W, Yan F, Zhao X, Chu X, Xu W, Sun C. A review of the properties and applications of bioadhesive hydrogels. Polym Chem 2021. [DOI: 10.1039/d1py00282a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their outstanding properties, bioadhesive hydrogels have been extensively studied by researchers in recent years.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoran Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xintao Ma
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenqi Wang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Feiyan Yan
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaohan Zhao
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoxiao Chu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenlong Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Changmei Sun
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| |
Collapse
|
22
|
Li D, Chen J, Wang X, Zhang M, Li C, Zhou J. Recent Advances on Synthetic and Polysaccharide Adhesives for Biological Hemostatic Applications. Front Bioeng Biotechnol 2020; 8:926. [PMID: 32923431 PMCID: PMC7456874 DOI: 10.3389/fbioe.2020.00926] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid hemostasis and formation of stable blood clots are very important to prevent massive blood loss from the excessive bleeding for living body, but their own clotting process cannot be completed in time for effective hemostasis without the help of hemostatic materials. In general, traditionally suturing and stapling techniques for wound closure are prone to cause the additional damages to the tissues, activated inflammatory responses, short usage periods and inevitable second operations in clinical applications. Especially for the large wounds that require the urgent closure of fluids or gases, these conventional closure methods are far from enough. To address these problems, various tissue adhesives, sealants and hemostatic materials are placed great expectation. In this review, we focused on the development of two main categories of tissue adhesive materials: synthetic polymeric adhesives and naturally derived polysaccharide adhesives. Research of the high performance of hemostatic adhesives with strong adhesion, better biocompatibility, easy usability and cheap price is highly demanded for both scientists and clinicians, and this review is also intended to provide a comprehensive summarization and inspiration for pursuit of more advanced hemostatic adhesives for biological fields.
Collapse
Affiliation(s)
- Dawei Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jing Chen
- Department of Orthopedics, Aerospace Center Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingming Zhang
- The People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Chunlin Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin Zhou
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
23
|
Abstract
To stop blood loss and accelerate wound healing, conventional wound closure techniques such as sutures and staples are currently used in the clinic. These tissue-piercing wound closure techniques have several disadvantages such as the potential for causing inflammation, infections, and scar formation. Surgical sealants and tissue adhesives can address some of the disadvantages of current sutures and staples. An ideal tissue adhesive will demonstrate strong interfacial adhesion and cohesive strength to wet tissue surfaces. Most reported studies rely on the liquid-to-solid transition of organic molecules by taking advantage of polymerization and crosslinking reactions for improving the cohesive strength of the adhesives. Crosslinking reactions triggered using light are commonly used for increasing tissue adhesive strength since the reactions can be controlled spatially and temporally, providing the on-demand curing of the adhesives with minimum misplacements. In this review, we describe the recent advances in the field of naturally derived tissue adhesives and sealants in which the adhesive and cohesive strengths are modulated using photochemical reactions.
Collapse
|
24
|
Liu J, Li J, Yu F, Zhao YX, Mo XM, Pan JF. In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis. Int J Biol Macromol 2020; 147:653-666. [PMID: 31923505 DOI: 10.1016/j.ijbiomac.2020.01.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/21/2019] [Accepted: 01/02/2020] [Indexed: 01/14/2023]
Abstract
In this study, a novel injectable hydrogel with biocompatibility and biodegradability through Schiff base reaction was prepared for soft tissue adhesive and hemostasis. Aldehyde hydroxyethyl starch (AHES) was prepared by oxidizing hydroxyethyl starch to get aldehyde groups. Amino carboxymethyl chitosan (ACC) was prepared by grafting ethylenediamine onto carboxymethyl chitosan to get more amino groups. Two-component AHES/ACC hydrogel was formed through Schiff base reaction between aldehyde and amino groups. By changing the reaction conditions various contents of aldehyde and amino group were achieved. The properties of AHES/ACC hydrogel were tunable including gelation time, swelling ratio, degradation and mechanical tensile by varying the content of aldehyde and amino groups. Then biocompatibility measurements showed that AHES/ACC hydrogels supported cell viability and proliferation in vitro and exhibited good biodegradability and biocompatibility in vivo. AHES/ACC hydrogel also had effective hemostatic ability. Thus, this study provides a strategy for the design and fabrication of fast in situ forming hydrogels. Through Schiff base reaction in situ forming hydrogel derived from natural polysaccharides can be modulated and prepared for soft tissue adhesive, hemostasis or other biomedical applications in future.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China; Department of Orthopedics, Shidong Hospital of Yangpu District, 999 Shiguang Road, Shanghai 200438, China
| | - Jun Li
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Fan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ya-Xin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiu-Mei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Jian-Feng Pan
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
25
|
Hoang Thi TT, Lee Y, Le Thi P, Park KD. Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Barnett HH, Heimbuck AM, Pursell I, Hegab RA, Sawyer BJ, Newman JJ, Caldorera-Moore ME. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:895-918. [PMID: 31039085 DOI: 10.1080/09205063.2019.1612725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3 D) hydrogel scaffolds are an attractive option for tissue regeneration applications because they allow for cell migration, fluid exchange, and can be synthesized to closely mimic the physical properties of the extracellular matrix environment. The material properties of hydrogels play a vital role in cellular migration and differentiation. In light of this, in-depth understanding of material properties is required before such scaffolds can be used to study their influence on cells. Herein, various blends and thicknesses of poly (ethylene glycol) dimethacrylate (PEGDMA) hydrogels were synthesized, flash frozen, and dried by lyophilization to create scaffolds with multiscale porosity. Environmental scanning electron microscopy (ESEM) images demonstrated that lyophilization induced microporous voids in the PEGDMA hydrogels while swelling studies show the hydrogels retain their innate swelling properties. Change in pore size was observed between drying methods, polymer blend, and thickness when imaged in the hydrated state. Human adipose-derived stem cells (hASCs) were seeded on lyophilized and non-lyophilized hydrogels to determine if the scaffolds would support cell attachment and proliferation of a clinically relevant cell type. Cell attachment and morphology of the hASCs were evaluated using fluorescence imaging. Qualitative observations in cell attachment and morphology of hASCs on the surface of the different hydrogel spatial configurations indicate these multiscale porosity hydrogels create a suitable scaffold for hASC culture. These findings offer another factor of tunability in creating biomimetic hydrogels for various tissue engineering applications including tissue repair, regeneration, wound healing, and controlled release of growth factors.
Collapse
Affiliation(s)
- Haley H Barnett
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | - Abitha M Heimbuck
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA
| | - India Pursell
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | - Rachel A Hegab
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA
| | - Benjamin J Sawyer
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA.,c Department of chemistry, Trinity University , San Antonio , TX , USA
| | - Jamie J Newman
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | | |
Collapse
|
27
|
Choi JR, Yong KW, Choi JY, Cowie AC. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques 2019; 66:40-53. [DOI: 10.2144/btn-2018-0083] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Photo-crosslinkable hydrogels have recently attracted significant scientific interest. Their properties can be manipulated in a spatiotemporal manner through exposure to light to achieve the desirable functionality for various biomedical applications. This review article discusses the recent advances of the most common photo-crosslinkable hydrogels, including poly(ethylene glycol) diacrylate, gelatin methacryloyl and methacrylated hyaluronic acid, for various biomedical applications. We first highlight the advantages of photopolymerization and discuss diverse photosensitive systems used for the synthesis of photo-crosslinkable hydrogels. We then introduce their synthesis methods and review their latest state of development in biomedical applications, including tissue engineering and regenerative medicine, drug delivery, cancer therapies and biosensing. Lastly, the existing challenges and future perspectives of engineering photo-crosslinkable hydrogels for biomedical applications are briefly discussed.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054–6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kar Wey Yong
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jean Yu Choi
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Alistair C Cowie
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
28
|
Luo WL, Zhang J, Qiu X, Chen LJ, Fu J, Hu PY, Li X, Hu RJ, Long YZ. Electric- Field-Modified In Situ Precise Deposition of Electrospun Medical Glue Fibers on the Liver for Rapid Hemostasis. NANOSCALE RESEARCH LETTERS 2018; 13:278. [PMID: 30203107 PMCID: PMC6134859 DOI: 10.1186/s11671-018-2698-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/29/2018] [Indexed: 05/29/2023]
Abstract
Precise deposition of nanofibers is still an important issue in the applications of electrospinning (e-spinning), especially in rapid hemostasis of organs such as the liver, lung, and kidney. In this study, we propose an electric field-modified e-spinning technique with a metal cone attached to the spinning nozzle to realize controllable precise deposition of fibers. The deposition range of the e-spun fibers is tunable by changing the size of the metal cone, and the mechanism is attributed the focused electric field verified by theoretical simulations. This electric field-modified e-spinning method was further used to in situ precisely deposit medical glue N-octyl-2-cyanoacrylate (NOCA) fibers onto the resection site of rat liver to realize rapid hemostasis within 10 s. Postoperative pathological results indicate that less inflammatory response and tissue adhesion are observed in this electric field-modified e-spinning group compared with that of traditional airflow-assisted group. This technique combined with our designed handheld e-spinning device could be used in emergency medical treatment, clinics, field survival, and home care for its portability and precise deposition characteristics.
Collapse
Affiliation(s)
- Wei-Ling Luo
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| | - Xuan Qiu
- Medical College, Qingdao University, Qingdao, 266071 China
| | - Li-Juan Chen
- Department of Oncology, Qingdao Haici Medical Treatment Group, Qingdao, 266034 China
| | - Jie Fu
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| | - Peng-Yue Hu
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| | - Xin Li
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| | - Ren-Jie Hu
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
29
|
Brunelle AR, Horner CB, Low K, Ico G, Nam J. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Acta Biomater 2018; 66:166-176. [PMID: 29128540 DOI: 10.1016/j.actbio.2017.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022]
Abstract
Hydrogels have shown great potential for cartilage tissue engineering applications due to their capability to encapsulate cells within biomimetic, 3-dimensional (3D) microenvironments. However, the multi-step fabrication process that is necessary to produce cell/scaffold constructs with defined dimensions, limits their off-the-shelf translational usage. In this study, we have developed a hybrid scaffolding system which combines a thermosensitive hydrogel, poly(ethylene glycol)-poly(N-isopropylacrylamide) (PEG-PNIPAAm), with a biodegradable polymer, poly(ε-caprolactone) (PCL), into a composite, electrospun microfibrous structure. A judicious optimization of material composition and electrospinning process produced a structurally self-supporting hybrid scaffold. The reverse thermosensitivity of PEG-PNIPAAm allowed its dissolution/hydration upon cell seeding within a network of PCL microfibers while maintaining the overall scaffold shape at room temperature. A subsequent temperature elevation to 37 °C induced the hydrogel's phase transition to a gel state, effectively encapsulating cells in a 3D hydrogel without the use of a mold. We demonstrated that the hybrid scaffold enhanced chondrogenic differentiation of human mesenchymal stem cells (hMSCs) based on chondrocytic gene and protein expression, which resulted in superior viscoelastic properties of the cell/scaffold constructs. The hybrid scaffold enables a facile, single-step cell seeding process to inoculate cells within a 3D hydrogel with the potential for cartilage tissue engineering. STATEMENT OF SIGNIFICANCE Hydrogels have demonstrated the excellent ability to enhance chondrogenesis of stem cells due to their hydrated fibrous nanostructure providing a cellular environment similar to native cartilage. However, the necessity for multi-step processes, including mixing of hydrogel precursor with cells and subsequent gelation in a mold to form a defined shape, limits their off-the-shelf usage. In this study, we developed a hybrid scaffold by combining a thermosensitive hydrogel with a mechanically stable polymer, which provides a facile means to inoculate cells in a 3D hydrogel with a mold-less, single step cell seeding process. We further showed that the hybrid scaffold enhanced chondrogenesis of mesenchymal stem cells, demonstrating its potential for cartilage tissue engineering.
Collapse
|
30
|
Zeng Z, Wang H, Morsi Y, Mo X. Synthesis and characterization of incorporating mussel mimetic moieties into photoactive hydrogel adhesive. Colloids Surf B Biointerfaces 2018; 161:94-102. [DOI: 10.1016/j.colsurfb.2017.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 01/28/2023]
|
31
|
Bhagat V, Becker ML. Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules 2017; 18:3009-3039. [DOI: 10.1021/acs.biomac.7b00969] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vrushali Bhagat
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
32
|
Yang X, Liu W, Li N, Wang M, Liang B, Ullah I, Luis Neve A, Feng Y, Chen H, Shi C. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater Sci 2017; 5:2357-2368. [DOI: 10.1039/c7bm00554g] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of stable blood clots or hemostasis is essential to prevent major blood loss and death from excessive bleeding.
Collapse
|