1
|
Rijns L, Baker MB, Dankers PYW. Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel-Cell Interactions. J Am Chem Soc 2024; 146:17539-17558. [PMID: 38888174 PMCID: PMC11229007 DOI: 10.1021/jacs.4c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Hydrogels have emerged as a promising class of extracellular matrix (ECM)-mimicking materials in regenerative medicine. Here, we briefly describe current state-of-the-art of ECM-mimicking hydrogels, ranging from natural to hybrid to completely synthetic versions, giving the prelude to the importance of supramolecular interactions to make true ECM mimics. The potential of supramolecular interactions to create ECM mimics for cell culture is illustrated through a focus on two different supramolecular hydrogel systems, both developed in our laboratories. We use some recent, significant findings to present important design principles underlying the cell-material interaction. To achieve cell spreading, we propose that slow molecular dynamics (monomer exchange within fibers) is crucial to ensure the robust incorporation of cell adhesion ligands within supramolecular fibers. Slow bulk dynamics (stress-relaxation─fiber rearrangements, τ1/2 ≈ 1000 s) is required to achieve cell spreading in soft gels (<1 kPa), while gel stiffness overrules dynamics in stiffer gels. Importantly, this resonates with the findings of others which specialize in different material types: cell spreading is impaired in case substrate relaxation occurs faster than clutch binding and focal adhesion lifetime. We conclude with discussing considerations and limitations of the supramolecular approach as well as provide a forward thinking perspective to further understand supramolecular hydrogel-cell interactions. Future work may utilize the presented guidelines underlying cell-material interactions to not only arrive at the next generation of ECM-mimicking hydrogels but also advance other fields, such as bioelectronics, opening up new opportunities for innovative applications.
Collapse
Affiliation(s)
- Laura Rijns
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Matthew B. Baker
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology
Inspired Regenerative Medicine, Maastricht
University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Zeng Y, Liu K, Ding H, Chong Z, Niu Y, Guo Y, Wei M, Du X, Gu Z. Direct Laser Writing Photonic Crystal Hydrogels with a Supramolecular Sacrificial Scaffold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306524. [PMID: 37697691 DOI: 10.1002/smll.202306524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/19/2023] [Indexed: 09/13/2023]
Abstract
Photonic crystal hydrogels (PCHs), with smart stimulus-responsive abilities, have been widely exploited as colorimetric sensors for years. However, the current fabrication technologies are mostly applicable to produce PCHs with simple geometries at the sub-millimeter scale, limiting the introduction of structural design into PCH sensors as well as the accompanied advanced applications. This paper reports the microfabrication of three-dimensional (3D) PCHs with the help of supramolecular agarose PCH as a sacrificial scaffold by two-photon lithography (TPL). The supramolecular PCHs, formulated with SiO2 colloidal nanoparticles and agarose aqueous solutions, show bright structural color and are degradable upon short-time dimethyl sulfoxide treatment. Leveraging the supramolecular PCH as a sacrificial scaffold, PCHs with precise 3D geometries can be fabricated in an economical and efficient way. This work demonstrates the application of such a strategy in the creation of structural-designed PCH mechanical microsensors that have not been explored before.
Collapse
Affiliation(s)
- Yi Zeng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Keliang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haibo Ding
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhejun Chong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yanfang Niu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yijun Guo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Mengxiao Wei
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xin Du
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
3
|
Hua J, Su M, Sun X, Li J, Sun Y, Qiu H, Shi Y, Pan L. Hydrogel-Based Bioelectronics and Their Applications in Health Monitoring. BIOSENSORS 2023; 13:696. [PMID: 37504095 PMCID: PMC10377104 DOI: 10.3390/bios13070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Flexible bioelectronics exhibit promising potential for health monitoring, owing to their soft and stretchable nature. However, the simultaneous improvement of mechanical properties, biocompatibility, and signal-to-noise ratio of these devices for health monitoring poses a significant challenge. Hydrogels, with their loose three-dimensional network structure that encapsulates massive amounts of water, are a potential solution. Through the incorporation of polymers or conductive fillers into the hydrogel and special preparation methods, hydrogels can achieve a unification of excellent properties such as mechanical properties, self-healing, adhesion, and biocompatibility, making them a hot material for health monitoring bioelectronics. Currently, hydrogel-based bioelectronics can be used to fabricate flexible bioelectronics for motion, bioelectric, and biomolecular acquisition for human health monitoring and further clinical applications. This review focuses on materials, devices, and applications for hydrogel-based bioelectronics. The main material properties and research advances of hydrogels for health monitoring bioelectronics are summarized firstly. Then, we provide a focused discussion on hydrogel-based bioelectronics for health monitoring, which are classified as skin-attachable, implantable, or semi-implantable depending on the depth of penetration and the location of the device. Finally, future challenges and opportunities of hydrogel-based bioelectronics for health monitoring are envisioned.
Collapse
Affiliation(s)
- Jiangbo Hua
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Mengrui Su
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yuqiong Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Hao Qiu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Yan M, Zhou J. Pillararene-Based Supramolecular Polymers for Cancer Therapy. Molecules 2023; 28:molecules28031470. [PMID: 36771136 PMCID: PMC9919256 DOI: 10.3390/molecules28031470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Supramolecular polymers have attracted considerable interest due to their intriguing features and functions. The dynamic reversibility of noncovalent interactions endows supramolecular polymers with tunable physicochemical properties, self-healing, and externally stimulated responses. Among them, pillararene-based supramolecular polymers show great potential for biomedical applications due to their fascinating host-guest interactions and easy modification. Herein, we summarize the state of the art of pillararene-based supramolecular polymers for cancer therapy and illustrate its developmental trend and future perspective.
Collapse
|
5
|
Supramolecular hydrogelation via host-guest anion recognition: Lamellar hydrogel materials for the release of cationic cargo. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Shy AN, Wang H, Feng Z, Xu B. Heterotypic Supramolecular Hydrogels Formed by Noncovalent Interactions in Inflammasomes. Molecules 2020; 26:E77. [PMID: 33375296 PMCID: PMC7795891 DOI: 10.3390/molecules26010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The advance of structural biology has revealed numerous noncovalent interactions between peptide sequences in protein structures, but such information is less explored for developing peptide materials. Here we report the formation of heterotypic peptide hydrogels by the two binding motifs revealed by the structures of an inflammasome. Specifically, conjugating a self-assembling motif to the positively or negatively charged peptide sequence from the ASCPYD filaments of inflammasome produces the solutions of the peptides. The addition of the peptides of the oppositely charged and complementary peptides to the corresponding peptide solution produces the heterotypic hydrogels. Rheology measurement shows that ratios of the complementary peptides affect the viscoelasticity of the resulted hydrogel. Circular dichroism indicates that the addition of the complementary peptides results in electrostatic interactions that modulate self-assembly. Transmission electron microscopy reveals that the ratio of the complementary peptides controls the morphology of the heterotypic peptide assemblies. This work illustrates a rational, biomimetic approach that uses the structural information from the protein data base (PDB) for developing heterotypic peptide materials via self-assembly.
Collapse
Affiliation(s)
| | | | | | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA; (A.N.S.); (H.W.); (Z.F.)
| |
Collapse
|
7
|
Veloso SRS, Silva JFG, Hilliou L, Moura C, Coutinho PJG, Martins JA, Testa-Anta M, Salgueiriño V, Correa-Duarte MA, Ferreira PMT, Castanheira EMS. Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E16. [PMID: 33374786 PMCID: PMC7824179 DOI: 10.3390/nano11010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels' self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.6 nm) and lipid-coated (8.9 ± 2.1 nm) magnetic nanoparticles, were used for the formation of dehydropeptide-based supramolecular magnetogels consisting of the ultra-short hydrogelator Cbz-L-Met-Z-ΔPhe-OH, with an assessment of their effect over gel properties. The lipid-coated nanoparticles were distributed along the hydrogel fibers, while citrate-stabilized nanoparticles were aggregated upon gelation, which resulted into a heating efficiency improvement and decrease, respectively. Further, the lipid-coated nanoparticles did not affect drug encapsulation and displayed improved drug release reproducibility compared to citrate-stabilized nanoparticles, despite the latter attaining a stronger AMF-trigger. This report points out that adsorption of nanoparticles to hydrogel fibers, which display domains that improve or do not affect drug encapsulation, can be explored as a means to optimize the development of supramolecular magnetogels to advance theranostic applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Joana F. G. Silva
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Cacilda Moura
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Paulo J. G. Coutinho
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - José A. Martins
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Martín Testa-Anta
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (M.T.-A.); (V.S.)
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain;
| | - Verónica Salgueiriño
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (M.T.-A.); (V.S.)
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain;
| | | | - Paula M. T. Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Elisabete M. S. Castanheira
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| |
Collapse
|
8
|
Wang D, Chen A, Morris J, Wang G. Stimuli-responsive gelators from carbamoyl sugar derivatives and their responses to metal ions and tetrabutylammonium salts. RSC Adv 2020; 10:40068-40083. [PMID: 35520864 PMCID: PMC9057480 DOI: 10.1039/d0ra07587f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Carbohydrate-based low molecular weight gelators (LMWGs) are interesting compounds with a variety of applications. In this research, a library of nineteen carbamate derivatives of N-acetyl-d-glucosamine were synthesized and characterized, and several derivatives were found to be effective LMWGs. They formed gels in pump oils as well as mixtures of water with ethanol or water with DMSO. The structures of the carbamoyl chains played an important role in the gelation properties, short chain aliphatic derivatives and phenyl carbamates formed gels in more solvents than certain aromatic and dimeric carbamates. The phenyl carbamate gelator was also selected for the encapsulation of naproxen sodium, and the drug slowly diffused from the gel to the aqueous phase as indicated by UV-vis spectroscopy. In addition, we also found that the p-methoxyl benzyl carbamate derivative showed interesting stimuli-responsive gelation properties in the presence of metal salts and tetrabutylammonium salts. The gels were characterized using optical microscopy, scanning electron microscopy, rheology and other methods. The self-assembling mechanisms of the gelators were studied using 1H NMR spectroscopy. The preparation, characterization, and molecular assembling properties of these compounds are reported. The results obtained from this study are useful for the design of other LMWGs and the sugar derivatives can be explored for different biological applications. The formation of spontaneous ionic gels can be applicable for a plethora of applications including catalysis and environmental remediation.
Collapse
Affiliation(s)
- Dan Wang
- Department of Chemistry and Biochemistry, Old Dominion University 4541 Hampton Boulevard Norfolk VA 23529-0126 USA +1 757 683 4628 +1 757 683 3781
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University 4541 Hampton Boulevard Norfolk VA 23529-0126 USA +1 757 683 4628 +1 757 683 3781
| | - Joedian Morris
- Department of Chemistry and Biochemistry, Old Dominion University 4541 Hampton Boulevard Norfolk VA 23529-0126 USA +1 757 683 4628 +1 757 683 3781
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University 4541 Hampton Boulevard Norfolk VA 23529-0126 USA +1 757 683 4628 +1 757 683 3781
| |
Collapse
|
9
|
Nuthanakanti A, Srivatsan SG. Multi-stimuli responsive heterotypic hydrogels based on nucleolipids show selective dye adsorption. NANOSCALE ADVANCES 2020; 2:4161-4171. [PMID: 34286214 PMCID: PMC7611312 DOI: 10.1039/d0na00509f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/11/2020] [Indexed: 06/13/2023]
Abstract
Analogous to nucleic acids, the building blocks of nucleic acids and their derivatives are widely used to create supramolecular architectures for application mainly in the field of biomedicine. Here, we describe the construction of a multi-stimuli responsive and toxic dye adsorbing heterotypic hydrogel system formed using simple nucleoside-fatty acid conjugates. The nucleolipids are derived by coupling fatty acid chains of different lengths at the 5' position of ribothymidine and uridine. The nucleolipids in the presence of a strong base (e.g. NaOH) undergo partial hydrolysis, which triggers the self-assembly of the hydrolysed components resulting in the formation of heterotypic hydrogels. Notably, the gels are formed specifically in the presence of Na+ ions as other ions such as Li+ and K+ did not support the hydrogelation process. Systematic analysis by microscopy, NMR, single crystal and powder X-ray diffraction and rheology indicated that the deprotonated nucleolipid and fatty acid salt interdigitate and provide necessary electrostatic interactions supported by Na+ ions to set the path for the hierarchical assembly process. Notably, the hydrogels are highly sensitive to external stimuli, wherein gel-sol transition can be reversibly controlled by using temperature, pH and host-guest interaction. One of the hydrogels made of 5'-O-myristate-conjugated ribothymidine was found to selectively adsorb cationic dyes such as methylene blue and rhodamine 6G in a recyclable fashion. Taken together, the easily scalable assembly, multi-stimuli responsiveness and ability to capture and release dyes highlight the potential of our nucleolipid hydrogel system in material applications and in the treatment of dye industry wastes.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and ResearchDr Homi Bhabha Road, PashanPune 411008India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and ResearchDr Homi Bhabha Road, PashanPune 411008India
| |
Collapse
|
10
|
Liu Z, Jiang Y, Jiang J, Zhai D, Wang D, Liu M. Self-assembly of isomeric naphthalene appended glucono derivatives: nanofibers and nanotwists with circularly polarized luminescence emission. SOFT MATTER 2020; 16:4115-4120. [PMID: 32195501 DOI: 10.1039/c9sm02542a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two isomeric naphthalene appended glucono derivatives substituted at the 1 or 2-naphthyl positions (Nap-1 and Nap-2) were designed and their self-assembly behaviors and optical properties were investigated. Nap-1 and Nap-2 were found to self-assemble into nanofibers and nanotwists, respectively. While the molecular chirality of the glucono moiety could not be effectively transferred to the naphthalene moiety in the Nap-1 system, this was achieved in the Nap-2 assembly. Thus, the Nap-2 assembly showed obvious circular dichroism (CD) and circularly polarized luminescence (CPL) signals. From the XRD patterns and IR spectra of the supramolecular assemblies, it was found that Nap-2 packed in a more orderly fashion than Nap-1, leading to a hierarchical assembly forming nanotwist structures. Moreover, a light-harvesting system based on Nap-2 supramolecular gels and dyes was established, in which an efficient energy transfer was demonstrated from Nap-2 to an acceptor Eosin Y. It was further found that both chirality and energy transfer enhanced the dissymmetry factor of Eosin Y CPL emission.
Collapse
Affiliation(s)
- Zongwen Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | | | | | | | | | | |
Collapse
|
11
|
Light-responsive and self-healing behavior of azobenzene-based supramolecular hydrogels. J Colloid Interface Sci 2020; 568:16-24. [DOI: 10.1016/j.jcis.2020.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/28/2022]
|
12
|
Okesola B, Wu Y, Derkus B, Gani S, Wu D, Knani D, Smith DK, Adams DJ, Mata A. Supramolecular Self-Assembly To Control Structural and Biological Properties of Multicomponent Hydrogels. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:7883-7897. [PMID: 31631941 PMCID: PMC6792223 DOI: 10.1021/acs.chemmater.9b01882] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Indexed: 05/07/2023]
Abstract
Self-assembled nanofibers are ubiquitous in nature and serve as inspiration for the design of supramolecular hydrogels. A multicomponent approach offers the possibility of enhancing the tunability and functionality of this class of materials. We report on the synergistic multicomponent self-assembly involving a peptide amphiphile (PA) and a 1,3:2,4-dibenzylidene-d-sorbitol (DBS) gelator to generate hydrogels with tunable nanoscale morphology, improved stiffness, enhanced self-healing, and stability to enzymatic degradation. Using induced circular dichroism of Thioflavin T (ThT), electron microscopy, small-angle neutron scattering, and molecular dynamics approaches, we confirm that the PA undergoes self-sorting, while the DBS gelator acts as an additive modifier for the PA nanofibers. The supramolecular interactions between the PA and DBS gelators result in improved bulk properties and cytocompatibility of the two-component hydrogels as compared to those of the single-component systems. The tunable mechanical properties, self-healing ability, resistance to proteolysis, and biocompatibility of the hydrogels suggest future opportunities for the hydrogels as scaffolds for tissue engineering and drug delivery vehicles.
Collapse
Affiliation(s)
- Babatunde
O. Okesola
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Yuanhao Wu
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Burak Derkus
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- Biomedical
Engineering Department, Faculty of Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Samar Gani
- Department
of Biotechnology Engineering, ORT Braude
College, P.O. Box 78, Karmiel 2161002, Israel
| | - Dongsheng Wu
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Dafna Knani
- Department
of Biotechnology Engineering, ORT Braude
College, P.O. Box 78, Karmiel 2161002, Israel
| | - David K. Smith
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Dave J. Adams
- School
of
Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Alvaro Mata
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
13
|
|
14
|
Hassan M, Martin AD, Thordarson P. Engineering Biocompatible Scaffolds through the Design of Elastin‐Based Short Peptides. Chempluschem 2018; 83:47-52. [DOI: 10.1002/cplu.201700493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/04/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Musfizur Hassan
- School of Chemistry The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Adam D. Martin
- School of Chemistry The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Pall Thordarson
- School of Chemistry The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
15
|
Okesola BO, Redondo-Gómez C, Mata A. Multicomponent self-assembly: Supramolecular design of complex hydrogels for biomedical applications. SELF-ASSEMBLING BIOMATERIALS 2018:371-397. [DOI: 10.1016/b978-0-08-102015-9.00019-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Wang L, Jin X, Ye L, Zhang AY, Bezuidenhout D, Feng ZG. Rapidly Recoverable Thixotropic Hydrogels from the Racemate of Chiral OFm Monosubstituted Cyclo(Glu-Glu) Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13821-13827. [PMID: 29110482 DOI: 10.1021/acs.langmuir.7b03527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Both chiral OFm monosubstituted cyclo(l-Glu-l-Glu) and cyclo(d-Glu-d-Glu) display a robust gelation ability in a variety of organic solvents and water. In contrast to an individual enantiomer, their racemate can form rapidly recoverable thixotropic hydrogels with a remarkably shorter thixotropic recovery time. This unexpected thixotropic behavior is induced by the random arrangement of d- and l-enantiomers in the cell units, leading to the formation of "pseudoracemate", noncrystalline self-assemblies in the resulting 3D fibrous network.
Collapse
Affiliation(s)
- Lu Wang
- School of Materials Science and Engineering, Beijing Institute of Technology , No. 5 South Street Zhongguancun, Beijing 100081, P. R. China
| | - Xin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology , No. 5 South Street Zhongguancun, Beijing 100081, P. R. China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology , No. 5 South Street Zhongguancun, Beijing 100081, P. R. China
| | - Ai-Ying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology , No. 5 South Street Zhongguancun, Beijing 100081, P. R. China
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, 203 Cape Heart Centre, Faculty of Health Sciences, University of Cape Town , Cape Town 7700, South Africa
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology , No. 5 South Street Zhongguancun, Beijing 100081, P. R. China
| |
Collapse
|
17
|
Yamagata N, Chen X, Zhou J, Li J, Du X, Xu B. Enzymatic self-assembly of an immunoreceptor tyrosine-based inhibitory motif (ITIM). Org Biomol Chem 2017; 15:5689-5692. [PMID: 28675212 DOI: 10.1039/c7ob01074e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we show the first example of an immunoreceptor tyrosine-based inhibitory motif (ITIM), LYYYYL, as well as its enantiomeric or retro-inverso peptide, to self-assemble in water via enzyme-instructed self-assembly. Upon enzymatic dephosphorylation, the phosphohexapeptides become hexapeptides, which self-assemble in water to result in supramolecular hydrogels. This work illustrates a new approach to design bioinspired soft materials from a less explored, but important pool of immunomodulatory peptides.
Collapse
Affiliation(s)
- Natsuko Yamagata
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | - Xiaoyi Chen
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | - Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
18
|
Yu X, Wang Z, Li Y, Geng L, Ren J, Feng G. Fluorescent and Electrochemical Supramolecular Coordination Polymer Hydrogels Formed from Ion-Tuned Self-Assembly of Small Bis-Terpyridine Monomer. Inorg Chem 2017. [DOI: 10.1021/acs.inorgchem.7b01031] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xudong Yu
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Zengyao Wang
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Yajuan Li
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Lijun Geng
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Jujie Ren
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Guoliang Feng
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| |
Collapse
|
19
|
López C, Ximenis M, Orvay F, Rotger C, Costa A. Supramolecular Hydrogels Based on Minimalist Amphiphilic Squaramide-Squaramates for Controlled Release of Zwitterionic Biomolecules. Chemistry 2017; 23:7590-7594. [DOI: 10.1002/chem.201701029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Carlos López
- Departament de Química, Facultad de Ciències; Universitat de les Illes Balears; Ctra. Valldemossa, Km. 7.5 Palma 07122 Spain
| | - Marta Ximenis
- Departament de Química, Facultad de Ciències; Universitat de les Illes Balears; Ctra. Valldemossa, Km. 7.5 Palma 07122 Spain
| | - Francisca Orvay
- Departament de Química, Facultad de Ciències; Universitat de les Illes Balears; Ctra. Valldemossa, Km. 7.5 Palma 07122 Spain
| | - Carmen Rotger
- Departament de Química, Facultad de Ciències; Universitat de les Illes Balears; Ctra. Valldemossa, Km. 7.5 Palma 07122 Spain
| | - Antonio Costa
- Departament de Química, Facultad de Ciències; Universitat de les Illes Balears; Ctra. Valldemossa, Km. 7.5 Palma 07122 Spain
| |
Collapse
|
20
|
Limón D, Jiménez-Newman C, Calpena AC, González-Campo A, Amabilino DB, Pérez-García L. Microscale coiling in bis-imidazolium supramolecular hydrogel fibres induced by the release of a cationic serine protease inhibitor. Chem Commun (Camb) 2017; 53:4509-4512. [DOI: 10.1039/c6cc09392b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A gemini dicationic amphiphile forms gels with a serine protease inhibitor, which could be used in a new approach to the treatment of Rosacea, and the release of the drug causes remarkable gel fibre coiling.
Collapse
Affiliation(s)
- David Limón
- Departament de Farmacologia
- Toxicologia i Química Terapèutica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Claire Jiménez-Newman
- Departament de Farmacologia
- Toxicologia i Química Terapèutica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Ana C. Calpena
- Institut de Nanociència i Nanotecnologia IN2UB
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Departament de Farmàcia
| | | | - David B. Amabilino
- School of Chemistry
- University of Nottingham
- UK
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry
- The University of Nottingham
| | - Lluïsa Pérez-García
- Departament de Farmacologia
- Toxicologia i Química Terapèutica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
21
|
Bian S, Cai H, Cui Y, He M, Cao W, Chen X, Sun Y, Liang J, Fan Y, Zhang X. Temperature and ion dual responsive biphenyl-dipeptide supramolecular hydrogels as extracellular matrix mimic-scaffolds for cell culture applications. J Mater Chem B 2017; 5:3667-3674. [DOI: 10.1039/c7tb00576h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Illustration of the gelation process of a new aromatic short peptide gelator based on biphenyl and its application in cell culture.
Collapse
Affiliation(s)
- Shaoquan Bian
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hanxu Cai
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yani Cui
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Mengmeng He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Wanxu Cao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|