1
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 PMCID: PMC11877277 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
2
|
Salman Sajid M, Saleem S, Jabeen F, Waqas Ishaq M, Najam-Ul-Haq M, Ressom HW. Mapping the low abundant plasma glycoproteome using Ranachrome-5 immobilized magnetic terpolymer as improved HILIC sorbent. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123846. [PMID: 37567067 PMCID: PMC10528939 DOI: 10.1016/j.jchromb.2023.123846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
HILIC (hydrophilic interaction liquid chromatography) materials enrich glycopeptides. The non-specific interactions because of support material and inadequate hydrophilicity render loss of less abundant glycopeptides in SPE-based enrichments. In this work, magnetic terpolymer (Fe3O4@MAA/DVB/1,2-Epoxy-5-hexene) is functionalized with Ranachrome-5 to generate enhanced hydrophilicity. Amine, carboxylic, and amide groups of ranachrome-5 provide zwitterionic chemistry. Material's magnetic core contributes to ease of operation while higher surface area 97.0711 m2 g-1 immobilizes better quantities of Ranachrome-5. Homogeneous morphology, nano-size, and super hydrophilicity enhance enrichment. Ranachrome-5 functionalized polymeric core-shell beads enrich 25, 18 and 16 N-linked glycopeptides via SPE strategy from tryptic digests of model glycoproteins i.e., immunoglobulin G (IgG), horseradish peroxidase (HRP) and chicken avidin, respectively. Zwitterionic chemistry of ranachrome-5 helps in achieving higher selectivity (1:250, HRP / Bovine Serum Albumin), and lower detection limit (100 attomole, HRP digest) with complete glycosylation profile of each standard digest. High binding capacity (137.1 mg/g) and reuse of affinity material up to seven cycles reduce the cost and amount of affinity material for complex sample analysis. A recovery of 91.76% and relative standard deviation (RSD) values less than 1 define the application of HILIC beads for complex samples like plasma. 508 N-linked intact low abundant glycopeptides corresponding to 50 glycoproteins are identified from depleted human plasma samples via nano-Liquid Chromatography-Tandem Mass Spectrometry (nLC-MS/MS). Using Single Nucleotide Variances (BioMuta) for low abundant plasma glycoproteins, the potential association of proteins to four cancers, i.e., breast, lung, uterine, and melanoma is evaluated. Via the bottom-up approach, HILIC beads can analyze clinically important low-abundant glycoproteins.
Collapse
Affiliation(s)
- Muhammad Salman Sajid
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shafaq Saleem
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Fahmida Jabeen
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Habtom W Ressom
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
3
|
Zhinzhilo VA, Uflyand IE. Magnetic Nanocomposites Based on Metal-Organic Frameworks: Preparation, Classification, Structure, and Properties (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Kanubaddi KR, Yang CL, Huang PY, Lin CY, Tai DF, Lee CH. Peptide conformational imprints enhanced the catalytic activity of papain for esterification. Front Bioeng Biotechnol 2022; 10:943751. [PMID: 36051592 PMCID: PMC9424681 DOI: 10.3389/fbioe.2022.943751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Peptide conformational imprints (PCIs) offer a promising perspective to directly generate binding sites for preserving enzymes with high catalytic activity and stability. In this study, we synthesized a new chiral cross-linker cost-effectively for controlling the matrix morphology of PCIs on magnetic particles (PCIMPs) to stabilize their recognition capability. Meanwhile, based on the flank part of the sequences on papain (PAP), three epitope peptides were selected and synthesized. Molecularly imprinted polymers (MIPs) were then fabricated in the presence of the epitope peptide using our new cross-linker on magnetic particles (MPs) to generate PCIMPs. PCIMPs were formed with helical cavities that complement the PAP structure to adsorb specifically at the targeted position of PAP. PCIMPs65–79 were found to have the best binding parameters to the PAP with Kd = 0.087 μM and Bmax = 4.56 μM. Upon esterification of N-Boc-His-OH, proton nuclear magnetic resonance (1H-NMR) was used to monitor the yield of the reaction and evaluate the activity of PAP/PCIMPs. The kinetic parameters of PAP/PCIMPs65–79 were calculated as Vmax = 3.0 μM s−1, Km = 5 × 10−2 M, kcat = 1.1 × 10–1 s−1, and kcat/Km = 2.2 M−1 s−1. In addition, PAP is bound tightly to PCIMPs to sustain its activity after four consecutive cycles.
Collapse
Affiliation(s)
- Kiran Reddy Kanubaddi
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ching-Lun Yang
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Pei-Yu Huang
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chung-Yin Lin, ; Dar-Fu Tai,
| | - Dar-Fu Tai
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
- *Correspondence: Chung-Yin Lin, ; Dar-Fu Tai,
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
5
|
Aslıyüce S, Idil N, Mattiasson B. Upgrading of bio-separation and bioanalysis using synthetic polymers: Molecularly imprinted polymers (MIPs), cryogels, stimuli-responsive polymers. Eng Life Sci 2022; 22:204-216. [PMID: 35382542 PMCID: PMC8961038 DOI: 10.1002/elsc.202100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
Bio-separation plays a crucial role in many areas. Different polymers are suitable for bio-separation and are useful for applications in applications in both science and technology. Besides biopolymers, there are a broad spectrum of synthetic polymers with tailor-made properties. The synthetic polymers are characterized by their charges, solubility, hydrophilicity/hydrophobicity, sensitivity to environmental conditions and stability. Furthermore, ongoing developments are of great interest on biodegradable polymers for the treatment of diseases. Smart polymers have gained great attention due to their unique characteristics especially emphasizing simultaneously changing their chemical and physical property upon exposure to changes in environmental conditions. In this review, methodologies applied in bio-separation using synthetic polymers are discussed and efficient candidates are focused for the construction of synthetic polymers.
Collapse
Affiliation(s)
- Sevgi Aslıyüce
- Department of ChemistryBiochemistry DivisionHacettepe UniversityAnkaraTurkey
| | - Neslihan Idil
- Department of BiologyBiotechnology DivisionHacettepe UniversityAnkaraTurkey
| | - Bo Mattiasson
- Department of BiotechnologyLund UniversityLundSweden
- Indienz ABAnnebergs Gård, BillebergaLundSweden
| |
Collapse
|
6
|
Meng Y, He Z, Dong C, Long Z. Multi-stimuli-responsive photonics films based on chiral nematic cellulose nanocrystals. Carbohydr Polym 2022; 277:118756. [PMID: 34893211 DOI: 10.1016/j.carbpol.2021.118756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Multiple-stimuli-responsive bio-based materials have received considerable attention for intelligent packaging and anti-counterfeiting applications. Herein, we present a unique biobased photonics film with multi-stimuli responsive behavior based on cellulose nanocrystals (CNCs), sorbitol (S) and anthocyanin (Anth). The resulting photonics film exhibits multi-stimuli responsive behavior to humidity, solvent and pH stimuli. Notably, the photonics film showed dramatic invertible color from blue to fuchsia and high sensitivity at a relative humidity from 50% to 100%. Moreover, the photonics film exhibited fast response and good reversibility under different ethanol concentrations. Significant color changes of the photonics film were also observed in response to pH change in the range of 2 to 12. Particularly, the humidity, solvent and pH responsiveness of the photonics film did not interfere with each other.
Collapse
Affiliation(s)
- Yahui Meng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhibin He
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Cuihua Dong
- Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| | - Zhu Long
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Hu C, Peng F, Mi F, Wang Y, Geng P, Pang L, Ma Y, Li G, Li Y, Guan M. SERS-based boronate affinity biosensor with biomimetic specificity and versatility: Surface-imprinted magnetic polymers as recognition elements to detect glycoproteins. Anal Chim Acta 2022; 1191:339289. [PMID: 35033265 DOI: 10.1016/j.aca.2021.339289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023]
Abstract
Glycoproteins are a class of proteins with significant biological functions and clinical implications. Due to glycoproteins' reliability for the quantitative analysis, they have been used as biomarkers and therapeutic targets for disease diagnosis. We propose a sandwich structure-based boronate affinity biosensor that can separate and detect target glycoproteins by magnetic separation and Surface-enhanced Raman scattering (SERS) probes. The biosensor relies on boronic acid affinity magnetic molecularly imprinted polymer (MMIPs) with pH response as "capturing probe" for glycoproteins, and Au-MPBA@Ag modified with 4-mercaptophenylboronic acid (MPBA) as SERS probes, among which, MPBA has both strong SERS activity and can specifically recognize and bind to glycoproteins. MMIPs ensured specific and rapid analysis, and SERS detection provided high sensitivity. The proposed boronate affinity SERS strategy exhibited universal applicability and provided high sensitivity with limit of detection of 0.053 ng/mL and 0.078 ng/mL for horseradish peroxidase and acid phosphatase, respectively. Ultimately, the boronate affinity SERS strategy was successfully applied in detection of glycoprotein in spiked serum sample with recovery between 90.6% and 103.4%, respectively. In addition, this study used a portable Raman meter, which can meet the requirements of point-of-care testing. The biosensor presented here also has advantages in terms of cost-effectiveness, stability, and detection speed.
Collapse
Affiliation(s)
- Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Lin Pang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Yuhua Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Guixin Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Yingjun Li
- College of Foreign Languages, Xinjiang Normal University, Urumqi, 830054, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| |
Collapse
|
8
|
Hua C, Chen K, Guo X. Boronic acid-functionalized spherical polymer brushes for efficient and selective enrichment of glycoproteins. J Mater Chem B 2021; 9:7557-7565. [PMID: 34551054 DOI: 10.1039/d1tb00835h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycoproteins are related to many biological activities and diseases, and thereby their efficient capture and enrichment for diagnostics and proteomics have emerged to exhibit great significance. However, the lack of materials with high binding capacity and selectivity is still a big obstacle for further application. Herein, we reported a facile and eco-friendly approach to fabricate spherical polymer brushes with multiple boronic acid groups. Specifically, the whole process can be divided into three steps, the polystyrene (PS) core was obtained by traditional emulsion polymerization, followed by immobilization of a home-made photoinitiator. Subsequently, boronic acid-functionalized polymer chains (PBA) were chemically grafted via photo-emulsion polymerization, leading to spherical polymer brushes (PS-PBA) with boronate affinity. The particle size, morphology, and composition of as-prepared spherical polymer brushes were systematically characterized. The characteristics of glycoproteins binding to the spherical polymer brushes under different conditions, including pH values and ionic strength, were also investigated. PS-PBA brushes possess fast binding speed (30 min) and high binding capacity for glycoprotein ovalbumin (OVA) (377.0 mg g-1) under physiological pH conditions at 25 °C, because the low steric hindrance of flexible polymeric PBA chains facilitates the interaction between boronic acid groups and glycoproteins. Moreover, the binding capacity of PS-PBA brushes for glycoprotein OVA was ∼6.7 times higher than that for non-glycoprotein bovine serum albumin (BSA), indicating the excellent selective adsorption. This study provided a facile and efficient approach for the fabrication of boronic acid-functionalized materials that will be useful in the enrichment and separation of glycoproteins for the diagnosis of diseases.
Collapse
Affiliation(s)
- Chen Hua
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China. .,Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, People's Republic of China
| |
Collapse
|
9
|
Kanubaddi KR, Huang PY, Chang YL, Wu CH, Li W, Kankala RK, Tai DF, Lee CH. Deviation of Trypsin Activity Using Peptide Conformational Imprints. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:334. [PMID: 33513990 PMCID: PMC7911952 DOI: 10.3390/nano11020334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/02/2022]
Abstract
In this study, a methodology utilizing peptide conformational imprints (PCIs) as a tool to specifically immobilize porcine pancreatic alpha-trypsin (PPT) at a targeted position is demonstrated. Owing to the fabrication of segment-mediated PCIs on the magnetic particles (PCIMPs), elegant cavities complementary to the PPT structure are constructed. Based on the sequence on targeted PPT, the individual region of the enzyme is trapped with different template-derived PCIMPs to show certain types of inhibition. Upon hydrolysis, N-benzoyl-L-arginine ethyl ester (BAEE) is employed to assess the hydrolytic activity of PCIMPs bound to the trypsin using high-performance liquid chromatography (HPLC) analysis. Further, the kinetic data of four different PCIMPs are compared. As a result, the PCIMPs presented non-competitive inhibition toward trypsin, according to the Lineweaver-Burk plot. Further, the kinetic analysis confirmed that the best parameters of PPT/PCIMPs 233-245+G were Vmax = 1.47 × 10-3 mM s-1, Km = 0.42 mM, kcat = 1.16 s-1, and kcat/Km = 2.79 mM-1 s-1. As PPT is bound tightly to the correct position, its catalytic activities could be sustained. Additionally, our findings stated that the immobilized PPT could maintain stable activity even after four successive cycles.
Collapse
Affiliation(s)
- Kiran Reddy Kanubaddi
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; (K.R.K.); (R.K.K.)
| | - Pei-Yu Huang
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan; (P.-Y.H.); (Y.-L.C.); (C.H.W.); (W.L.)
| | - Ya-Lin Chang
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan; (P.-Y.H.); (Y.-L.C.); (C.H.W.); (W.L.)
| | - Cheng Hsin Wu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan; (P.-Y.H.); (Y.-L.C.); (C.H.W.); (W.L.)
| | - Wei Li
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan; (P.-Y.H.); (Y.-L.C.); (C.H.W.); (W.L.)
| | - Ranjith Kumar Kankala
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; (K.R.K.); (R.K.K.)
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Dar-Fu Tai
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan; (P.-Y.H.); (Y.-L.C.); (C.H.W.); (W.L.)
| | - Chia-Hung Lee
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; (K.R.K.); (R.K.K.)
| |
Collapse
|
10
|
Zheng H, Lin H, Chen X, Tian J, Pavase TR, Wang R, Sui J, Cao L. Development of boronate affinity-based magnetic composites in biological analysis: Advances and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115952] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
|
12
|
Zhao G, Zhang Y, Zhai S, Sugiyama J, Pan M, Shi J, Lu H. Dual Response of Photonic Films with Chiral Nematic Cellulose Nanocrystals: Humidity and Formaldehyde. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17833-17844. [PMID: 32212631 DOI: 10.1021/acsami.0c00591] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Manipulating functional stimuli-responsive materials has been a hot topic in the research of smart sensors and anticounterfeiting encryption. Here, a novel functional chiral nematic cellulose nanocrystal (CNC) film showing dual responsiveness to humidity and formaldehyde gas was fabricated. The chiral nematic CNC iridescent film could respond to environmental humidity and formaldehyde gas changes by reversible motion. Interestingly, the humidity sensitivity of the CNC iridescent film could be gated by exposing the film to formaldehyde gas. At the same time, the formaldehyde-responsive behavior is strongly affected by the relative humidity (RH), and the response range could be tuned by changing the RH over a wide range. Importantly, the formaldehyde-induced color change could be altered from invisible to visible by the naked eye when the film was exposed to a humid environment. The mechanism of this dual response of the CNC iridescent film is ascribed to the synergistic effect of cooperation and competition between water and formaldehyde molecules by constructing physical cross-linking networks by hydrogen bonds among water, formaldehyde, and CNCs. Furthermore, the "RH-concentration of formaldehyde gas-color" ternary colorimetric system was simulated, which is thought to endow the CNC iridescent film with great potential to act as a sensor in the convenient visible detection of gaseous formaldehyde. Furthermore, this work provided a promising strategy to design multi-gas-sensitive devices with convenient detection, good stability, and excellent reversibility.
Collapse
Affiliation(s)
- Guomin Zhao
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of National Forestry & Grassland Bureau for Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yin Zhang
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shengcheng Zhai
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junji Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Mingzhu Pan
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of National Forestry & Grassland Bureau for Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingbo Shi
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyi Lu
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Yang Q, Dong Y, Qiu Y, Yang X, Cao H, Wu Y. Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids Surf B Biointerfaces 2020; 191:111014. [PMID: 32325362 DOI: 10.1016/j.colsurfb.2020.111014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Magnetic materials have been widely used in bioseparation in recent years due to their good biocompatibility, magnetic properties, and high binding capacity. In this review, we provide a brief introduction on the preparation and bioseparation applications of magnetic materials including the synthesis and surface modification of magnetic nanoparticles as well as the preparation and applications of magnetic nanocomposites in the separation of proteins, peptides, cells, exosomes and blood. The current limitations and remaining challenges in the fabrication process of magnetic materials for bioseparation will be also detailed.
Collapse
Affiliation(s)
- Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China; Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yi Dong
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yong Qiu
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Xinzhou Yang
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Han Cao
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
14
|
|
15
|
Tan N, Ji K, He D, Liao S, He L, Han J, Chen C, Liu Y. Research on a kind of biocompatible molecularly imprinted materials with silybin controlled release based on pH/temperature dual responses. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Guo PF, Wang XM, Chen XW, Yang T, Chen ML, Wang JH. Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Li C, Wang C, Wei Y. Facile preparation of a high-capacity boronate-affinity adsorbent based on low-cost commercial supports for selective enrichment of cis
-diol-containing biomolecules. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chunyan Li
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science; Northwest University; Xi’an Shaanxi China
| | - Chaozhan Wang
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science; Northwest University; Xi’an Shaanxi China
| | - Yinmao Wei
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science; Northwest University; Xi’an Shaanxi China
| |
Collapse
|
18
|
Liu Z, Liu Y, Shen S, Wu D. Progress of recyclable magnetic particles for biomedical applications. J Mater Chem B 2018; 6:366-380. [DOI: 10.1039/c7tb02941a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The preparation, types, recycling methods, biomedical applications and outlook of recyclable magnetic particles have been reviewed.
Collapse
Affiliation(s)
- Zeying Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Yongchun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Shihong Shen
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| |
Collapse
|
19
|
Boronate-affinity based magnetic molecularly imprinted nanoparticles for the efficient extraction of the model glycoprotein horseradish peroxidase. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2373-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|