1
|
Das S, Devireddy R, Gartia MR. Surface Plasmon Resonance (SPR) Sensor for Cancer Biomarker Detection. BIOSENSORS 2023; 13:396. [PMID: 36979608 PMCID: PMC10046379 DOI: 10.3390/bios13030396] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
A biomarker is a physiological observable marker that acts as a stand-in and, in the best-case scenario, forecasts a clinically significant outcome. Diagnostic biomarkers are more convenient and cost-effective than directly measuring the ultimate clinical outcome. Cancer is among the most prominent global health problems and a major cause of morbidity and death globally. Therefore, cancer biomarker assays that are trustworthy, consistent, precise, and verified are desperately needed. Biomarker-based tumor detection holds a lot of promise for improving disease knowledge at the molecular scale and early detection and surveillance. In contrast to conventional approaches, surface plasmon resonance (SPR) allows for the quick and less invasive screening of a variety of circulating indicators, such as circulating tumor DNA (ctDNA), microRNA (miRNA), circulating tumor cells (CTCs), lipids, and proteins. With several advantages, the SPR technique is a particularly beneficial choice for the point-of-care identification of biomarkers. As a result, it enables the timely detection of tumor markers, which could be used to track cancer development and suppress the relapse of malignant tumors. This review emphasizes advancements in SPR biosensing technologies for cancer detection.
Collapse
|
2
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
3
|
Munir S, Ahmed S, Ibrahim M, Khalid M, Ojha SC. A Spellbinding Interplay Between Biological Barcoding and Nanotechnology. Front Bioeng Biotechnol 2020; 8:883. [PMID: 33014994 PMCID: PMC7506030 DOI: 10.3389/fbioe.2020.00883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Great scientific research with improved potential in probing biological locales has remained a giant stride. The use of bio-barcodes with the potential use of nanotechnology is a hallmark being developed among recent advanced techniques. Biobarcoding is a novel method used for screening biomolecules to identify and divulge ragbag biodiversity. It establishes successful barcoding projects in the field of nanomedical technology for massively testing disease diagnosis and treatment. Biobarcoding and nanotechnology are recently developed technologies that provide unique opportunities and challenges for multiplex detection such as DNAs, proteins and nucleic acids of animals, plants, viruses, and various other species. These technologies also clump drug delivery, gene delivery, and DNA sequencing. Bio-barcode amplification assay (BCA) is used at large for the detection and identification of proteins and DNAs. DNA barcoding combined with nanotechnology has been proven highly sensitive rendering fast uniplex and multiplex detection of pathogens in food, blood, and other specimens. This review takes a panoramic view of current advances in nano bio-barcodes which have been summarized to explore additional applications such as detection of cytokines, neurotransmitters, cancer markers, prostate-specific antigens, and allergens. In the future, it will also be possible to detect some fungi, algae, protozoa, and other pollutants in food, agriculture, and clinical samples. Using these technologies, specific and efficient sensors would possibly be developed that can perform swift detections of antigens, allergens, and other specimens.
Collapse
Affiliation(s)
- Shehla Munir
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Zhang X, Du P, Cui X, Chen G, Wang Y, Zhang Y, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, He H, Jin M, Hammock B. A sensitive fluorometric bio-barcodes immunoassay for detection of triazophos residue in agricultural products and water samples by iterative cycles of DNA-RNA hybridization and dissociation of fluorophores by Ribonuclease H. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137268. [PMID: 32084695 PMCID: PMC7938870 DOI: 10.1016/j.scitotenv.2020.137268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 05/10/2023]
Abstract
Although the toxicity of triazophos is high and it has been pulled from the market in many countries; it is still widely used and frequently detected in agricultural products. While conventional analyses have been routinely used for the quantification and monitoring of triazophos residues, those for detecting low residual levels are deemed necessary. Therefore, we developed a novel and sensitive fluorometric signal amplification immunoassay employing bio-barcodes for the quantitative analysis of triazophos residues in foodstuffs and surface water. Herein, monoclonal antibodies (mAbs) attached to gold nanoparticles (AuNPs) were coated with DNA oligonucleotides (used as a signal generator), and a complementary fluorogenic RNA was used for signal amplification. The system generated detection signals through DNA-RNA hybridization and subsequent dissociation of fluorophores by Ribonuclease H (RNase H). It has to be noted that RNase H can only disintegrate the RNA in DNA-RNA duplex, but not cleave single or double-stranded DNA. Hence, with iterative cycles of DNA-RNA hybridization, sufficient strong signal was obtained for reliable detection of residues. Furthermore, this method enables quantitative detection of triazophos residues through fluorescence intensity measurements. The competitive immunoassay shows a wide linear range of 0.01-100 ng/mL with a limit of detection (LOD) of 0.0032 ng/mL. The assay substantially meets the demand for the low residue detection of triazophos residues in agricultural products and water samples. Accuracy (expressed as spiked recovery %) and coefficient of variation (CV) were ranged from 73.4% to 116% and 7.04% to 17.4%, respectively. The proposed bio-barcodes immunoassay has the advantages of being stable, reproducible, and reliable for residue detection. In sum, the present study provides a novel approach for detection of small molecules in various sample matrices.
Collapse
Affiliation(s)
- Xiuyuan Zhang
- College of Life Sciences, YanTai University, Yantai 264005, China; Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Pengfei Du
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Xueyan Cui
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Ge Chen
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Yuanshang Wang
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Yudan Zhang
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China
| | - Hongjun He
- College of Life Sciences, YanTai University, Yantai 264005, China.
| | - Maojun Jin
- Key Laboratory of Agro-product Quality and Food Safety, Institute of Quality Standard &Testing Technology for Agro-Products, Chinses Academy of Agricultural Science, Beijing 100081, China; Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, Davis, CA 95616, USA.
| | - Bruce Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, Davis, CA 95616, USA
| |
Collapse
|
5
|
Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213042] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Yu Q, Liu M, Xiao H, Wu S, Qin X, Ke K, Li S, Mi H, Shi D, Li P. Development of novel aptamer-based enzyme-linked apta-sorbent assay (ELASA) for rapid detection of mariculture pathogen Vibrio alginolyticus. JOURNAL OF FISH DISEASES 2019; 42:1523-1529. [PMID: 31448425 DOI: 10.1111/jfd.13066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
As the major opportunistic pathogen to both marine animals and humans, Vibrio alginolyticus (V. alginolyticus) has caused heavy economic losses to mariculture. ssDNA aptamer VA2 targeting live V. alginolyticus was generated by systematic evolution of ligands by exponential enrichment (SELEX) technology in our previous study. In this study, we first developed aptamer (VA2)-based enzyme-linked apta-sorbent assay (VA2-ELASA) for rapid detection of mariculture pathogen V. alginolyticus. The VA2-ELASA could achieve the rapid detection for V. alginolyticus infection with high specificity and sensitivity. The VA2-ELASA could specifically identify V. alginolyticus, but not other non-target bacterial strains. VA2-ELASA could detect V. alginolyticus at the concentration of 5 × 104 /ml, the incubation time short to 1 min and the incubation temperature as high as 45°C, which proved sensitivity and stability of the novel VA2-ELASA in this study. It took less than one hour to accomplish the detection process by VA2-ELASA. The characteristics of specificity, sensitivity and easy operation make VA2-ELASA a novel useful technology for the rapid diagnosis of pathogen V. alginolyticus in mariculture.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Hehe Xiao
- College of Life Science, Henan Normal University, Xinxiang, China
- Guangxi Key Lab for Marine Biotechnology, Beihai, China
| | - Siting Wu
- Guangxi Key Lab for Marine Biotechnology, Beihai, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xianling Qin
- Guangxi Key Laboratory of Marine Environmental Science, Nanning, China
| | - Ke Ke
- Guangxi Key Laboratory of Marine Environmental Science, Nanning, China
| | - Siqiao Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Huizhi Mi
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Deqiang Shi
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
- Guangxi Key Lab for Marine Biotechnology, Beihai, China
| |
Collapse
|
7
|
Wang Y, Jin M, Chen G, Cui X, Zhang Y, Li M, Liao Y, Zhang X, Qin G, Yan F, Abd El-Aty A, Wang J. Bio-barcode detection technology and its research applications: A review. J Adv Res 2019; 20:23-32. [PMID: 31193255 PMCID: PMC6522771 DOI: 10.1016/j.jare.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of nanotechnology, the bio-barcode assay (BCA), as a new diagnostic tool, has been gradually applied to the detection of protein and nucleic acid targets and small-molecule compounds. BCA has the advantages of high sensitivity, short detection time, simple operation, low cost, good repeatability and good linear relationship between detection results. However, bio-barcode technology is not yet fully formed as a complete detection system, and the detection process in all aspects and stages is unstable. Therefore, studying the optimal reaction conditions, optimizing the experimental steps, exploring the multi-residue detection of small-molecule substances, and preparing immuno-bio-barcode kits are important research directions for the standardization and commercialization of BCA. The main theme of this review was to describe the principle of BCA, provide a comparison of its application, and introduce the single-residue and multi-residue detection of macromolecules and single-residue detection of small molecules. We also compared it with other detection methods, summarized its feasibility and limitations, expecting that with further improvement and development, the technique can be more widely used in the field of stable small-molecule and multi-residue detection.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Mingjie Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yun Liao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xiuyuan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Guoxin Qin
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Feiyan Yan
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| |
Collapse
|
8
|
Loo JFC, Ho HP, Kong SK, Wang TH, Ho YP. Technological Advances in Multiscale Analysis of Single Cells in Biomedicine. ACTA ACUST UNITED AC 2019; 3:e1900138. [PMID: 32648696 DOI: 10.1002/adbi.201900138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Indexed: 12/20/2022]
Abstract
Single-cell analysis has recently received significant attention in biomedicine. With the advances in super-resolution microscopy, fluorescence labeling, and nanoscale biosensing, new information may be obtained for the design of cancer diagnosis and therapeutic interventions. The discovery of cellular heterogeneity further stresses the importance of single-cell analysis to improve our understanding of disease mechanism and to develop new strategies for disease treatment. To this end, many studies are exploited at the single-cell level for high throughput, highly parallel, and quantitative analysis. Technically, microfluidics are also designed to facilitate single-cell isolation and enrichment for downstream detection and manipulation in a robust, sensitive, and automated manner. Further achievements are made possible by consolidating optically label-free, electrical, and molecular sensing techniques. Moreover, these technologies are coupled with computing algorithms for high throughput and automated quantitative analysis with a short turnaround time. To reflect on how the technological developments have advanced single-cell analysis, this mini-review is aimed to offer readers an introduction to single-cell analysis with a brief historical development and the recent progresses that have enabled multiscale analysis of single-cells in the last decade. The challenges and future trends are also discussed with the view to inspire forthcoming technical developments.
Collapse
Affiliation(s)
- Jacky Fong-Chuen Loo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Ho Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Siu Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
9
|
Chircov C, Grumezescu AM, Holban AM. Magnetic Particles for Advanced Molecular Diagnosis. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2158. [PMID: 31284393 PMCID: PMC6651565 DOI: 10.3390/ma12132158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022]
Abstract
Molecular diagnosis is the field that aims to develop nucleic-acid-based analytical methods for biological markers and gene expression assessments by combining laboratory medicine and molecular genetics. As it gradually becomes a clinical reality, molecular diagnosis could benefit from improvements resulting from thorough studies that could enhance the accuracy of these methods. The application of magnetic particles in molecular diagnosis tools has led to tremendous breakthroughs in terms of specificity, sensitivity, and discrimination in bioassays. Therefore, the aim of this review is to highlight the principles involved in the implementation of magnetic particles for sample preparation and targeted analyte isolation, purification, and extraction. Furthermore, the most recent advancements in the area of cancer and infectious disease diagnosis are presented, with an emphasis on screening and early stage detection.
Collapse
Affiliation(s)
- Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alina Maria Holban
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
10
|
Yang C, Yin M, Xu G, Lin W, Chen J, Zhang Y, Feng T, Huang P, Chen C, Yong K. Biodegradable Polymers as a Noncoding miRNA Nanocarrier for Multiple Targeting Therapy of Human Hepatocellular Carcinoma. Adv Healthc Mater 2019; 8:e1801318. [PMID: 30829008 DOI: 10.1002/adhm.201801318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/26/2019] [Indexed: 12/21/2022]
Abstract
Therapeutic strategy based on the restoration of tumor suppressor-microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester-based vectors (PEG-BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG-BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG-BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG-BCPV-based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG-BCPVs as the carrier should be a promising modality for combating HCC.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical EngineeringHealth Science CenterShenzhen University Shenzhen 518060 China
| | - Mingjie Yin
- School of Electrical and Electronic EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical EngineeringHealth Science CenterShenzhen University Shenzhen 518060 China
| | - Wei‐Jen Lin
- Department of Fiber and Composite MaterialsFeng Chia University Taichung 40724 Republic of China, Taiwan
| | - Jiajie Chen
- School of MedicineHealth Science CenterShenzhen University Shenzhen 518060 China
| | - Yinling Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical EngineeringHealth Science CenterShenzhen University Shenzhen 518060 China
| | - Tao Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical EngineeringHealth Science CenterShenzhen University Shenzhen 518060 China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical EngineeringHealth Science CenterShenzhen University Shenzhen 518060 China
| | - Chih‐Kuang Chen
- Department of Chemical and Materials EngineeringNational Yunlin University of Science and Technology Yunlin 64002 Republic of China, Taiwan
| | - Ken‐Tye Yong
- School of Electrical and Electronic EngineeringNanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
11
|
Xia Y, Zhang P, Yuan H, Su R, Huang R, Qi W, He Z. Sequential sandwich immunoassay for simultaneous detection in trace samples using single-channel surface plasmon resonance. Analyst 2019; 144:5700-5705. [DOI: 10.1039/c9an01183h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient and facile method of a sequential sandwich immunoassay was developed for simultaneous detection in trace samples using single-channel SPR with low-dosage samples and testing times.
Collapse
Affiliation(s)
- Yinqiang Xia
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Peiqian Zhang
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Hui Yuan
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Renliang Huang
- School of Environmental Science and Engineering
- Tianjin University
- Tianjin 300072
- PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Zhimin He
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| |
Collapse
|
12
|
Recent Progress in Surface Plasmon Resonance Biosensors (2016 to Mid-2018). BIOSENSORS-BASEL 2018; 8:bios8040132. [PMID: 30558384 PMCID: PMC6316629 DOI: 10.3390/bios8040132] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022]
Abstract
More than 50 papers on surface plasmon resonance biosensors, published between 2016 and mid-2018, are reviewed. Papers concerning the determination of large particles such as vesicles, exosomes, cancer cells, living cells, stem cells, and microRNA are excluded, as these are covered by a very recent review. The reviewed papers are categorized into five groups, depending on the degree of maturity of the reported solution; ranging from simple marker detection to clinical application of a previously developed biosensor. Instrumental solutions and details of biosensor construction are analyzed, including the chips, receptors, and linkers used, as well as calibration strategies. Biosensors with a sandwich structure containing different nanoparticles are considered separately, as are SPR (Surface Plasmon Resonance) applications for investigating the interactions of biomolecules. An analysis is also made of the markers determined using the biosensors. In conclusion, there is shown to be a growing number of SPR applications in the solution of real clinical problems.
Collapse
|
13
|
An Assay Using Localized Surface Plasmon Resonance and Gold Nanorods Functionalized with Aptamers to Sense the Cytochrome-c Released from Apoptotic Cancer Cells for Anti-Cancer Drug Effect Determination. MICROMACHINES 2017; 8:mi8110338. [PMID: 30400530 PMCID: PMC6190337 DOI: 10.3390/mi8110338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022]
Abstract
To determine the degree of cancer cell killing after treatment with chemotherapeutic drugs, we have developed a sensitive platform using localized surface plasmon resonance (LSPR) and aptamers to detect the extracellular cytochrome-c (cyto-c), a mitochondrial protein released from cancer cells for the induction of apoptosis after treatment, to evaluate the effectiveness of cancer therapy. In this assay, a short single-stranded 76-mer DNA aptamer with a unique DNA sequence, which binds towards the cyto-c like an antibody with a high binding affinity and specificity, was conjugated to gold nanorods (AuNR) for LSPR sensing. Practically, cyto-c was first grabbed by a capturing antibody functionalized on the surface of micro-magnetic particles (MMPs). Subsequently, the AuNR-conjugated aptamer was added to form a complex sandwich structure with cyto-c (i.e., (MMP-Ab)-(cyto-c)-(AuNR-aptamer)) after washing away the non-target impurities, such as serum residues and intracellular contents, in a microfluidic chip. The sandwich complex led to formation of AuNR aggregates, which changed the LSPR signals in relation to the amount of cyto-c. With the LSPR signal enhancement effects from the AuNRs, the detection limit of cyto-c, sparked in human serum or culture medium, was found to be 0.1 ng/mL in our platform and the whole sensing process could be completed within two hours. Moreover, we have applied this assay to monitor the apoptosis in leukemia cancer cells induced by a potential anti-cancer agent phenylarsine oxide.
Collapse
|