1
|
Cao X, Chen C, Zhu Q. Biosensors based on functional nucleic acids and isothermal amplification techniques. Talanta 2023; 253:123977. [PMID: 36201957 DOI: 10.1016/j.talanta.2022.123977] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022]
Abstract
In the past few years, with the in-depth research of functional nucleic acids and isothermal amplification techniques, their applications in the field of biosensing have attracted great interest. Since functional nucleic acids have excellent flexibility and convenience in their structural design, they have significant advantages as recognition elements in biosensing. At the same time, isothermal amplification techniques have higher amplification efficiency, so the combination of functional nucleic acids and isothermal amplification techniques can greatly promote the widespread application of biosensors. For the purpose of further improving the performance of biosensors, this review introduces several widely used functional nucleic acids and isothermal amplification techniques, as well as their classification, basic principles, application characteristics, and summarizes their important applications in the field of biosensing. We hope to provide some references for the design and construction of new tactics to enhance the detection sensitivity and detection range of biosensing.
Collapse
Affiliation(s)
- Xiuen Cao
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Wang L, Zhang H, Chen W, Chen H, Xiao J, Chen X. Recent advances in DNA glycosylase assays. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Ouyang Y, Liu Y, Deng Y, He H, Huang J, Ma C, Wang K. Recent advances in biosensor for DNA glycosylase activity detection. Talanta 2021; 239:123144. [PMID: 34923254 DOI: 10.1016/j.talanta.2021.123144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Base excision repair (BER) is vital for maintaining the integrity of the genome under oxidative damage. DNA glycosylase initiates the BER pathway recognizes and excises the mismatched substrate base leading to the apurinic/apyrimidinic site generation, and simultaneously breaks the single-strand DNA. As the aberrant activity of DNA glycosylase is associated with numerous diseases, including cancer, immunodeficiency, and atherosclerosis, the detection of DNA glycosylase is significant from bench to bedside. In this review, we summarized novel DNA strategies in the past five years for DNA glycosylase activity detection, which are classified into fluorescence, colorimetric, electrochemical strategies, etc. We also highlight the current limitations and look into the future of DNA glycosylase activity monitoring.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- School of Life Sciences, Central South University, Changsha, 410013, China; Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yifan Liu
- School of Life Sciences, Central South University, Changsha, 410013, China; Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yuan Deng
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, 410013, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
Fan L, Liu W, Yang B, Zhang Y, Liu X, Wu X, Ning B, Peng Y, Bai J, Guo L. A highly sensitive method for simultaneous detection of hAAG and UDG activity based on multifunctional dsDNA probes mediated exponential rolling circle amplification. Talanta 2021; 232:122429. [PMID: 34074415 DOI: 10.1016/j.talanta.2021.122429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/30/2022]
Abstract
DNA glycosylase is an indispensable DNA damage repair enzyme which can recognize and excise the damaged bases in the DNA base excision-repair pathway. The dysregulation of DNA glycosylase activity will give rise to the dysfunction of base excision-repair and lead to abnormalities and diseases. The simultaneous detection of multiple DNA glycosylases can help to fully understand the normal physiological functions of cells, and determine whether the cells are abnormal in pre-disease. Regrettably, the synchronous detection of functionally similar DNA glycosylases is a great challenge. Herein, we developed a multifunctional dsDNA probe mediated exponential rolling circle amplification (E-RCA) method for the simultaneously sensitive detection of human alkyladenine DNA glycosylase (hAAG) and uracil-DNA glycosylase (UDG). The multifunctional dsDNA probe contains the hypoxanthine sites and the uracil sites which can be recognized by hAAG and UDG respectively to generate apyrimidinic (AP) sites in the dsDNA probe. Then the AP sites will be recognized and cut by endonuclease Ⅳ (Endo IV) to release corresponding single-stranded primer probes. Subsequently, two padlock DNA templates are added to initiate E-RCA to generate multitudinous G-quadruplexes and/or double-stranded dumbbell lock structures, which can combine N-methyl mesoporphyrin IX (NMM) and SYBR Green Ⅰ (SGI) for the generation of respective fluorescent signals. The detection limits are obtained as low as 0.0002 U mL-1 and 0.00001 U mL-1 for hAAG and UDG, respectively. Notably, this method can realize the simultaneous detection of two DNA glycosylases without the use of specially labeled probes. Finally, this method is successfully applied to detect hAAG and UDG activities in the lysates of HeLa cells and Endo1617 cells at single-cell level, and to detect the inhibitors of DNA glycosylases.
Collapse
Affiliation(s)
- Longxing Fan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Wentao Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Boning Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yingchun Zhang
- Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin, 300071, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Xiaotao Liu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China
| | - Xinglin Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|
6
|
Liu J, Zhang Y, Xie H, Zhao L, Zheng L, Ye H. Applications of Catalytic Hairpin Assembly Reaction in Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902989. [PMID: 31523917 DOI: 10.1002/smll.201902989] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/15/2019] [Indexed: 05/26/2023]
Abstract
Nucleic acids are considered as perfect programmable materials for cascade signal amplification and not merely as genetic information carriers. Among them, catalytic hairpin assembly (CHA), an enzyme-free, high-efficiency, and isothermal amplification method, is a typical example. A typical CHA reaction is initiated by single-stranded analytes, and substrate hairpins are successively opened, resulting in thermodynamically stable duplexes. CHA circuits, which were first proposed in 2008, present dozens of systems today. Through in-depth research on mechanisms, the CHA circuits have been continuously enriched with diverse reaction systems and improved analytical performance. After a short time, the CHA reaction can realize exponential amplification under isothermal conditions. Under certain conditions, the CHA reaction can even achieve 600 000-fold signal amplification. Owing to its promising versatility, CHA is able to be applied for analysis of various markers in vitro and in living cells. Also, CHA is integrated with nanomaterials and other molecular biotechnologies to produce diverse readouts. Herein, the varied CHA mechanisms, hairpin designs, and reaction conditions are introduced in detail. Additionally, biosensors based on CHA are presented. Finally, challenges and the outlook of CHA development are considered.
Collapse
Affiliation(s)
- Jumei Liu
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huabin Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361006, P. R. China
| | - Li Zhao
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
7
|
Wang G, Wang L, Li X, Xu X, Jiang W. T7 exonuclease-assisted and target-triggered cascade dual recycling signal amplification strategy for the sensitive and specific detection of adenosine. Talanta 2019; 197:234-238. [DOI: 10.1016/j.talanta.2019.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 02/06/2023]
|
8
|
Dong L, Zhang X, Li Y, E F, Zhang J, Cheng Y. Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling Circle Amplification. ACS OMEGA 2019; 4:3881-3886. [PMID: 31459598 PMCID: PMC6648713 DOI: 10.1021/acsomega.8b03376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/08/2019] [Indexed: 06/01/2023]
Abstract
Sensitive detection of uracil-DNA glycosylase (UDG) activity is very important in the study of many fundamental biochemical processes and clinical applications. Here, we develop a novel assay for the detection of UDG activity by using the self-initiating multiple rolling circle amplification (SM-RCA) strategy. We first design a trigger probe modified with NH2 at its 3'-terminal and uracil base in the middle of sequence, which is complementary to a cyclized padlock probe. In the presence of UDG, a uracil base can be excised by UDG to generate an apurinic/apyrimidinic (AP) site. The AP site is recognized and cleaved by endonuclease IV (Endo IV), releasing the primer with 3'-OH. The primer can trigger the rolling circle amplification (RCA) reaction, producing a long and repeated DNA strand embedded some uracil bases. These uracil bases can be cleaved by UDG and Endo IV again, and then, more primers are generated to initiate SM-RCA reaction, producing large amounts of DNA product. Afterward, the DNA product is measured by a specific DNA fluorescence dye for quantitative detection of UDG activity. The linear range of the method is 5 × 10-5 to 1.25 × 10-3 U/mL, and the detection limit is 1.7 × 10-5 U/mL. This method not only utilizes the target UDG itself to trigger RCA but also further induces SM-RCA reaction, providing a simple, sensitive, and cost-effective strategy for the detection of glycosylase and clinical diagnosis.
Collapse
|
9
|
Zhang K, Huang W, Huang Y, Wang K, Zhu X, Xie M. Determination of the activity of uracil-DNA glycosylase by using two-tailed reverse transcription PCR and gold nanoparticle-mediated silver nanocluster fluorescence: a new method for gene therapy-related enzyme detection. Mikrochim Acta 2019; 186:181. [PMID: 30771014 DOI: 10.1007/s00604-019-3307-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
Abstract
The authors present a fluorometric method for ultrasensitive determination of the activity of uracil-DNA glycosylase (UDG). It is based on the use of two-tailed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and an entropy-driven reaction. The assay involves the following steps: (1) UDG-driven uracil excision repair, (2) two-tailed RT-qPCR-mediated amplification, (3) RNA polymerase-aided amplification, and (4) DNA-modified silver nanoclusters (AgNCs) as a transducer to produce a fluorescent signal. UDG enables uracil to be removed from U·A pairs in DNA1 and produces a depurinated/depyrimidinated site that is readily cleaved by endonuclease IV (Endo IV). The cleaved DNA contains the T7 RNA polymerase primer for the T7 RNA polymerase amplification which produces a large number of microRNA sequences. Subsequent two-tailed RT-qPCR leads to the formation of a prolonged DNA termed DNA3. The prolonged part of DNA3 is then hybridized with an added DNA4/DNA5 duplex, where DNA5 is labeled with gold nanoparticles (AuNPs), and DNA 4 is labeled with AgNCs. The AuNPs quench the fluorescence of the AgNCs. The duplex has a toehold to hybridize the prolong part of DNA3. This results in the formation of a DNA5/DNA3 duplex due to strand displacement (by replacing the DNA4 in the DNA4/DNA5 duplex). DNA4 is released and moves away from the AuNPs. This results in restored AgNC fluorescence, best measured at excitation/emission wavelengths of 575/635 nm. The method has a detection limit as low as 0.1 mU mL-1 of UDG activity (3σ criterion) with a range of 0.001-0.01 U mL-1. It was used to measure UDG activity in cell lysates. Conceivably, it may be used to screen for UDG inhibitors such as Ugi. Graphical abstract Schematic presentation of the two-tailed RT-qPCR assay platform for ultrasensitive detection of uracil-DNA glycosylase (UDG). Two-tailed RT-qPCR-mediated amplification and RNA polymerase-aided amplification are utilized for signal amplification. DNA-modified silver nanoclusters (AgNCs) are used as a transducer to produce a fluorescent signal.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| | - Wanting Huang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Yue Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| |
Collapse
|
10
|
Simmel FC, Yurke B, Singh HR. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem Rev 2019; 119:6326-6369. [PMID: 30714375 DOI: 10.1021/acs.chemrev.8b00580] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic DNA nanotechnology, a subfield of DNA nanotechnology, is concerned with the study and application of nucleic acid strand-displacement reactions. Strand-displacement reactions generally proceed by three-way or four-way branch migration and initially were investigated for their relevance to genetic recombination. Through the use of toeholds, which are single-stranded segments of DNA to which an invader strand can bind to initiate branch migration, the rate with which strand displacement reactions proceed can be varied by more than 6 orders of magnitude. In addition, the use of toeholds enables the construction of enzyme-free DNA reaction networks exhibiting complex dynamical behavior. A demonstration of this was provided in the year 2000, in which strand displacement reactions were employed to drive a DNA-based nanomachine (Yurke, B.; et al. Nature 2000, 406, 605-608). Since then, toehold-mediated strand displacement reactions have been used with ever increasing sophistication and the field of dynamic DNA nanotechnology has grown exponentially. Besides molecular machines, the field has produced enzyme-free catalytic systems, all DNA chemical oscillators and the most complex molecular computers yet devised. Enzyme-free catalytic systems can function as chemical amplifiers and as such have received considerable attention for sensing and detection applications in chemistry and medical diagnostics. Strand-displacement reactions have been combined with other enzymatically driven processes and have also been employed within living cells (Groves, B.; et al. Nat. Nanotechnol. 2015, 11, 287-294). Strand-displacement principles have also been applied in synthetic biology to enable artificial gene regulation and computation in bacteria. Given the enormous progress of dynamic DNA nanotechnology over the past years, the field now seems poised for practical application.
Collapse
Affiliation(s)
| | - Bernard Yurke
- Micron School of Materials Science and Engineering , Boise State University , Boise , ID 83725 , United States
| | - Hari R Singh
- Physics Department , TU München , 85748 Garching , Germany
| |
Collapse
|
11
|
Yan X, Tang M, Yang J, Diao W, Ma H, Cheng W, Que H, Wang T, Yan Y. A one-step fluorescent biosensing strategy for highly sensitive detection of HIV-related DNA based on strand displacement amplification and DNAzymes. RSC Adv 2018; 8:31710-31716. [PMID: 35548230 PMCID: PMC9085900 DOI: 10.1039/c8ra06480f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023] Open
Abstract
Sensitive and specific detection of HIV-related DNA is of great importance for early accurate diagnosis and therapy of HIV-infected patients. Here, we developed a one-step and rapid fluorescence strategy for HIV-related DNA detection based on strand displacement amplification and a Mg2+-dependent DNAzyme reaction. In the presence of target HIV DNA, it can hybridize with template DNA and activate strand displacement amplification to generate numerous DNAzyme sequences. With the introduction of Mg2+, DNAzyme can be activated to circularly cleave the substrate DNA, which leads to the separation of fluorophore reporters from the quenchers, resulting in the recovery of the fluorescence. Under the optimal experimental conditions, the established biosensing method can detect target DNA down to 61 fM with a linear range from 100 fM to 1 nM, and discriminate target DNA from mismatched DNA perfectly. In addition, the developed biosensing strategy was successfully applied to assay target DNA spiked into human serum samples. With the advantages of fast, easy operation and high-performance, this biosensing strategy might be an alternative tool for clinical diagnosis of HIV infection.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Min Tang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Jianru Yang
- Department of Clinical Laboratory, Affiliated Hospital of Zunyi Medical University Zunyi 563003 China
| | - Wei Diao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Hongmin Ma
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Wenbin Cheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Haiying Que
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Tong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| |
Collapse
|
12
|
Leng X, Li R, Wang Y, Wu Y, Tu Y, Pei Q, Cui X, Huang J, Liu S. Target-activated cascaded digestion amplification of exonuclease III aided signal-on and ultrasensitive fluorescence detection of ATP. NEW J CHEM 2018. [DOI: 10.1039/c7nj04657j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a rapid, one-step and ultrasensitive signal-on fluorescence sensing for the detection of adenosine triphosphate (ATP) based on target-activated cascaded digestion amplification with Exo III aid was developed.
Collapse
Affiliation(s)
- Xueqi Leng
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Rongguo Li
- Jinan Maternity and Child Care Hospital
- Jinan 250022
- P. R. China
| | - Yu Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yunping Wu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yuqin Tu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qianqian Pei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- P. R. China
| | - Xuejun Cui
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- P. R. China
| | - Jiadong Huang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
| | - Su Liu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|