1
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Molnarova K, Krizek T, Kozlik P. The potential of polyaniline-coated stationary phase in hydrophilic interaction liquid chromatography-based solid-phase extraction for glycopeptide enrichment. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124099. [PMID: 38547700 DOI: 10.1016/j.jchromb.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
Glycopeptide enrichment is a crucial step in glycoproteomic analysis, often achieved through solid-phase extraction (SPE) on polar stationary phases in hydrophilic interaction liquid chromatography (HILIC). This study explores the potential of polyaniline (PANI)-coated silica gel for enriching human immunoglobulin G (IgG). Experimental conditions were varied to assess their impact on glycopeptide enrichment efficiency, comparing PANI-cotton wool SPE with conventional cotton wool as SPE sorbents. Two formic acid concentrations (0.1% and 1%) in elution solvent were tested, revealing that higher concentrations led to earlier elution of studied glycopeptides, especially for sialylated glycopeptides. Substituting formic acid with acetic acid increased the interaction of neutral glycopeptides with the PANI-modified sorbent, while sialylated glycopeptides showed no significant change in enrichment efficiency. Acetonitrile concentration in the elution solvent (5%, 10%, and 20%) affected the enrichment efficiency with most glycopeptides eluting at the lowest acetonitrile concentration. The acetonitrile concentration in conditioning and washing solutions (65%, 75%, and 85%) played a crucial role; at 65% acetonitrile, glycopeptides were least retained on the stationary phase, and neutral glycopeptides were even detected in the flow-through fraction. This study shows the potential of in-house-prepared PANI-modified sorbents for SPE-HILIC glycopeptide enrichment, highlighting the crucial role of tuning experimental conditions in sample preparation to enhance enrichment efficiency and selectivity.
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
3
|
Chao X, Zhang B, Yang S, Liu X, Zhang J, Zang X, Chen L, Qi L, Wang X, Hu H. Enrichment methods of N-linked glycopeptides from human serum or plasma: A mini-review. Carbohydr Res 2024; 538:109094. [PMID: 38564900 DOI: 10.1016/j.carres.2024.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Human diseases often correlate with changes in protein glycosylation, which can be observed in serum or plasma samples. N-glycosylation, the most common form, can provide potential biomarkers for disease prognosis and diagnosis. However, glycoproteins constitute a relatively small proportion of the total proteins in human serum and plasma compared to the non-glycosylated protein albumin, which constitutes the majority. The detection of microheterogeneity and low glycan abundance presents a challenge. Mass spectrometry facilitates glycoproteomics research, yet it faces challenges due to interference from abundant plasma proteins. Therefore, methods have emerged to enrich N-glycans and N-linked glycopeptides using glycan affinity, chemical properties, stationary phase chemical coupling, bioorthogonal techniques, and other alternatives. This review focuses on N-glycans and N-glycopeptides enrichment in human serum or plasma, emphasizing methods and applications. Although not exhaustive, it aims to elucidate principles and showcase the utility and limitations of glycoproteome characterization.
Collapse
Affiliation(s)
- Xuyuan Chao
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Baoying Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Shengjie Yang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xizi Liu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, People's Republic of China
| | - Jingyi Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xin Zang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Lu Chen
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Lu Qi
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, People's Republic of China.
| |
Collapse
|
4
|
He K, Baniasad M, Kwon H, Caval T, Xu G, Lebrilla C, Hommes DW, Bertozzi C. Decoding the glycoproteome: a new frontier for biomarker discovery in cancer. J Hematol Oncol 2024; 17:12. [PMID: 38515194 PMCID: PMC10958865 DOI: 10.1186/s13045-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Cancer early detection and treatment response prediction continue to pose significant challenges. Cancer liquid biopsies focusing on detecting circulating tumor cells (CTCs) and DNA (ctDNA) have shown enormous potential due to their non-invasive nature and the implications in precision cancer management. Recently, liquid biopsy has been further expanded to profile glycoproteins, which are the products of post-translational modifications of proteins and play key roles in both normal and pathological processes, including cancers. The advancements in chemical and mass spectrometry-based technologies and artificial intelligence-based platforms have enabled extensive studies of cancer and organ-specific changes in glycans and glycoproteins through glycomics and glycoproteomics. Glycoproteomic analysis has emerged as a promising tool for biomarker discovery and development in early detection of cancers and prediction of treatment efficacy including response to immunotherapies. These biomarkers could play a crucial role in aiding in early intervention and personalized therapy decisions. In this review, we summarize the significant advance in cancer glycoproteomic biomarker studies and the promise and challenges in integration into clinical practice to improve cancer patient care.
Collapse
Affiliation(s)
- Kai He
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA.
| | | | - Hyunwoo Kwon
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - Gege Xu
- InterVenn Biosciences, South San Francisco, USA
| | - Carlito Lebrilla
- Department of Biochemistry and Molecular Medicine, UC Davis Health, Sacramento, USA
| | | | | |
Collapse
|
5
|
Hu Z, Gao W, Liu R, Yang J, Han R, Li J, Yu J, Ma D, Tang K. An efficient strategy with a synergistic effect of hydrophilic and electrostatic interactions for simultaneous enrichment of N- and O-glycopeptides. Analyst 2024; 149:1090-1101. [PMID: 38131340 DOI: 10.1039/d3an01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
N- and O-glycosylation modifications of proteins are closely linked to the onset and development of many diseases and have gained widespread attention as potential targets for therapy and diagnosis. However, the low abundance and low ionization efficiency of glycopeptides as well as the high heterogeneity make glycosylation analysis challenging. Here, an enrichment strategy, using Knoevenagel copolymers modified with polydopamine-adenosine (denoted as PDA-ADE@KCP), was firstly proposed for simultaneous enrichment of N- and O-glycopeptides through the synergistic effects of hydrophilic and electrostatic interactions. The adjustable charged surface and hydrophilic properties endow the material with the capability to achieve effective enrichment of intact N- and O-glycopeptides. The experimental results exhibited excellent selectivity (1 : 5000) and sensitivity (0.1 fmol μL-1) of the prepared material for N-glycopeptides from standard protein digest samples. Moreover, it was further applied to simultaneous capturing of N- and O-glycopeptides from mouse liver protein digests. Compared to the commercially available zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) material, the number of glycoproteins corresponding to all N- and O-glycopeptides enriched with PDA-ADE@KCP was much more than that with ZIC-HILIC. Furthermore, PDA-ADE@KCP captured more O-glycopeptides than ZIC-HILIC, revealing its superior performance in O-glycopeptide enrichment. All these results indicated that the strategy holds immense potential in characterizing N- and O-intact glycopeptides in the field of proteomics.
Collapse
Affiliation(s)
- Zhonghan Hu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Wenqing Gao
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Rong Liu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Jiaqian Yang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Renlu Han
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Danhua Ma
- Department of Stomatology, Ningbo No.2 Hospital, Ningbo, 315010, PR China.
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| |
Collapse
|
6
|
Zhou X, Zhang H, Wang L, Lv L, Wu R. Simultaneous enrichment optimization of glycopeptides and phosphopeptides with the highly hydrophilic DZMOF-FDP. Analyst 2023; 148:1483-1491. [PMID: 36876469 DOI: 10.1039/d2an02004a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Protein glycosylation and phosphorylation play essential roles in biological systems. The crosstalk of both glycosylation and phosphorylation on one protein represents an unveiled biological function. To realize the analyses of both glycopeptides and phosphopeptides, a simultaneous enrichment method of N-glycopeptides, mono-phosphopeptides and multi-phosphopeptides was developed based on a multi-functional dual-metal centered zirconium metal-organic framework that provided multiple interactions for HILIC, IMAC, and MOAC for glycopeptides and phosphopeptides. Based on a careful optimization of sample loading and elution conditions for the simultaneous enrichment of glycopeptides and phosphopeptides with the zirconium metal-organic framework, a total of 1011 N-glycopeptides derived from 410 glycoproteins and 1996 phosphopeptides including 741 multi-phosphopeptides derived from 1189 phosphoproteins could be identified from a HeLa cell digest. The simultaneous enrichment approach for glycopeptides and mono-/multi-phosphopeptides demonstrates the great potential of the combined interactions for HILIC, IMAC, and MOAC in integrated post-translational modification proteomics research.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Zhang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liting Lv
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ren'an Wu
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
7
|
Mancera-Arteu M, Benavente F, Sanz-Nebot V, Giménez E. Sensitive Analysis of Recombinant Human Erythropoietin Glycopeptides by On-Line Phenylboronic Acid Solid-Phase Extraction Capillary Electrophoresis Mass Spectrometry. J Proteome Res 2023; 22:826-836. [PMID: 36763563 PMCID: PMC9990126 DOI: 10.1021/acs.jproteome.2c00569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In this study, several chromatographic sorbents: porous graphitic carbon (PGC), aminopropyl hydrophilic interaction (aminopropyl-HILIC), and phenylboronic acid (PBA) were assessed for the analysis of glycopeptides by on-line solid-phase extraction capillary electrophoresis mass spectrometry (SPE-CE-MS). As the PBA sorbent provided the most promising results, a PBA-SPE-CE-MS method was developed for the selective and sensitive preconcentration of glycopeptides from enzymatic digests of glycoproteins. Recombinant human erythropoietin (rhEPO) was selected as the model glycoprotein and subjected to enzymatic digestion with several proteases. The tryptic O126 and N83 glycopeptides from rhEPO were targeted to optimize the methodology. Under the optimized conditions, intraday precision, linearity, limits of detection (LODs), and microcartridge lifetime were evaluated, obtaining improved results compared to that from a previously reported TiO2-SPE-CE-MS method, especially for LODs of N-glycopeptides (up to 500 times lower than by CE-MS and up to 200 times lower than by TiO2-SPE-CE-MS). Moreover, rhEPO Glu-C digests were also analyzed by PBA-SPE-CE-MS to better characterize N24 and N38 glycopeptides. Finally, the established method was used to analyze two rhEPO products (EPOCIM and NeuroEPO plus), demonstrating its applicability in biopharmaceutical analysis. The sensitivity of the proposed PBA-SPE-CE-MS method improves the existing CE-MS methodologies for glycopeptide analysis and shows a great potential in glycoprotein analysis to deeply characterize protein glycosites even at low concentrations of the protein digest.
Collapse
Affiliation(s)
- Montserrat Mancera-Arteu
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| |
Collapse
|
8
|
Phetsanthad A, Roycroft C, Li L. Enrichment and fragmentation approaches for enhanced detection and characterization of endogenous glycosylated neuropeptides. Proteomics 2023; 23:e2100375. [PMID: 35906894 PMCID: PMC9884999 DOI: 10.1002/pmic.202100375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Glycosylated neuropeptides were recently discovered in crustaceans, a model organism with a well-characterized neuroendocrine system. Several workflows exist to characterize enzymatically digested peptides; however, the unique properties of endogenous neuropeptides require methods to be re-evaluated. We investigate the use of hydrophilic interaction liquid chromatography (HILIC) enrichment and different fragmentation methods to further probe the expression of glycosylated neuropeptides in Callinectes sapidus. During the evaluation of HILIC, we observed the necessity of a less aqueous solvent for endogenous peptide samples. This modification enabled the number of detected neuropeptide glycoforms to increase almost two-fold, from 18 to 36. Product ion-triggered electron-transfer/higher-energy collision dissociation enabled the site-specific detection of 55 intact N- and O-linked glycoforms, while the faster stepped collision energy higher-energy collisional dissociation resulted in detection of 25. Additionally, applying this workflow to five neuronal tissues enabled the characterization of 36 more glycoforms of known neuropeptides and 11 more glycoforms of nine putative novel neuropeptides. Overall, the database of glycosylated neuropeptides in crustaceans was largely expanded from 18 to 136 glycoforms of 40 neuropeptides from 10 neuropeptide families. Both macro- and micro-heterogeneity were observed, demonstrating the chemical diversity of this simple invertebrate, establishing a framework to use crustacean to probe modulatory effects of glycosylation on neuropeptides.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caroline Roycroft
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
9
|
Xie X, Yang J, Du H, Chen J, Sanganyado E, Gong Y, Du H, Chen W, Liu Z, Liu X. Golgi fucosyltransferase 1 reveals its important role in α-1,4-fucose modification of N-glycan in CRISPR/Cas9 diatom Phaeodactylum tricornutum. Microb Cell Fact 2023; 22:6. [PMID: 36611199 PMCID: PMC9826595 DOI: 10.1186/s12934-022-02000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Phaeodactylum tricornutum (Pt) is a critical microbial cell factory to produce a wide spectrum of marketable products including recombinant biopharmaceutical N-glycoproteins. N-glycosylation modification of proteins is important for their activity, stability, and half-life, especially some special modifications, such as fucose-modification by fucosyltransferase (FucT). Three PtFucTs were annotated in the genome of P. tricornutum, PtFucT1 was located on the medial/trans-Golgi apparatus and PtFucT2-3 in the plastid stroma. Algal growth, biomass and photosynthesis efficiency were significantly inhibited in a knockout mutant of PtFucT1 (PtFucT1-KO). PtFucT1 played a role in non-core fucose modification of N-glycans. The knockout of PtFucT1 might affect the activity of PtGnTI in the complex and change the complex N-glycan to mannose type N-glycan. The study provided critical information for understanding the mechanism of protein N-glycosylation modification and using microalgae as an alternative ecofriendly cell factory to produce biopharmaceuticals.
Collapse
Affiliation(s)
- Xihui Xie
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Jianchao Yang
- grid.495347.8Yantai Academy of Agricultural Sciences, Yantai, 265500 Shandong China
| | - Hong Du
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Jichen Chen
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Edmond Sanganyado
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Yangmin Gong
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Hua Du
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Weizhou Chen
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Zhengyi Liu
- grid.9227.e0000000119573309Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong China
| | - Xiaojuan Liu
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| |
Collapse
|
10
|
Wong TL, Mooney BP, Cavallero GJ, Guan M, Li L, Zaia J, Wan XF. Glycoproteomic Analyses of Influenza A Viruses Using timsTOF Pro MS. J Proteome Res 2023; 22:62-77. [PMID: 36480915 DOI: 10.1021/acs.jproteome.2c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N-Linked glycosylation in hemagglutinin and neuraminidase glycoproteins of influenza viruses affects antigenic and receptor binding properties, and precise analyses of site-specific glycoforms in these proteins are critical in understanding the antigenic and immunogenic properties of influenza viruses. In this study, we developed a glycoproteomic approach by using a timsTOF Pro mass spectrometer (MS) to determine the abundance and heterogeneity of site-specific glycosylation for influenza glycoproteins. Compared with a Q Exactive HF MS, the timsTOF Pro MS method without the hydrophilic interaction liquid chromatography column enrichment achieved similar glycopeptide coverage and quantities but was more effective in identifying low-abundance glycopeptides. We quantified the distributions of intact site-specific glycopeptides in hemagglutinin of A/chicken/Wuxi/0405005/2013 (H7N9) and A/mute swan/Rhode Island/A00325125/2008 (H7N3). Results showed that hemagglutinin for both viruses had complex N-glycans at N22, N38, N240, and N483 but only high-mannose glycans at N411 and, however, that the type and quantities of glycans were distinct between these viruses. Collisional cross section (CCS) provided by the ion mobility spectrometry from the timsTOF Pro MS data differentiated sialylation linkages of the glycopeptides. In summary, timsTOF Pro MS method can quantify intact site-specific glycans for influenza glycoproteins without enrichment and thus facilitate influenza vaccine development and production.
Collapse
Affiliation(s)
- Tin Long Wong
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri65211, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri65211, United States.,Bond Life Sciences Center, University of Missouri, Columbia, Missouri65211, United States
| | - Brian P Mooney
- Department of Biochemistry and Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri65211, United States
| | - Gustavo J Cavallero
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts02118, United States
| | - Minhui Guan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri65211, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri65211, United States.,Bond Life Sciences Center, University of Missouri, Columbia, Missouri65211, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia30302, United States
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts02118, United States
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri65211, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri65211, United States.,Bond Life Sciences Center, University of Missouri, Columbia, Missouri65211, United States.,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri65211, United States
| |
Collapse
|
11
|
Delafield DG, Miles HN, Ricke WA, Li L. Higher Temperature Porous Graphitic Carbon Separations Differentially Impact Distinct Glycopeptide Classes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:64-74. [PMID: 36450095 PMCID: PMC9812930 DOI: 10.1021/jasms.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mass spectrometry-based discovery glycoproteomics is highly dependent on the use of chromatography paradigms amenable to analyte retention and separation. When compared against established stationary phases such as reversed-phase and hydrophilic interaction liquid chromatography, reports utilizing porous graphitic carbon have detailed its numerous advantages. Recent efforts have highlighted the utility in porous graphitic carbon in high-throughput glycoproteomics, principally through enhanced profiling depth and liquid-phase resolution at higher column temperatures. However, increasing column temperature has been shown to impart disparaging effects in glycopeptide identification. Herein we further elucidate this trend, describing qualitative and semiquantitative effects of increased column temperature on glycopeptide identification rates, signal intensity, resolution, and spectral count linear response. Through analysis of enriched bovine and human glycopeptides, species with high mannose and sialylated glycans were shown to most significantly benefit and suffer from high column temperatures, respectively. These results provide insight as to how porous graphitic carbon separations may be appropriately leveraged for glycopeptide identification while raising concerns over quantitative and semiquantitative label-free comparisons as the temperature changes. RAW MS glycoproteomic data are available via ProteomeXchange with identifier PXD034354.
Collapse
Affiliation(s)
- Daniel G. Delafield
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
| | - William A. Ricke
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
- George M. O’Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Anti-nonspecific hydrophilic hydrogel for efficient capture of N-glycopeptides from Alzheimer's disease patient's serum. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Aguedo J, Pakanova Z, Lorencova L, Nemcovic M, Kasak P, Barath M, Farkas P, Tkac J. MXene as a novel cartridge for N-glycan enrichment. Anal Chim Acta 2022; 1234:340512. [DOI: 10.1016/j.aca.2022.340512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/01/2022]
|
15
|
Šoić D, Keser T, Štambuk J, Kifer D, Pociot F, Lauc G, Morahan G, Novokmet M, Gornik O. High-Throughput Human Complement C3 N-Glycoprofiling Identifies Markers of Early Onset Type 1 Diabetes Mellitus in Children. Mol Cell Proteomics 2022; 21:100407. [PMID: 36031042 PMCID: PMC9538898 DOI: 10.1016/j.mcpro.2022.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023] Open
Abstract
Recently, it was shown that children at the onset of type 1 diabetes (T1D) have a higher proportion of oligomannose glycans in their total plasma protein N-glycome compared to their healthy siblings. The most abundant complement component, glycoprotein C3, contains two N-glycosylation sites occupied exclusively by this type of glycans. Furthermore, complement system, as well as C3, was previously associated with T1D. It is also known that changes in glycosylation can modulate inflammatory responses, so our aim was to characterize the glycosylation profile of C3 in T1D. For this purpose, we developed a novel high-throughput workflow for human C3 concanavalin A lectin affinity enrichment and subsequent LC-MS glycopeptide analysis which enables protein-specific N-glycosylation profiling. From the Danish Childhood Diabetes Register, plasma samples of 61 children/adolescents newly diagnosed with T1D and 84 of their unaffected siblings were C3 N-glycoprofiled. Significant changes of C3 N-glycan profiles were found. T1D was associated with an increase in the proportion of unprocessed glycan structures with more mannose units. A regression model including C3 N-glycans showed notable discriminative power between children with early onset T1D and their healthy siblings with area under curve of 0.879. This study confirmed our previous findings of plasma high-mannose glycan changes in a cohort of recent onset T1D cases, suggesting the involvement of C3 N-glycome in T1D development. Our C3 glycan-based discriminative model could be valuable in assessment of T1D risk in children.
Collapse
Affiliation(s)
- Dinko Šoić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Flemming Pociot
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia; University of Melbourne, Parkville, Victoria, Australia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
16
|
Li J, Zhang J, Xu M, Yang Z, Yue S, Zhou W, Gui C, Zhang H, Li S, Wang PG, Yang S. Advances in glycopeptide enrichment methods for the analysis of protein glycosylation over the past decade. J Sep Sci 2022; 45:3169-3186. [PMID: 35816156 DOI: 10.1002/jssc.202200292] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Advances in bioanalytical technology have accelerated the analysis of complex protein glycosylation, which is beneficial to understanding glycosylation in drug discovery and disease diagnosis. Due to its biological uniqueness in the course of disease occurrence and development, disease-specific glycosylation requires quantitative characterization of protein glycosylation. We provide a comprehensive review of recent advances in glycosylation analysis, including workflows for glycoprotein digestion, glycopeptide separation and enrichment, and mass-spectrometry sequencing. We specifically focus on different strategies for glycopeptide enrichment through physical interaction, chemical oxidation, or metabolic labeling of intact glycopeptides. The recent advances and challenges of O-glycosylation analysis are presented, and the development of improved enrichment methods combining different proteases to analyze O-glycosylation is also proposed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiajia Li
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Jie Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Zeren Yang
- AstraZeneca, Medimmune Ct, Frederick, MD, 21703, USA
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Wanlong Zhou
- U.S. Food and Drug Administration, Forensic Chemistry Center, Cincinnati, OH, 45237, USA
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Haiyang Zhang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu, 210033, China
| | - Perry G Wang
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, USA
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.,Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
17
|
Delafield DG, Miles HN, Liu Y, Ricke WA, Li L. Complementary proteome and glycoproteome access revealed through comparative analysis of reversed phase and porous graphitic carbon chromatography. Anal Bioanal Chem 2022; 414:5461-5472. [PMID: 35137243 PMCID: PMC9246830 DOI: 10.1007/s00216-022-03934-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 11/01/2022]
Abstract
Continual developments in instrumental and analytical techniques have aided in establishing rigorous connections between protein glycosylation and human illness. These illnesses, such as various forms of cancer, are often associated with poor prognoses, prompting the need for more comprehensive characterization of the glycoproteome. While innovative instrumental and computational strategies have largely benefited glycoproteomic analyses, less attention is given to benefits gained through alternative, optimized chromatographic techniques. Porous graphitic carbon (PGC) chromatography has gained considerable interest in glycomics research due to its mobile phase flexibility, increased retention of polar analytes, and improved structural elucidation at higher temperatures. PGC has yet to be systematically compared against or in tandem with standard reversed phase liquid chromatography (RPLC) in high-throughput bottom-up glycoproteomic experiments, leaving the potential benefits unexplored. Performing comparative analysis of single and biphasic separation regimes at a range of column temperatures illustrates complementary advantages for each method. PGC separation is shown to selectively retain shorter, more hydrophilic glycopeptide species, imparting higher average charge, and exhibiting greater microheterogeneity coverage for identified glycosites. Additionally, we demonstrate that liquid-phase separation of glycopeptide isomers may be achieved through both single and biphasic PGC separations, providing a means towards facile, multidimensional glycopeptide characterization. Beyond this, we demonstrate how utilization of multiple separation regimes and column temperatures can aid in profiling the glycoproteome in tumorigenic and aggressive prostate cancer cells. RAW MS proteomic and glycoproteomic datasets have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD024196 (10.6019/PXD024196) and PXD024195, respectively.
Collapse
Affiliation(s)
| | - Hannah N. Miles
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705
| | - William A. Ricke
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705,George M. O’Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705,Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA.
| |
Collapse
|
18
|
Xie Z, Feng Q, Fang X, Dai X, Yan Y, Ding CF. One-Pot Preparation of Hydrophilic Glucose Functionalized Quantum Dots for Diabetic Serum Glycopeptidome Analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Li M, Zhu W, Zheng H, Zhang J. Efficient HCD-pd-EThcD approach for N-glycan mapping of therapeutic antibodies at intact glycopeptide level. Anal Chim Acta 2022; 1189:339232. [PMID: 34815030 DOI: 10.1016/j.aca.2021.339232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
N-glycosylation is a critical quality attribute for monoclonal antibody (mAb)-based therapeutics due to its significant impact on drug efficacy and safety. Extensive glycosylation mapping is therefore necessary for mAb drug development and quality control. We utilized a higher-energy dissociation product ions-triggered electron-transfer/higher-energy collision dissociation (HCD-pd-EThcD) approach to mapping N-glycosylation in therapeutic mAbs. Due to the improved duty cycle and targeted ability, HCD-pd-EThcD could provide extensive N-glycan identifications as well as higher quality spectra than EThcD mode. On average, ten types of N-glycan were uncovered in two different lots of trastuzumab, demonstrating a significant increment in N-glycan species compared to only four types identified by EThcD. After integrating pre-enrichment of glycopeptides, up to 16 N-glycans were recognized. Significantly, this strategy facilitated the identification of glycopeptides containing fucosylated and sialylated glycans, meanwhile enabled the recognition of different N-glycan classes (high mannose, hybrid, and complex). Further application in the glycosylation analysis of adalimumab and bevacizumab resulted in 19 and 8 N-glycans species, providing a more comprehensive insight into their glycosylation modification status. We demonstrated the benefits of an integrated strategy in characterizing various N-glycans of mAb therapeutics and offer an alternative approach for their quality control at the intact glycopeptides level.
Collapse
Affiliation(s)
- Menglin Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Wenwen Zhu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hao Zheng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
20
|
Xie X, Du H, Chen J, Aslam M, Wang W, Chen W, Li P, Du H, Liu X. Global Profiling of N-Glycoproteins and N-Glycans in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2021; 12:779307. [PMID: 34925422 PMCID: PMC8678454 DOI: 10.3389/fpls.2021.779307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/05/2021] [Indexed: 05/04/2023]
Abstract
N-glycosylation is an important posttranslational modification in all eukaryotes, but little is known about the N-glycoproteins and N-glycans in microalgae. Here, N-glycoproteomic and N-glycomic approaches were used to unveil the N-glycoproteins and N-glycans in the model diatom Phaeodactylum tricornutum. In total, 863 different N-glycopeptides corresponding to 639 N-glycoproteins were identified from P. tricornutum. These N-glycoproteins participated in a variety of important metabolic pathways in P. tricornutum. Twelve proteins participating in the N-glycosylation pathway were identified as N-glycoproteins, indicating that the N-glycosylation of these proteins might be important for the protein N-glycosylation pathway. Subsequently, 69 N-glycans corresponding to 59 N-glycoproteins were identified and classified into high mannose and hybrid type N-glycans. High mannose type N-glycans contained four different classes, such as Man-5, Man-7, Man-9, and Man-10 with a terminal glucose residue. Hybrid type N-glycan harbored Man-4 with a terminal GlcNAc residue. The identification of N-glycosylation on nascent proteins expanded our understanding of this modification at a N-glycoproteomic scale, the analysis of N-glycan structures updated the N-glycan database in microalgae. The results obtained from this study facilitate the elucidation of the precise function of these N-glycoproteins and are beneficial for future designing the microalga to produce the functional humanized biopharmaceutical N-glycoproteins for the clinical therapeutics.
Collapse
Affiliation(s)
- Xihui Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Jichen Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water & Marine Sciences, Uthal, Pakistan
| | - Wanna Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hua Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
21
|
Yang H, Xu F, Xiao K, Chen Y, Tian Z. N-Glycoproteomics Study of Putative N-Glycoprotein Biomarkers of Drug Resistance in MCF-7/ADR Cells. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:269-284. [PMID: 36939756 PMCID: PMC9590513 DOI: 10.1007/s43657-021-00029-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Currently, drug resistance of anti-cancer therapy has become the main cause of low survival rate and poor prognosis. Full understanding of drug resistance mechanisms is an urgent request for further development of anti-cancer therapy and improvement of prognosis. Here we present our N-glycoproteomics study of putative N-glycoprotein biomarkers of drug resistance in doxorubicin resistance breast cancer cell line michigan cancer foundation-7 (MCF-7/ADR) relative to parental michigan cancer foundation-7 (MCF-7) cells. Intact N-glycopeptides (IDs) from MCF-7/ADR and MCF-7 cells were enriched with zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC), labeled with stable isotopic diethylation (SIDE), and analyzed with C18-RPLC-MS/MS (HCD with stepped normalized collision energies); these IDs were identified with database search engine GPSeeker, and the differentially expressed intact N-glycopeptides (DEGPs) were quantified with GPSeekerQuan. With target-decoy searches and control of spectrum-level FDR ≤ 1%, 322 intact N-glycopeptides were identified; these intact N-glycopeptides come from the combination of 249 unique peptide backbones (corresponding to 234 intact N-glycoproteins) and 90 monosaccharide compositions (corresponding to 248 putative N-glycosites). The sequence structures of 165 IDs were confirmed with structure-diagnostic fragment ions. With the criteria of observation at least twice among the three technical replicates, ≥ 1.5-fold change and p value < 0.05, 20 DEGPs were quantified, where five of them were up-regulated and 15 of them were down-regulated; the corresponding intact N-glycoproteins as putative markers of drug resistance were discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-021-00029-8.
Collapse
Affiliation(s)
- Hailun Yang
- grid.24516.340000000123704535Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Feifei Xu
- grid.89957.3a0000 0000 9255 8984School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Kaijie Xiao
- grid.24516.340000000123704535Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Yun Chen
- grid.89957.3a0000 0000 9255 8984School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Zhixin Tian
- grid.24516.340000000123704535Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
22
|
[Recent advances in glycopeptide enrichment and mass spectrometry data interpretation approaches for glycoproteomics analyses]. Se Pu 2021; 39:1045-1054. [PMID: 34505426 PMCID: PMC9404232 DOI: 10.3724/sp.j.1123.2021.06011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
蛋白质糖基化是生物体内最重要的翻译后修饰之一,在蛋白质稳定性、细胞内和细胞间信号转导、激素活化或失活和免疫调节等生理过程和病理进程中发挥重要作用。而异常的蛋白质糖基化往往和多种疾病的发生发展密切相关,目前应用于临床检测的多种肿瘤生物标志物大多属于糖蛋白或者糖抗原。因此在组学层次系统分析蛋白质糖基化的变化对阐明生物体内糖基化修饰的调控机理和发现新型疾病标志物都非常重要。基于质谱的蛋白质组学技术为全面分析蛋白质及其修饰提供了有效的分析手段。在自下而上的蛋白质组学研究中,由于完整糖基化肽段同时存在性质各异的肽段骨架和糖链结构、糖肽的相对丰度和离子化效率较低以及糖基化修饰有高度异质性等特点,完整糖肽的分析比其他翻译后修饰更加困难。近年来,为了更全面、系统地分析蛋白质糖基化,研究人员发展了一些新技术,包括完整糖肽的富集技术、质谱的碎裂模式和数据采集模式、质谱数据的解析方法和定量策略等等,大力推进了该领域的研究水平,也为研究蛋白质糖基化相关的生物标志物提供了技术支持。该篇综述主要关注近年来基于质谱的糖蛋白质组学研究中的新进展,重点介绍针对完整N-和O-糖基化肽段的富集新技术和谱图解析新方法,并讨论其在肿瘤早期诊断方面的应用潜力。
Collapse
|
23
|
SHANG S, DONG H, LI Y, ZHANG W, LI H, QIN W, QIAN X. [Large-scale enrichment and identification of human urinary N-glycoproteins/ N-glycopeptides]. Se Pu 2021; 39:686-694. [PMID: 34227365 PMCID: PMC9421575 DOI: 10.3724/sp.j.1123.2021.01039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
N-Glycosylation of proteins, an important post-translational modification in eukaryotic cells, plays an essential role in the regulation of cell adhesion, migration, signal transduction, and apoptosis. Abnormal changes in protein glycosylation are closely related to the occurrence of many critical diseases, including diabetes, tumors, and neurological, kidney, and inflammatory diseases. A non-invasive type of liquid biopsy, urine sampling has the advantage of reducing the complexity of proteomic analysis. This facilitates the design of large-scale and continuous or multi-time point sampling strategies. However, the dynamic range of urinary protein abundance is relatively large, owing to individual differences and physiological conditions. Currently, there is a lack of specialized research on individual differences, physiological fluctuations, and physiological abundance ranges of urinary N-glycoproteins in large healthy populations. Therefore, it is difficult to accurately distinguish individual differences and normal physiological fluctuations from changes caused by disease; this poses a great challenge in disease marker research. Liquid chromatography-mass spectrometry (LC-MS) is an analytical technique widely used for the large-scale profiling of proteomes in biological systems, and the enrichment of N-glycopeptides is a prerequisite for their detection by MS.In this study, we established an approach based on hydrophilic interaction chromatography (HILIC) by optimizing the activation, cleaning, and elution processes of the enrichment method, for instance through the optimization of particle size and solvent composition, and investigated the identification number, selectivity, and stability of N-glycoprotein/N-glycopeptide enrichment under different experimental conditions. We found that N-glycoproteins and N-glycopeptides were highly enriched in a trifluoroacetic acid system with 5-μm filling particles in the HILIC column. On this basis, we analyzed the levels of N-glycoproteins/N-glycopeptides in urine samples. The consistency of N-glycoprotein/N-glycopeptide levels in urine samples taken from the same healthy person for five consecutive days was investigated by correlation analysis. This analysis revealed that the urinary N-glycoproteome of the same healthy person was relatively stable over a short period of time. Next, urinary samples from 20 healthy male volunteers and 20 healthy female volunteers were enriched for N-glycoproteins/N-glycopeptides, which were profiled by MS through qualitative and quantitative analyses. Screening and functional analysis of differential proteins were then carried out. A total of 1016 N-glycoproteins and 2192 N-glycopeptides were identified in the mid-morning urine samples of the 40 healthy volunteers. A label-free quantitation strategy was used to investigate the fluctuation range of the physiologically abundant urinary N-glycopeptides. The abundance of urinary N-glycopeptides spanned across approximately five orders of magnitude. Subsequently, gender differences in the N-glycosylation levels of urinary proteins were also explored in healthy people. Functional analysis of the N-glycoproteins that exhibited gender differences in abundance was performed. Based on multivariate statistical analysis, 206 differentially expressed proteins (p<0.05, fold change (FC)> 4) were identified. In females, we found 175 significantly down-regulated N-glycoproteins and 31 significantly up-regulated N-glycoproteins with respect to males. The expression levels of N-glycopeptides between the two groups suggested a clear gender difference. To investigate the biological processes and functions of these proteins, gene ontology (GO) analysis was performed on the N-glycoproteins/N-glycopeptides differentially expressed between males and females. Metabolic pathway analysis was also carried out based on the kyoto encyclopedia of genes and genomes (KEGG). Differentially expressed N-glycoproteins were mostly associated with platelet degranulation, extracellular region, and ossification. The top three relevant pathways were glycan biosynthesis and metabolism, metabolism of cofactors and vitamins, and lipid metabolism. Overall, sex may be an important factor for urinary N-glycoproteome differences among normal individuals and should be considered in clinical applications. This study provides relevant information regarding the function and mechanisms of the urinary glycoproteome and the screening of clinical biomarkers.
Collapse
Affiliation(s)
- Shiting SHANG
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Hangyan DONG
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Yuanyuan LI
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Wanjun ZHANG
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Hang LI
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Weijie QIN
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Xiaohong QIAN
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| |
Collapse
|
24
|
High-throughput rat immunoglobulin G N-glycosylation profiling revealed subclass-specific changes associated with chronic stress. J Proteomics 2021; 245:104293. [PMID: 34118474 DOI: 10.1016/j.jprot.2021.104293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Immunoglobulin G (IgG) glycosylation corresponds well with immune system changes, so it can potentially be used as a biomarker for the consequences of chronic stress such as low-grade inflammation and enhanced immunosenescence in older animals. Here we present a high-throughput glycoproteomic workflow, including IgG enrichment, HILIC glycopeptide purification, and nano-LC-MS analysis of tryptic glycopeptides applied for the analysis of rat IgG. A cohort of 80 animals was exposed to seven stressors in a customized chronic stress protocol with blood and tissue sampling in three timepoints. Young female rats experienced an increase in agalactosylated glycoforms on IgG2a and IgG2c accompanied by a decrease in monogalactosylation. Among old females, increased galactosylation was observed in the IgG2b subclass, pointing to an anti-inflammatory activity of IgG. Additionally, IgG Fc N-glycosylation patterns in Sprague Dawley rats were analyzed, quantified, and reported for the first time. Our findings emphasize age-, sex- and subclass-dependent differences in IgG glycosylation related to chronic stress exposure, confirming the relevance of newly developed methods for further research in glycobiology of rodent immune response. SIGNIFICANCE: In this study, we showed that a high-throughput streamlined methodology based on protein L 96-well monolithic plates for efficient rat IgG immunoaffinity enrichment from blood plasma, paired with appropriate tryptic glycopeptide preparation, HILIC-SPE enrichment, and nano-LC-MS methods was suitable for quick processing of large sample sets. We report a subclass-specific profiling and changes in rat IgG Fc galactosylation and adrenal gland immunohistochemistry of male and female animals exposed to a customized chronic stress protocol.
Collapse
|
25
|
Liu L, Zhu B, Fang Z, Zhang N, Qin H, Guo Z, Liang X, Yao Z, Ye M. Automated Intact Glycopeptide Enrichment Method Facilitating Highly Reproducible Analysis of Serum Site-Specific N-Glycoproteome. Anal Chem 2021; 93:7473-7480. [PMID: 33973768 DOI: 10.1021/acs.analchem.1c00645] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bottom-up proteomics has been increasingly applied in clinical research to study the disease pathophysiology and to discover disease biomarkers. However, glycoproteomic analysis always requires tedious experimental steps for intact glycopeptide enrichment, which has been the technique bottleneck for large-scale analysis of clinical samples. Herein, we developed an automated glycopeptide enrichment method for the analysis of serum site-specific N-glycoproteome. This automated method allowed for processing one sample within 20 min. It showed higher enrichment specificity, more intact glycopeptide identifications, and better quantitative reproducibility than the traditional manual method using microtip enrichment devices. We further applied this method to investigate the serum site-specific N-glycosylation changes between four patients with pancreatic cancer and seven healthy controls. The principal component analysis of intact N-glycopeptides showed good clustering across cancer and normal groups. Furthermore, we found that the site-specific glycoforms, monofucosylated and nonsialylated oligosaccharides, on IgG1 site 180 expressed a significant decrease in pancreatic cancer patients compared to healthy controls. Together, the automated method is a powerful tool for site-specific N-glycoproteomic analysis of complex biological samples, and it has great potential for clinical utilities.
Collapse
Affiliation(s)
- Luyao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhu
- Department of Second Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Zhenzhen Yao
- Department of Biochemistry & Molecular Biology, College of Basic Medicine, Navy Medical University, Shanghai 200433, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
26
|
Towards structure-focused glycoproteomics. Biochem Soc Trans 2021; 49:161-186. [PMID: 33439247 PMCID: PMC7925015 DOI: 10.1042/bst20200222] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018–2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.
Collapse
|
27
|
Hackett WE, Zaia J. Calculating Glycoprotein Similarities From Mass Spectrometric Data. Mol Cell Proteomics 2021; 20:100028. [PMID: 32883803 PMCID: PMC8724611 DOI: 10.1074/mcp.r120.002223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022] Open
Abstract
Complex protein glycosylation occurs through biosynthetic steps in the secretory pathway that create macro- and microheterogeneity of structure and function. Required for all life forms, glycosylation diversifies and adapts protein interactions with binding partners that underpin interactions at cell surfaces and pericellular and extracellular environments. Because these biological effects arise from heterogeneity of structure and function, it is necessary to measure their changes as part of the quest to understand nature. Quite often, however, the assumption behind proteomics that posttranslational modifications are discrete additions that can be modeled using the genome as a template does not apply to protein glycosylation. Rather, it is necessary to quantify the glycosylation distribution at each glycosite and to aggregate this information into a population of mature glycoproteins that exist in a given biological system. To date, mass spectrometric methods for assigning singly glycosylated peptides are well-established. But it is necessary to quantify glycosylation heterogeneity accurately in order to gauge the alterations that occur during biological processes. The task is to quantify the glycosylated peptide forms as accurately as possible and then apply appropriate bioinformatics algorithms to the calculation of micro- and macro-similarities. In this review, we summarize current approaches for protein quantification as they apply to this glycoprotein similarity problem.
Collapse
Affiliation(s)
- William E Hackett
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Joseph Zaia
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA; Department of Biochemistry, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
28
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
29
|
Ahmad Izaham AR, Ang CS, Nie S, Bird LE, Williamson NA, Scott NE. What Are We Missing by Using Hydrophilic Enrichment? Improving Bacterial Glycoproteome Coverage Using Total Proteome and FAIMS Analyses. J Proteome Res 2020; 20:599-612. [PMID: 33125241 DOI: 10.1021/acs.jproteome.0c00565] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) glycopeptide enrichment is an indispensable tool for the high-throughput characterization of glycoproteomes. Despite its utility, HILIC enrichment is associated with a number of shortcomings, including requiring large amounts of starting materials, potentially introducing chemical artifacts such as formylation when high concentrations of formic acid are used, and biasing/undersampling specific classes of glycopeptides. Here, we investigate HILIC enrichment-independent approaches for the study of bacterial glycoproteomes. Using three Burkholderia species (Burkholderia cenocepacia, Burkholderia Dolosa, and Burkholderia ubonensis), we demonstrate that short aliphatic O-linked glycopeptides are typically absent from HILIC enrichments, yet are readily identified in whole proteome samples. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS) fractionation, we show that at high compensation voltages (CVs), short aliphatic glycopeptides can be enriched from complex samples, providing an alternative means to identify glycopeptide recalcitrant to hydrophilic-based enrichment. Combining whole proteome and FAIMS analyses, we show that the observable glycoproteome of these Burkholderia species is at least 25% larger than what was initially thought. Excitingly, the ability to enrich glycopeptides using FAIMS appears generally applicable, with the N-linked glycopeptides of Campylobacter fetus subsp. fetus also being enrichable at high FAIMS CVs. Taken together, these results demonstrate that FAIMS provides an alternative means to access glycopeptides and is a valuable tool for glycoproteomic analysis.
Collapse
Affiliation(s)
- Ameera Raudah Ahmad Izaham
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lauren E Bird
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|
30
|
Kim BJ, Dallas DC. Systematic examination of protein extraction, proteolytic glycopeptide enrichment and MS/MS fragmentation techniques for site-specific profiling of human milk N-glycoproteins. Talanta 2020; 224:121811. [PMID: 33379036 DOI: 10.1016/j.talanta.2020.121811] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Human milk contains numerous N-glycoproteins with functions that provide protection to the infant. Increasing understanding of the functional role of human milk glycoproteins within the infant requires toolsets to comprehensively profile their site-specific glycosylation patterns. However, optimized methods for site-specific glycosylation analysis across the entire human milk proteome are not available. Therefore, we performed a systematic analysis of techniques for profiling the sites and compositions of N-glycans in human milk using liquid chromatography/mass spectrometry. To decrease interference from non-target molecules, we compared techniques for protein extraction, including ethanol (EtOH) precipitation, trichloroacetic acid precipitation, molecular weight cut-off filtration and techniques for tryptic glycopeptide enrichment, including C18-, porous graphitized carbon and hydrophilic interaction liquid chromatography (HILIC)-solid phase extraction (SPE) and acetone precipitation. We compared the capacity of higher-energy collision dissociation, electron-transfer dissociation and electron-transfer/higher-energy collision dissociation (EThcD) to produce fragment ions that would enable effective identification of the glycan composition, peptide sequence and glycosylation site. Of these methods, a combination of EtOH precipitation, HILIC-SPE and EThcD-fragmentation was the most effective for human milk N-glycopeptide profiling. This optimized approach significantly increased the number of N-glycopeptides and precursor N-glycoproteins (246 N-glycopeptides from 29 glycoproteins) compared with a more common extraction approach with no protein extraction and C18 clean-up (62 N-glycopeptides from 11 glycoproteins). The advancement in methods for human milk N-glycoproteins provided by this study represents a key step for better understanding the function of glycoproteins within the breast milk-fed infant.
Collapse
Affiliation(s)
- Bum Jin Kim
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - David C Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
31
|
Molnarova K, Kozlík P. Comparison of Different HILIC Stationary Phases in the Separation of Hemopexin and Immunoglobulin G Glycopeptides and Their Isomers. Molecules 2020; 25:E4655. [PMID: 33065988 PMCID: PMC7594091 DOI: 10.3390/molecules25204655] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 01/16/2023] Open
Abstract
Protein glycosylation analysis is challenging due to the structural variety of complex conjugates. However, chromatographically separating glycans attached to tryptic peptides enables their site-specific characterization. For this purpose, we have shown the importance of selecting a suitable hydrophilic interaction liquid chromatography (HILIC) stationary phase in the separation of glycopeptides and their isomers. Three different HILIC stationary phases, i.e., HALO® penta-HILIC, Glycan ethylene bridged hybrid (BEH) Amide, and ZIC-HILIC, were compared in the separation of complex N-glycopeptides of hemopexin and Immunoglobulin G glycoproteins. The retention time increased with the polarity of the glycans attached to the same peptide backbone in all HILIC columns tested in this study, except for the ZIC-HILIC column when adding sialic acid to the glycan moiety, which caused electrostatic repulsion with the negatively charged sulfobetaine functional group, thereby decreasing retention. The HALO® penta-HILIC column provided the best separation results, and the ZIC-HILIC column the worst. Moreover, we showed the potential of these HILIC columns for the isomeric separation of fucosylated and sialylated glycoforms. Therefore, HILIC is a useful tool for the comprehensive characterization of glycoproteins and their isomers.
Collapse
Affiliation(s)
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128-43 Prague, Czech Republic;
| |
Collapse
|
32
|
Xiong Y, Li X, Li M, Qin H, Chen C, Wang D, Wang X, Zheng X, Liu Y, Liang X, Qing G. What Is Hidden Behind Schiff Base Hydrolysis? Dynamic Covalent Chemistry for the Precise Capture of Sialylated Glycans. J Am Chem Soc 2020; 142:7627-7637. [DOI: 10.1021/jacs.0c01970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Xiuling Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Cheng Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xue Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xintong Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
33
|
Liu S, Fu Y, Huang Z, Liu Y, Liu BF, Cheng L, Liu X. A comprehensive analysis of subclass-specific IgG glycosylation in colorectal cancer progression by nanoLC-MS/MS. Analyst 2020; 145:3136-3147. [DOI: 10.1039/d0an00369g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer is associated with changed IgG glycosylation, but the alteration in specific subclasses of IgG is unknown.
Collapse
Affiliation(s)
- Si Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Yang Fu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Zhiwen Huang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Yuanyuan Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Liming Cheng
- Department of Laboratory Medicine
- Tongji Hospital
- Tongji Medical College
- Huzhong University of Science and Technology
- China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| |
Collapse
|
34
|
Fang P, Xie J, Sang S, Zhang L, Liu M, Yang L, Xu Y, Yan G, Yao J, Gao X, Qian W, Wang Z, Zhang Y, Yang P, Shen H. Multilayered N-Glycoproteome Profiling Reveals Highly Heterogeneous and Dysregulated Protein N-Glycosylation Related to Alzheimer’s Disease. Anal Chem 2019; 92:867-874. [PMID: 31751117 DOI: 10.1021/acs.analchem.9b03555] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pan Fang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - JuanJuan Xie
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Mingqi Liu
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lujie Yang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yiteng Xu
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guoquan Yan
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jun Yao
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xing Gao
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wenjing Qian
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhongfeng Wang
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pengyuan Yang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huali Shen
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Xiao K, Tian Z. Site‐ and Structure‐Specific Quantitative N‐Glycoproteomics Using RPLC‐pentaHILIC Separation and the Intact N‐Glycopeptide Search Engine GPSeeker. ACTA ACUST UNITED AC 2019; 97:e94. [DOI: 10.1002/cpps.94] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kaijie Xiao
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University Shanghai China
| | - Zhixin Tian
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University Shanghai China
| |
Collapse
|
36
|
Xiao K, Tian Z. GPSeeker Enables Quantitative Structural N-Glycoproteomics for Site- and Structure-Specific Characterization of Differentially Expressed N-Glycosylation in Hepatocellular Carcinoma. J Proteome Res 2019; 18:2885-2895. [DOI: 10.1021/acs.jproteome.9b00191] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kaijie Xiao
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Zhixin Tian
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
37
|
Chen Y, Sheng Q, Hong Y, Lan M. Hydrophilic Nanocomposite Functionalized by Carrageenan for the Specific Enrichment of Glycopeptides. Anal Chem 2019; 91:4047-4054. [DOI: 10.1021/acs.analchem.8b05578] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Jiang B, Huang J, Yu Z, Wu M, Liu M, Yao J, Zhao H, Yan G, Ying W, Cao W, Yang P. A multi-parallel N-glycopeptide enrichment strategy for high-throughput and in-depth mapping of the N-glycoproteome in metastatic human hepatocellular carcinoma cell lines. Talanta 2019; 199:254-261. [PMID: 30952254 DOI: 10.1016/j.talanta.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
Abstract
N-glycosylation is deeply involved in many biological processes, and approximately 50% of mammalian proteins are predicted to be glycosylated. Many large-scale studies have been carried out to reveal the glycosylation status involved in different physiological pathologies across species. However, the lack of a highly specific and high-throughput N-glycosylated enrichment method not only results in extended time requirements but also limits the depth of mapping when handling a large number of samples. In this study, we firstly optimized traditional zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) enrichment and found that using of 70% acetonitrile (ACN), 0.1% trifluoroacetic acid (TFA) as the enrichment buffer, 2800 g as the washing speed and 600 μL as the washing volume achieved the best specificity, which is higher than 75%. On this basis, we developed a multi-parallel enrichment strategy assisted by a filter-coated 96-well plate, which achieved high specificity and high throughput simultaneously. This strategy allowed us to enrich large numbers of fractionated samples from hepatocellular carcinoma (HCC) cell lines in less than 2 h. Its good specificity helped us achieve in-depth mapping of the N-glycoproteome in metastatic HCC cell lines. A total of 5466 N-glycosites from 2383 glycoproteins were identified, among which 1900 N-glycosites were unannotated in UniProt. The in-depth glycoproteome mapping provides insight into the N-glycosylation status in HCC cell lines with differences in metastatic potential and contributes to biomarker discovery.
Collapse
Affiliation(s)
- Biyun Jiang
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China; Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Jiangming Huang
- Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Zixiang Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeOmics, Beijing 102206, People's Republic of China
| | - Mengxi Wu
- Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Mingqi Liu
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200433, People's Republic of China
| | - Jun Yao
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China; Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Huanhuan Zhao
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Guoquan Yan
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China; Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeOmics, Beijing 102206, People's Republic of China.
| | - Weiqian Cao
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200433, People's Republic of China.
| | - Pengyuan Yang
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China; Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
39
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
40
|
Zheng H, Li X, Jia Q. Self-Assembling Glutamate-Functionalized Cyclodextrin Molecular Tube for Specific Enrichment of N-Linked Glycopeptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19914-19921. [PMID: 29792669 DOI: 10.1021/acsami.8b01445] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclodextrin molecular tube (CDMT), a new comer of cyclodextrin family, possesses large and hydrophilic outer area and stable structure. Its development and applications remain highly desired, especially in the field of separation and enrichment. Herein, we developed a CDMT-based enrichment platform focusing on the specific capture of glycopeptides. To enhance the hydrophilicity of CDMT, it was functionalized with glutamate (glu). The prepared gluCDMT exhibited large hydrophilic surface, high stability, and good acidic/alkalic resistance. A solid monolithic support was employed to immobilize gluCDMT by a host-guest self-assembly synthetic strategy, which did not occupy the surface hydrophilic sites. The gluCDMT-based monolith exhibited high binding capacity (∼50 mg g-1), good ability to capture glycopeptides (23 HRP glycopeptides and 28 IgG glycopeptides), and high selectivity (horseradish peroxidase/bovine serum albumin = 1:10 000). Moreover, the developed platform was successfully applied to analyze glycopetides in acute myelogenous leukemia cell lysate and human serum samples.
Collapse
Affiliation(s)
| | - Xiqian Li
- China-Japan Hospital of Jilin University , Changchun 130033 , China
| | | |
Collapse
|