1
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
2
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
3
|
Yin L, You T, Arslan M, El-Seedi HR, Guo Z, Zou X, Cai J. Dual-layers Raman reporter-tagged Au@Ag combined with core-satellite assemblies for SERS detection of Zearalenone. Food Chem 2023; 429:136834. [PMID: 37453336 DOI: 10.1016/j.foodchem.2023.136834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin identified in corn. A SERS-based immunosensor by constructing core-satellite assemblies was developed for ZEN detection. ZEN monoclonal antibody modified gold nanostars (AuNSs) were fabricated as the capture probe (core). The Raman signal probes (satellites) utilized ZEN antigen linked to the core-shell structures loaded with two layers of Raman reporter molecules (AuMBA@AgMBANPs). The coupling between AuNSs and AuMBA@AgMBANPs can produce a poweful electromagnetic field, thus considerably amplifying the Raman signal. The detection range of ZEN for corn samples under the optimal conditions was 5 ∼ 400 μg/kg with a LOD of 3 μg/kg, which completely satisfying the requirement of maximum residual level (60 μg/kg). Moreover, the proposed SERS method was consistent with the HPLC-FLD method for the detection of ZEN in naturally contaminated corn samples (90.58% ∼ 105.29%). Conclusively, fabricated immunosensor with exceptional sensitivity and specificity broaden the application of SERS in mycotoxin detection.
Collapse
Affiliation(s)
- Limei Yin
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Ma R, Xiang L, Zhao X, Yin J. Progress in Preparation of Sea Urchin-like Micro-/Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2846. [PMID: 35454539 PMCID: PMC9029352 DOI: 10.3390/ma15082846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
Urchin-like microparticles/nanoparticles assembled from radial nanorods have a good appearance and high specific surface area, providing more exposed active sites and shortening the diffusion path of photoexcited carriers from the interior to the surface. The interfacial interaction and physical and chemical properties of the materials can be improved by the interfacial porous network induced by interlacing nano-branches. In addition, multiple reflections of the layered microstructure can absorb more incident light and improve the photocatalytic performance. Therefore, the synthesis and functionalization of three-dimensional urchin-like nanostructures with controllable size, shape, and hierarchy have attracted extensive attention. This review aims to provide an overview to summarize the structures, mechanism, and application of urchin-like microparticles/nanoparticles derived from diverse synthesis methods and decoration types. Firstly, the synthesis methods of solid urchin-like micro-/nanoparticles are listed, with emphasis on the hydrothermal/solvothermal method and the reaction mechanism of several typical examples. Subsequently, the preparation method of composite urchin-like micro-/nanoparticles is described from the perspective of coating and doping. Then, the research progress of urchin-like hollow microspheres is reviewed from the perspective of the step-by-step method and synchronous method, and the formation mechanism of forming urchin-like hollow microspheres is discussed. Finally, the application progress of sea urchin-like particles in the fields of photocatalysis, electrochemistry, electromagnetic wave absorption, electrorheological, and gas sensors is summarized.
Collapse
Affiliation(s)
- Ruijing Ma
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (R.M.); (L.X.); (X.Z.)
- Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China
| | - Liqin Xiang
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (R.M.); (L.X.); (X.Z.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Xiaopeng Zhao
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (R.M.); (L.X.); (X.Z.)
| | - Jianbo Yin
- Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (R.M.); (L.X.); (X.Z.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
5
|
Lima C, Muhamadali H, Goodacre R. The Role of Raman Spectroscopy Within Quantitative Metabolomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:323-345. [PMID: 33826853 DOI: 10.1146/annurev-anchem-091420-092323] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ninety-four years have passed since the discovery of the Raman effect, and there are currently more than 25 different types of Raman-based techniques. The past two decades have witnessed the blossoming of Raman spectroscopy as a powerful physicochemical technique with broad applications within the life sciences. In this review, we critique the use of Raman spectroscopy as a tool for quantitative metabolomics. We overview recent developments of Raman spectroscopy for identification and quantification of disease biomarkers in liquid biopsies, with a focus on the recent advances within surface-enhanced Raman scattering-based methods. Ultimately, we discuss the applications of imaging modalities based on Raman scattering as label-free methods to study the abundance and distribution of biomolecules in cells and tissues, including mammalian, algal, and bacterial cells.
Collapse
Affiliation(s)
- Cassio Lima
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| | - Howbeer Muhamadali
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| |
Collapse
|
6
|
Cong T, Wang J, Zhao Y, Zhang D, Fan Z, Pan L. Tip-to-tip assembly of urchin-like Au nanostar at water-oil interface for surface-enhanced Raman spectroscopy detection. Anal Chim Acta 2021; 1154:338323. [PMID: 33736799 DOI: 10.1016/j.aca.2021.338323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022]
Abstract
Au Nanostar (NS) monolayer as a surface enhanced Raman scattering (SERS) substrate has been synthesized by self-assembly at a water-oil interface. It is confirmed from the experiment and simulation results that the Au NS monolayer includes lots of "hot spots" at or between the tips of the Au NSs, enhancing the local electromagnetic fields and giving rise to strong SERS signals sequentially. The limit of detection is determined to be down to 4.2 × 10-12 M for rhodamine 6G. Furthermore, the Au NS monolayer can detect multiple molecules, including thiabendazole, methylene blue, 4-mercaptobenzoic acid, and p-amino thiophenol, indicating that the SERS substrate composed of Au NS monolayer has potential applications in analytical chemistry, food safety, and environmental safety.
Collapse
Affiliation(s)
- Tianze Cong
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China
| | - Jianzhen Wang
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China
| | - Yongpeng Zhao
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China; School of Microelectronics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China
| | - Dongmei Zhang
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China
| | - Zeng Fan
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China
| | - Lujun Pan
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, PR China.
| |
Collapse
|
7
|
Kim NH, Kim BW, Moon H, Yoo H, Kang RH, Hur JK, Oh Y, Kim BM, Kim D. AIEgen-based nanoprobe for the ATP sensing and imaging in cancer cells and embryonic stem cells. Anal Chim Acta 2021; 1152:338269. [PMID: 33648642 DOI: 10.1016/j.aca.2021.338269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A turn-on fluorescent nanoprobe (named AAP-1), based on an aggregation-induced emission luminogen (AIEgen), is disclosed for the detection of adenosine triphosphate (ATP), which is an essential element in the biological system. Organic fluorophore (named TPE-TA) consists of tetraphenylethylene (TPE, sensing and signaling moiety) and mono-triamine (TA, sensing moiety), and it forms an aggregated form in aqueous media as a nanoprobe AAP-1. The nanoprobe AAP-1 has multiple electrostatic interactions as well as hydrophobic interactions with ATP, and it displays superior selectivity toward ATP, reliable sensitivity, with a detection limit around 0.275 ppb, and fast responsive (signal within 10 s). Such a fluorescent probe to monitor ATP has been actively pursued throughout fundamental and translational research areas. In vitro assay and a successful cellular ATP imaging application was demonstrated in cancer cells and embryonic stem cells. We expect that our work warrants further ATP-related studies throughout a variety of fields.
Collapse
Affiliation(s)
- Na Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hajung Yoo
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Junho K Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
8
|
Sun Y, Ge S, Xue J, Zhou X, Lu W, Li G, Cao X. Highly sensitive detection of cytochrome c in the NSCLC serum using a hydrophobic paper based-gold nanourchin substrate. BIOMEDICAL OPTICS EXPRESS 2020; 11:7062-7078. [PMID: 33408980 PMCID: PMC7747924 DOI: 10.1364/boe.408649] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 05/16/2023]
Abstract
Cytochrome c (Cyt c) is a biomarker of early apoptosis that plays a critical role in the diagnosis and therapy of non-small cell lung cancer (NSCLC). In this work, we proposed a novel surface-enhanced Raman scattering (SERS)-based biosensor to implement the ultrasensitive detection of Cyt c in the serum of NSCLC patients. The SERS-supporting substrates based on hydrophobic filter paper were composed of gold nanourchins (GNUs) surface-functionalized with the Cyt c aptamer and the cyanine 5-labeled complementary DNA. In the existence of Cyt c, it could specifically bind to its aptamer, which leads to the detachment of complementary strands modified with Cy5 and the great weakness of SERS signal. The finite-difference time domain (FDTD) simulation showed that the excellent SERS performance of GNUs aggregation was strongly dependent on a large number of "hot spots" at the tips and between the nanogaps of aggregated GNUs. Alkyl ketene dimer (AKD) was used to make the filter paper modify its property from hydrophilic to hydrophobic, which consequently increased the density of GNUs and extended the retention time of the analyte. SERS biosensors based on hydrophobic paper exhibited prominent reproducibility and selectivity. The detection limit of Cyt c in PBS was 1.148 pg/mL, while the detection limit in human serum was 1.79 pg/mL. Moreover, the analysis of the serum samples of healthy subjects and NSCLC patients confirmed the feasibility of its clinical application. The results were consistent with enzyme-linked immunosorbent assay results. This method can be a powerful strategy for quantitative detection of extracellular Cyt c, and it is expected that the SERS-based biosensors could be applied in the practical clinical diagnoses of NSCLC.
Collapse
Affiliation(s)
- Yue Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jin Xue
- Guangling College, Yangzhou University, Yangzhou 225001, China
| | - Xinyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Wenbo Lu
- Shanxi Normal University, College of Chemistry and Material Science, Linfen 041004, China
| | - Guang Li
- Department of Otorhinolaryngology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Yaraki MT, Tan YN. Metal Nanoparticles-Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface-enhanced Raman Scattering. Chem Asian J 2020; 15:3180-3208. [PMID: 32808471 PMCID: PMC7693192 DOI: 10.1002/asia.202000847] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Indexed: 12/17/2022]
Abstract
Metal nanoparticles (NP) that exhibit localized surface plasmon resonance play an important role in metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS). Among the optical biosensors, MEF and SERS stand out to be the most sensitive techniques to detect a wide range of analytes from ions, biomolecules to macromolecules and microorganisms. Particularly, anisotropic metal NPs with strongly enhanced electric field at their sharp corners/edges under a wide range of excitation wavelengths are highly suitable for developing the ultrasensitive plasmon-enhanced biosensors. In this review, we first highlight the reliable methods for the synthesis of anisotropic gold NPs and silver NPs in high yield, as well as their alloys and composites with good control of size and shape. It is followed by the discussion of different sensing mechanisms and recent advances in the MEF and SERS biosensor designs. This includes the review of surface functionalization, bioconjugation and (directed/self) assembly methods as well as the selection/screening of specific biorecognition elements such as aptamers or antibodies for the highly selective bio-detection. The right combinations of metal nanoparticles, biorecognition element and assay design will lead to the successful development of MEF and SERS biosensors targeting different analytes both in-vitro and in-vivo. Finally, the prospects and challenges of metal-enhanced biosensors for future nanomedicine in achieving ultrasensitive and fast medical diagnostics, high-throughput drug discovery as well as effective and reliable theranostic treatment are discussed.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Yen Nee Tan
- Faculty of Science, Agriculture & EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUnited Kingdom
- Newcastle Research & Innovation Institute (NewRIIS)80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & EmployabilitySingapore609607Singapore
| |
Collapse
|
10
|
Lu D, Ran M, Liu Y, Xia J, Bi L, Cao X. SERS spectroscopy using Au-Ag nanoshuttles and hydrophobic paper-based Au nanoflower substrate for simultaneous detection of dual cervical cancer-associated serum biomarkers. Anal Bioanal Chem 2020; 412:7099-7112. [PMID: 32737551 DOI: 10.1007/s00216-020-02843-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 01/17/2023]
Abstract
Ultrasensitive detection of specific biomarkers in clinical serum is helpful for early diagnosis of cervical cancer. In this paper, a surface-enhanced Raman scattering (SERS)-based immunoassay was developed for the simultaneous determination of squamous cell carcinoma antigen (SCCA) and osteopontin (OPN) in cervical cancer serum. Au-Ag nanoshuttles (Au-AgNSs) as SERS tags and hydrophobic filter paper-based Au nanoflowers (AuNFs) as capture substrate were constructed into a sandwich structure which served as an ultrasensitive SERS-based immunoassay platform. Finite difference time domain simulation confirmed that the electromagnetic field coupled between the AuNFs had a prominent SERS signal enhancement effect, which improved the detection sensitivity. SERS mapping showed that hexadecenyl succinic anhydride hydrophobic treatment could prevent the analyte from being quickly absorbed by the filter paper and increase the retention time to be more evenly distributed on the filter paper substrate. The immunoassay platform was verified to have good selectivity and reproducibility. With this method, the detection limits of SCCA and OPN in human serum were as low as 8.628 pg/mL and 4.388 pg/mL, respectively. Finally, in order to verify the feasibility of its clinical application, the serum samples of healthy subjects; cervical intraepithelial neoplasia I (CINI), CINII, and CINIII; and cervical cancer patients were analyzed, and the reliability of the results was confirmed by enzyme-linked immunosorbent assay experiments. The constructed SERS-based immunoassay platform could be used as a clinical tool for early screening of cancers in the future.
Collapse
Affiliation(s)
- Dan Lu
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, China. .,The First Clinical College, Dalian Medical University, Dalian, China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.
| | - Menglin Ran
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, China.,The First Clinical College, Dalian Medical University, Dalian, China
| | - Yifan Liu
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, China.,The First Clinical College, Dalian Medical University, Dalian, China
| | - Ji Xia
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, China.,The First Clinical College, Dalian Medical University, Dalian, China
| | - Liyan Bi
- Transformative Otology and Neuroscience Center, College of Special Education, Binzhou Medical University, Yantai, 264003, China
| | - Xiaowei Cao
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, China. .,The First Clinical College, Dalian Medical University, Dalian, China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China. .,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Jing C, Chen H, Cai R, Tian Y, Zhou N. An electrochemical aptasensor for ATP based on a configuration-switchable tetrahedral DNA nanostructure. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3285-3289. [PMID: 32930192 DOI: 10.1039/d0ay00431f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A novel electrochemical aptasensor for ATP was developed based on an aptamer-embedded configuration-switchable tetrahedral DNA nanostructure (TDN) and the formation of a G-quadruplex. This unique TDN was formed through the self-assembly of four specially designed single-stranded DNA (ssDNA) sequences (S1, S2, S3 and S4). The TDN was immobilized on the surface of a Au electrode through the thiol groups at the 5'-end of S1, S2 and S3. Five edges of the TDN were designed to form a double helix to preserve the structural robustness of the tetrahedron, while the ATP aptamer embedded sequence (S3) was designed to be located at the rest edge. The two terminals of S4 at the same edge were composed of two split G-quadruplex-forming sequences, which were non-complementary to the aptamer. This edge offered the configuration-switchable characteristic of the TDN. In the absence of ATP, the TDN remained in a relaxed state, and the G-quadruplex cannot form due to the large distance between the split G-quadruplex-forming sequences. However, in the presence of ATP, the aptamer combined with ATP and shortened the distance between the split sequences, resulting in the taut state of the TDN and the formation of a G-quadruplex at the edge. After the addition of hemin, the differential pulse voltammograms (DPVs) were used to quantify ATP. The sensor revealed a dynamic response range from 0.1 nM to 1 μM, with a detection limit of 50 pM. In addition, the specificity and practicability in real samples were also verified, indicating its potential applications.
Collapse
Affiliation(s)
- Cheng Jing
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Haohan Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yaping Tian
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Luo W, Chen M, Hao N, Huang X, Zhao X, Zhu Y, Yang H, Chen X. In situ synthesis of gold nanoparticles on pseudo-paper films as flexible SERS substrate for sensitive detection of surface organic residues. Talanta 2018; 197:225-233. [PMID: 30771928 DOI: 10.1016/j.talanta.2018.12.099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/10/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022]
Abstract
Surface enhanced Raman scattering (SERS) substrates that can be attached to rough, irregular surfaces and directly collect samples is especially useful for the detection of surface organic residues. Herein, novel AuNPs-pseudo-paper films (APPFs) with uniform structure, flexible properties and wicking capabilities were first fabricated and used as SERS substrate for the sensitive detection of surface pesticides residues. Gold nanoparticles (AuNPs) were in situ synthesized on pseudo-paper films (PPFs) by iterative seeding method to create lots of "hot-spots", accordingly exhibiting high SERS activity (SERS enhancement factor of 3.02 × 106). By virtue of polyethylenimine (PEI) grafted onto the dissolved microcrystalline cellulose (MCC), AuCl4- and AuNPs can firmly be bonded to the surfaces of PPFs. The prepared APPFs show high reproducibility (relative standard deviation of 6.13%), which is attributed to the uniform surface of the films. The fabricated APPFs SERS substrate allows rapid detection of surface pesticides residues by a facile "swabbing-measure" detection mode avoiding tedious and time-consuming sampling and separation processes. Based on their inherent SERS spectra, thiram, parathion methyl, and malachite green (MG) can be simultaneously detected on apple peel, which demonstrates the potential applicability of this developed protocol for surface organic residues analysis in agriculture and food security.
Collapse
Affiliation(s)
- Wen Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Miao Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Naiying Hao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xueqian Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xinyi Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
13
|
New detection method for nucleoside triphosphates based on carbon dots: The distance-dependent singlet oxygen trapping. Anal Chim Acta 2018; 1031:145-151. [PMID: 30119732 DOI: 10.1016/j.aca.2018.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 11/23/2022]
Abstract
The distance-dependent based sensing mechanism, such as fluorescence resonance energy transfer (FRET) and surface plasmon resonance (SPR) absorption of gold nanoparticles, has been used widely in visual detection. In this work, we report another distance-dependent detection method for nucleoside triphosphates (NTPs) based on carbon dots (CDs) (1O2 donor) and 9, 10-diphenylanthracene-2-boronic acid (DABA, 1O2 acceptor). The CDs can generate singlet oxygen (1O2) which allows diffusion within 200 nm. Thus, the distance between CDs and DABA decreased through binding of NTPs (<200 nm), leading to absorption changes of DABA under light irradiation due to 1O2 trapping. This sensing system (CDs@DABA) has high selectivity for the detection of NTPs due to the double molecular recognition and a linear response in the 0-80 μM concentration range was accomplished with the detection limit as low as 4.35 μM.
Collapse
|