1
|
Li T, Zhang L, Qu X, Lei B. Advanced Thermoactive Nanomaterials for Thermomedical Tissue Regeneration: Opportunities and Challenges. SMALL METHODS 2025; 9:e2400510. [PMID: 39588862 DOI: 10.1002/smtd.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Nanomaterials usually possess remarkable properties, including excellent biocompatibility, unique physical and chemical characteristics, and bionic attributes, which make them highly promising for applications in tissue regeneration. Thermal therapy has emerged as a versatile approach for wound healing, nerve repair, bone regeneration, tumor therapy, and antibacterial tissue regeneration. By combining nanomaterials with thermal therapy, multifunctional nanomaterials with thermogenic effects and tissue regeneration capabilities can be engineered to achieve enhanced therapeutic outcomes. This study provides a comprehensive review of the effects of thermal stimulation on cellular and tissue regeneration. Furthermore, it highlights the applications of photothermal, magnetothermal, and electrothermal nanomaterials, and thermally responsive drug delivery systems in tissue engineering. In Addition, the bioactivities and biocompatibilities of several representative thermal nanomaterials are discussed. Finally, the challenges facing thermal nanomaterials are outlined, and future prospects in the field are presented with the aim of offering new opportunities and avenues for the utilization of thermal nanomaterials in tissue regeneration.
Collapse
Affiliation(s)
- Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Long Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
2
|
Liang Y, Wu J, Yan Y, Wang Y, Zhao H, Wang X, Chang S, Li S. Charge-Reversal Nano-Drug Delivery Systems in the Tumor Microenvironment: Mechanisms, Challenges, and Therapeutic Applications. Int J Mol Sci 2024; 25:9779. [PMID: 39337266 PMCID: PMC11432038 DOI: 10.3390/ijms25189779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The charge-reversal nano-drug delivery system (CRNDDS) is a promising system for delivering chemotherapy drugs and has gained widespread application in cancer treatment. In this review, we summarize the recent advancements in CRNDDSs in terms of cancer treatment. We also delve into the charge-reversal mechanism of the CRNDDSs, focusing on the acid-responsive, redox-responsive, and enzyme-responsive mechanisms. This study elucidates how these systems undergo charge transitions in response to specific microenvironmental stimuli commonly found in tumor tissues. Furthermore, this review explores the pivotal role of CRNDDSs in tumor diagnosis and treatment, and their potential limitations. By leveraging the unique physiological characteristics of tumors, such as the acidic pH, specific redox potential, and specific enzyme activity, these systems demonstrate enhanced accumulation and penetration at tumor sites, resulting in improved therapeutic efficacy and diagnostic accuracy. The implications of this review highlight the potential of charge-reversal drug delivery systems as a novel and targeted strategy for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Yizhu Liang
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Jiashuai Wu
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Yutong Yan
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Yunduan Wang
- Department of Biomedical Engineering, China Medical University, Shenyang 110122, China
| | - Hongtu Zhao
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Xiaopeng Wang
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Shijie Chang
- Department of Biomedical Engineering, China Medical University, Shenyang 110122, China
| | - Shuo Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
3
|
Dong W, Yang H, Liu M, Mei L, Han J. Wound microenvironment-responsive peptide hydrogel with multifunctionalities for accelerating wound healing. J Pept Sci 2024; 30:e3595. [PMID: 38494339 DOI: 10.1002/psc.3595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
The fabrication of wound microenvironment-responsive peptide hydrogels with hemostatic ability, antibacterial activity, and wound healing potential remains a challenge. Herein, we constructed a multifunctional dressing by inducing the self-assembly of a peptide (Pep-1) and water-soluble new methylene blue (NMB) through electrostatic interaction. The self-assembly mechanism was demonstrated using a combination of transmission electron microscopy, circular dichroism spectrum, fluorescence spectrum, Zeta potential, and rheological analysis. The Pep-1/NMB hydrogel also exhibited a faster drug release rate in wound acidic environment. Furthermore, when Pep-1/NMB was exposed to a 635 nm laser, its antibacterial ratios increased sharply to 95.3%, indicating remarkably improved antibacterial effects. The findings from the blood coagulation and hemostasis assay indicated that Pep-1/NMB effectively enhanced the speed of blood clotting in vitro and efficiently controlled hemorrhage in a mouse liver hemorrhage model. Meanwhile, hemolytic and cytotoxicity evaluation revealed that the hydrogel had excellent hemocompatibility and cytocompatibility. Finally, the findings from the wound healing studies and H&E staining indicated that the Pep-1/NMB hydrogel had a significant impact on cell migration and wound repair. The results indicated that wound microenvironment-responsive Pep-1/NMB hydrogel had significant potential as a highly effective wound dressing platform, offering rapid hemostasis, antibacterial, and wound healing acceleration properties.
Collapse
Affiliation(s)
- Weimiao Dong
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Haihong Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Leixia Mei
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Karmakar A, Silswal A, Koner AL. Review of NIR-responsive ''Smart'' carriers for photothermal chemotherapy. J Mater Chem B 2024; 12:4785-4808. [PMID: 38690723 DOI: 10.1039/d3tb03004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review focuses on the versatile applications of near-infrared (NIR)-responsive smart carriers in biomedical applications, particularly drug delivery and photothermal chemotherapy. These carriers demonstrate multi-responsive theranostics capabilities, including pH-dependent drug release, targeted delivery of chemotherapeutics, heat-mediated drug release, and photothermal tumor damage. Biological samples are transparent to NIR light with a suitable wavelength, and therefore, NIR light is advantageous for deep-tissue penetration. It also generates sufficient heat in tissue samples, which is beneficial for on-demand NIR-responsive drug delivery in vivo systems. The development of biocompatible materials with sufficient NIR light absorption properties and drug-carrying functionality has shown tremendous growth in the last five years. Thus, this review offers insights into the current research development of NIR-responsive materials with therapeutic potential and prospects aimed at overcoming challenges to improve the therapeutic efficacy and safety in the dynamic field of NIR-responsive drug delivery.
Collapse
Affiliation(s)
- Abhijit Karmakar
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
5
|
Liu H, Yu Y, Dong A, Elsabahy M, Yang Y, Gao H. Emerging strategies for combating Fusobacterium nucleatum in colorectal cancer treatment: Systematic review, improvements and future challenges. EXPLORATION (BEIJING, CHINA) 2024; 4:20230092. [PMID: 38854496 PMCID: PMC10867388 DOI: 10.1002/exp.20230092] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/16/2023] [Indexed: 06/11/2024]
Abstract
Colorectal cancer (CRC) is generally characterized by a high prevalence of Fusobacterium nucleatum (F. nucleatum), a spindle-shaped, Gram-negative anaerobe pathogen derived from the oral cavity. This tumor-resident microorganism has been closely correlated with the occurrence, progression, chemoresistance and immunosuppressive microenvironment of CRC. Furthermore, F. nucleatum can specifically colonize CRC tissues through adhesion on its surface, forming biofilms that are highly resistant to commonly used antibiotics. Accordingly, it is crucial to develop efficacious non-antibiotic approaches to eradicate F. nucleatum and its biofilms for CRC treatment. In recent years, various antimicrobial strategies, such as natural extracts, inorganic chemicals, organic chemicals, polymers, inorganic-organic hybrid materials, bacteriophages, probiotics, and vaccines, have been proposed to combat F. nucleatum and F. nucleatum biofilms. This review summarizes the latest advancements in anti-F. nucleatum research, elucidates the antimicrobial mechanisms employed by these systems, and discusses the benefits and drawbacks of each antimicrobial technology. Additionally, this review also provides an outlook on the antimicrobial specificity, potential clinical implications, challenges, and future improvements of these antimicrobial strategies in the treatment of CRC.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotP. R. China
| | - Mahmoud Elsabahy
- Department of PharmaceuticsFaculty of PharmacyAssiut UniversityAssiutEgypt
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano‐Micro Architecture ChemistryCollege of ChemistryJilin UniversityChangchunP. R. China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| |
Collapse
|
6
|
Xiang X, Shi D, Gao J. The Advances and Biomedical Applications of Imageable Nanomaterials. Front Bioeng Biotechnol 2022; 10:914105. [PMID: 35866027 PMCID: PMC9294271 DOI: 10.3389/fbioe.2022.914105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Nanomedicine shows great potential in screening, diagnosing and treating diseases. However, given the limitations of current technology, detection of some smaller lesions and drugs’ dynamic monitoring still need to be improved. With the advancement of nanotechnology, researchers have produced various nanomaterials with imaging capabilities which have shown great potential in biomedical research. Here, we summarized the researches based on the characteristics of imageable nanomaterials, highlighted the advantages and biomedical applications of imageable nanomaterials in the diagnosis and treatment of diseases, and discussed current challenges and prospects.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- Department of Gastroenterology, The Affiliated Hospital of Yan’an University, Yan’an, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jianbo Gao,
| |
Collapse
|
7
|
Caging and photo-triggered uncaging of singlet oxygen by excited state engineering of electron donor-acceptor-linked molecular sensors. Sci Rep 2022; 12:11371. [PMID: 35790770 PMCID: PMC9256616 DOI: 10.1038/s41598-022-15054-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Singlet oxygen (1O2), one of the most sought-after species in oxidative chemical reactions and photodynamic cancer therapy, is activated and neutralized in the atmosphere and living cells. It is essential to see "when" and "where" 1O2 is produced and delivered to understand and utilize it. There is an increasing demand for molecular sensor tools to capture, store, and supply 1O2, controlled by light and engineered singlet and triplet states, indicating the 1O2-capturing-releasing state. Here, we demonstrate the outstanding potential of an aminocoumarin-methylanthracene-based electron donor–acceptor molecule (1). Spectroscopic measurements confirm the formation of an endoperoxide (1-O2) which is not strongly fluorescent and remarkably different from previously reported 1O2 sensor molecules. Moreover, the photoexcitation on the dye in 1-O2 triggers fluorescence enhancement by the oxidative rearrangement and a competing 1O2 release. The unique ability of 1 will pave the way for the spatially and temporally controlled utilization of 1O2 in various areas such as chemical reactions and phototherapies.
Collapse
|
8
|
NIR light-responsive nanocarriers for controlled release. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100420] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Zhang Y, Fang F, Li L, Zhang J. Self-Assembled Organic Nanomaterials for Drug Delivery, Bioimaging, and Cancer Therapy. ACS Biomater Sci Eng 2020; 6:4816-4833. [PMID: 33455214 DOI: 10.1021/acsbiomaterials.0c00883] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past few decades, tremendous progress has been made in the development of engineering nanomaterials, which opened new horizons in the field of diagnosis and treatment of various diseases. In particular, self-assembled organic nanomaterials with intriguing features including delicate structure tailoring, facile processability, low cost, and excellent biocompatibility have shown outstanding potential in biomedical applications because of the enhanced permeability and retention (EPR) effect and multifunctional properties. In this review, we briefly introduce distinctive merits of self-assembled organic nanomaterials for biomedical applications. The main focus will be placed on summarizing recent advances in self-assembled organic nanomedicine for drug delivery, bioimaging, and cancer phototherapy, followed by highlighting a critical perspective on further development of self-assembled organic nanomaterials for future clinical translation. We believe that the above themes will appeal to researchers from different fields, including material, chemical, and biological sciences, as well as pharmaceutics.
Collapse
Affiliation(s)
- Yinfeng Zhang
- International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100811, P. R. China
| | - Li Li
- International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100811, P. R. China
| |
Collapse
|
11
|
Watanabe K, Terao N, Kii I, Nakagawa R, Niwa T, Hosoya T. Indolizines Enabling Rapid Uncaging of Alcohols and Carboxylic Acids by Red Light-Induced Photooxidation. Org Lett 2020; 22:5434-5438. [DOI: 10.1021/acs.orglett.0c01799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenji Watanabe
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Nodoka Terao
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Isao Kii
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- RIKEN Cluster for Science, Technology and Innovation Hub, 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Laboratory for Drug Target Research, Integrated Bioscience Division, Institute of Agriculture, Shinshu University, 8304 minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
12
|
Municoy S, Álvarez Echazú MI, Antezana PE, Galdopórpora JM, Olivetti C, Mebert AM, Foglia ML, Tuttolomondo MV, Alvarez GS, Hardy JG, Desimone MF. Stimuli-Responsive Materials for Tissue Engineering and Drug Delivery. Int J Mol Sci 2020; 21:E4724. [PMID: 32630690 PMCID: PMC7369929 DOI: 10.3390/ijms21134724] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Smart or stimuli-responsive materials are an emerging class of materials used for tissue engineering and drug delivery. A variety of stimuli (including temperature, pH, redox-state, light, and magnet fields) are being investigated for their potential to change a material's properties, interactions, structure, and/or dimensions. The specificity of stimuli response, and ability to respond to endogenous cues inherently present in living systems provide possibilities to develop novel tissue engineering and drug delivery strategies (for example materials composed of stimuli responsive polymers that self-assemble or undergo phase transitions or morphology transformations). Herein, smart materials as controlled drug release vehicles for tissue engineering are described, highlighting their potential for the delivery of precise quantities of drugs at specific locations and times promoting the controlled repair or remodeling of tissues.
Collapse
Affiliation(s)
- Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María I. Álvarez Echazú
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Pablo E. Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Juan M. Galdopórpora
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Christian Olivetti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Andrea M. Mebert
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María L. Foglia
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - María V. Tuttolomondo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - Gisela S. Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
- Materials Science Institute, Faraday Building, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
| | - Martin F. Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina; (S.M.); (M.I.Á.E.); (P.E.A.); (J.M.G.); (C.O.); (A.M.M.); (M.L.F.); (M.V.T.); (G.S.A.)
| |
Collapse
|
13
|
Abstract
The biomaterials have been well designed as photoabsorbing/sensitizing agents or effective carriers to enhance the photoimmunotherapeutic efficacy and evade their side effects.
Collapse
Affiliation(s)
- Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- PR China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- PR China
| |
Collapse
|
14
|
Li Q, Hou M, Ren J, Lu S, Xu Z, Li CM, Kang Y, Xue P. Co-delivery of chlorin e6 and doxorubicin using PEGylated hollow nanocapsules for ‘all-in-one’ tumor theranostics. Nanomedicine (Lond) 2019; 14:2273-2292. [DOI: 10.2217/nnm-2019-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Hollow mesoporous copper sulfide nanocapsules conjugated with poly(ethylene glycol) (PEG), doxorubicin and chlorin e6 (HPDC) were synthesized for fluorescence imaging and multimodal tumor therapy. Materials & methods: HPDC were synthesized by encapsulating chlorin e6 and doxorubicin into PEGylated nanocapsules via a simple precipitation method. The photothermal/photodynamic effects, drug release, cellular uptake, imaging capacities and antitumor effects of the HPDCs were evaluated. Results: This smart nanoplatform is stimulus-responsive toward an acidic microenvironment and near infrared laser irradiation. Moreover, fluorescence imaging-guided and combined photothermal/photodynamic/chemotherapies of tumors were promoted under laser activation and led to efficient tumor ablation, as evidenced by exploring animal models in vivo. Conclusion: HPDCs are expected to serve as potent and reliable nanoagents for achieving superior therapeutic outcomes in cancer management.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Luminescent & Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, PR China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials & Devices, Southwest University, Chongqing 400715, PR China
| | - Mengmeng Hou
- Key Laboratory of Luminescent & Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, PR China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials & Devices, Southwest University, Chongqing 400715, PR China
| | - Junjie Ren
- Key Laboratory of Luminescent & Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, PR China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials & Devices, Southwest University, Chongqing 400715, PR China
| | - Shiyu Lu
- Key Laboratory of Luminescent & Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Zhigang Xu
- Key Laboratory of Luminescent & Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, PR China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials & Devices, Southwest University, Chongqing 400715, PR China
| | - Chang Ming Li
- Key Laboratory of Luminescent & Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Yuejun Kang
- Key Laboratory of Luminescent & Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, PR China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials & Devices, Southwest University, Chongqing 400715, PR China
| | - Peng Xue
- Key Laboratory of Luminescent & Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing 400715, PR China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials & Devices, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
15
|
Valsangkar VA, Chandrasekaran AR, Zhuo L, Mao S, Lee GW, Kizer M, Wang X, Halvorsen K, Sheng J. Click and photo-release dual-functional nucleic acid nanostructures. Chem Commun (Camb) 2019; 55:9709-9712. [PMID: 31353371 PMCID: PMC6687541 DOI: 10.1039/c9cc03806j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We functionalize nucleic acid nanostructures with click chemistry (for attachment of cargos) and a photocleavable linker (for release). We demonstrate cargo attachment using a fluorescein dye and release using UV trigger from an RNA three-way junction, a DNA star motif and a DNA tetrahedron. Such multifunctional nucleic acid nanostructures have potential in targeted drug delivery.
Collapse
Affiliation(s)
- Vibhav A Valsangkar
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA. and Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | | | - Lifeng Zhuo
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Song Mao
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA. and Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Goh Woon Lee
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA. and Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Megan Kizer
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xing Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Jia Sheng
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA. and Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
16
|
Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials 2018; 171:72-82. [DOI: 10.1016/j.biomaterials.2018.04.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
|
17
|
Abstract
Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end.
Collapse
Affiliation(s)
- Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Rongying Zhu
- Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| |
Collapse
|
18
|
Mannaris C, Teo BM, Seth A, Bau L, Coussios C, Stride E. Gas-Stabilizing Gold Nanocones for Acoustically Mediated Drug Delivery. Adv Healthc Mater 2018; 7:e1800184. [PMID: 29696808 DOI: 10.1002/adhm.201800184] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/15/2018] [Indexed: 01/27/2023]
Abstract
The efficient penetration of drugs into tumors is a major challenge that remains unmet. Reported herein is a strategy to promote extravasation and enhanced penetration using inertial cavitation initiated by focused ultrasound and cone-shaped gold nanoparticles that entrap gas nanobubbles. The cones are capable of initiating inertial cavitation under pressures and frequencies achievable with existing clinical ultrasound systems and of promoting extravasation and delivery of a model large therapeutic molecule in an in vitro tissue mimicking flow phantom, achieving penetration depths in excess of 2 mm. Ease of functionalization and intrinsic imaging capabilities provide gold with significant advantages as a material for biomedical applications. The cones show neither cytotoxicity in Michigan Cancer Foundation (MCF)-7 cells nor hemolytic activity in human blood at clinically relevant concentrations and are found to be colloidally stable for at least 5 d at 37 °C and several months at 4 °C.
Collapse
Affiliation(s)
- Christophoros Mannaris
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Boon M Teo
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- Interdisciplinary Nanoscience Center (iNANO), The iNANO House, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark
- School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Anjali Seth
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Luca Bau
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| |
Collapse
|
19
|
He H, Zhu R, Sun W, Cai K, Chen Y, Yin L. Selective cancer treatment via photodynamic sensitization of hypoxia-responsive drug delivery. NANOSCALE 2018; 10:2856-2865. [PMID: 29364314 DOI: 10.1039/c7nr07677k] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The precise and selective delivery of chemodrugs into tumors represents a critical requirement for anti-cancer therapy. Intelligent delivery systems that are responsive to a single internal or external stimulus often lack sufficient cancer selectivity, which compromises the drug efficacy and induces undesired side effects. To overcome this dilemma, we herein report a cancer-targeting vehicle which allows highly cancer-selective drug release in response to cascaded external (light) and internal (hypoxia) dual triggers. In particular, doxorubicin (DOX)-loaded, hypoxia-dissociable nanoparticles (NPs) were prepared from self-assembled polyethylenimine-nitroimidazole (PEI-NI) micelles that were further co-assembled with hyaluronic acid-Ce6 (HC). Upon accumulation in tumor cells, tumor site-specific light irradiation (660 nm, 10 mW cm-2) generated high levels of reactive oxygen species (ROS) and greatly enhanced the hypoxic levels to induce NP dissociation and accordingly DOX release. A synergistic anti-cancer efficacy between DOX-mediated chemotherapy and Ce6-mediated photodynamic therapy (PDT) was thus achieved, resulting in reduced side effects to normal tissues/cells. This study therefore provides an effective method to control the cancer-specific drug delivery by responding to cascaded multiple triggers, and it renders promising applications for the programmed combination of chemotherapy and PDT toward cancer treatment.
Collapse
Affiliation(s)
- Hua He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, P.R. China.
| | | | | | | | | | | |
Collapse
|
20
|
Wang L, Huang X, Wang B, Zhao J, Guo X, Wang Z, Zhao Y. Mechanistic insight into the singlet oxygen-triggered expansion of hypoxia-responsive polymeric micelles. Biomater Sci 2018; 6:1712-1716. [DOI: 10.1039/c8bm00369f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Singlet oxygen can trigger the oxidation of nitroimidazole-bearing micelles for on-demand cargo release.
Collapse
Affiliation(s)
- Lina Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Xiaoli Huang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Bingbing Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Jie Zhao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Xuliang Guo
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Zheng Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| |
Collapse
|
21
|
Li M, Liu X, Tan L, Cui Z, Yang X, Li Z, Zheng Y, Yeung KWK, Chu PK, Wu S. Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomater Sci 2018; 6:2110-2121. [DOI: 10.1039/c8bm00499d] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacterial infection often delays healing of wounded tissues and so it is essential to improve the antibacterial efficiency in situ.
Collapse
|