1
|
Landreh M, Osterholz H, Chen G, Knight SD, Rising A, Leppert A. Liquid-liquid crystalline phase separation of spider silk proteins. Commun Chem 2024; 7:260. [PMID: 39533043 PMCID: PMC11557605 DOI: 10.1038/s42004-024-01357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of proteins can be considered an intermediate solubility regime between disperse solutions and solid fibers. While LLPS has been described for several pathogenic amyloids, recent evidence suggests that it is similarly relevant for functional amyloids. Here, we review the evidence that links spider silk proteins (spidroins) and LLPS and its role in the spinning process. Major ampullate spidroins undergo LLPS mediated by stickers and spacers in their repeat regions. During spinning, the spidroins droplets shift from liquid to crystalline states. Shear force, altered ion composition, and pH changes cause micelle-like spidroin assemblies to form an increasingly ordered liquid-crystalline phase. Interactions between polyalanine regions in the repeat regions ultimately yield the characteristic β-crystalline structure of mature dragline silk fibers. Based on these findings, we hypothesize that liquid-liquid crystalline phase separation (LLCPS) can describe the molecular and macroscopic features of the phase transitions of major ampullate spidroins during spinning and speculate whether other silk types may use a similar mechanism to convert from liquid dope to solid fiber.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| | - Hannah Osterholz
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gefei Chen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Stefan D Knight
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anna Rising
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Axel Leppert
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
2
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
3
|
Arndt T, Chatterjee U, Shilkova O, Francis J, Lundkvist J, Johansson D, Schmuck B, Greco G, Nordberg ÅE, Li Y, Wahlberg LU, Langton M, Johansson J, Götherström C, Rising A. Tuneable Recombinant Spider Silk Protein Hydrogels for Drug Release and 3D Cell Culture. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2303622. [PMID: 39355087 PMCID: PMC11440629 DOI: 10.1002/adfm.202303622] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Indexed: 10/03/2024]
Abstract
Hydrogels are useful drug release systems and tissue engineering scaffolds. However, synthetic hydrogels often require harsh gelation conditions and can contain toxic by-products while naturally derived hydrogels can transmit pathogens and in general have poor mechanical properties. Thus, there is a need for a hydrogel that forms under ambient conditions, is non-toxic, xeno-free, and has good mechanical properties. A recombinant spider silk protein-derived hydrogel that rapidly forms at 37 °C is recently developed. The temperature and gelation times are well-suited for an injectable in situ polymerising hydrogel, as well as a 3D cell culture scaffold. Here, it is shown that the diffusion rate and the mechanical properties can be tuned by changing the protein concentration and that human fetal mesenchymal stem cells encapsulated in the hydrogels show high survival and viability. Furthermore, mixtures of recombinant spider silk proteins and green fluorescent protein (GFP) form gels from which functional GFP is gradually released, indicating that bioactive molecules are easily included in the gels, maintain activity and can diffuse through the gel. Interestingly, encapsulated ARPE-19 cells are viable and continuously produce the growth factor progranulin, which is detected in the cell culture medium over the study period of 31 days.
Collapse
Affiliation(s)
- Tina Arndt
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Olga Shilkova
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Juanita Francis
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | | | - Daniel Johansson
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala75007Sweden
| | - Benjamin Schmuck
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Gabriele Greco
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Åsa Ekblad Nordberg
- Department of Clinical ScienceIntervention and TechnologyDivision of Obstetrics and GynecologyKarolinska InstitutetHuddinge14152Sweden
| | - Yan Li
- Department of Clinical ScienceIntervention and TechnologyDivision of Orthopedics and BiotechnologyKarolinska UniversitetssjukhusetHuddinge141 86Sweden
| | | | - Maud Langton
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsala75007Sweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
| | - Cecilia Götherström
- Department of Clinical ScienceIntervention and TechnologyDivision of Obstetrics and GynecologyKarolinska InstitutetHuddinge14152Sweden
| | - Anna Rising
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14152Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| |
Collapse
|
4
|
Li J, Yang GZ, Li X, Tan HL, Wong ZW, Jiang S, Yang D. Nanoassembly of spider silk protein mediated by intrinsically disordered regions. Int J Biol Macromol 2024; 271:132438. [PMID: 38761906 DOI: 10.1016/j.ijbiomac.2024.132438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Spider silk is the self-assembling product of silk proteins each containing multiple repeating units. Each repeating unit is entirely intrinsically disordered or contains a small disordered domain. The role of the disordered domain/unit in conferring silk protein storage and self-assembly is not fully understood yet. Here, we used biophysical and biochemical techniques to investigate the self-assembly of a miniature version of a minor ampullate spidroin (denoted as miniMiSp). miniMiSp consists of two identical intrinsically disordered domains, one folded repetitive domain, and two folded terminal domains. Our data indicated that miniMiSp self-assembles into oligomers and further into liquid droplets. The oligomerization is attributed to the aggregation-prone property of both the disordered domains and the folded repetitive domain. Our results support the model of micellar structure for silk proteins at high protein concentrations. The disordered domain is indispensable for liquid droplet formation via liquid-liquid phase separation, and tyrosine residues located in the disordered domain make dominant contributions to stability of the liquid droplets. As the same tyrosine residues are also critical to fibrillation, the liquid droplets are likely an intermediate state between the solution state and the fiber state. Additionally, the terminal domains contribute to the pH- and salt-dependent self-assembly properties.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Gabriel Z Yang
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Xue Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Hao Lei Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhi Wei Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Shimin Jiang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
5
|
Välisalmi T, Bettahar H, Zhou Q, Linder MB. Pulling and analyzing silk fibers from aqueous solution using a robotic device. Int J Biol Macromol 2023; 250:126161. [PMID: 37549763 DOI: 10.1016/j.ijbiomac.2023.126161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Spiders, silkworms, and many other animals can spin silk with exceptional properties. However, artificially spun fibers often fall short of their natural counterparts partly due sub-optimal production methods. A variety of methods, such as wet-, dry-, and biomimetic spinning have been used. The methods are based on extrusion, whereas natural spinning also involves pulling. Another shortcoming is that there is a lack feedback control during extension. Here we demonstrate a robotic fiber pulling device that enables controlled pulling of silk fibers and in situ measurement of extensional forces during the pulling and tensile testing of the pulled fibers. The pulling device was used to study two types of silk-one recombinant spider silk (a structural variant of ADF3) and one regenerated silk fibroin. Also, dextran-a branched polysaccharide-was used as a reference material for the procedure due to its straightforward preparation and storage. No post-treatments were applied. The pulled regenerated silk fibroin fibers achieved high tensile strength in comparison to similar extrusion-based methods. The mechanical properties of the recombinant spider silk fibers seemed to be affected by the liquid-liquid phase separation of the silk proteins.
Collapse
Affiliation(s)
- Teemu Välisalmi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Houari Bettahar
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Quan Zhou
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland.
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
6
|
Sahin C, Motso A, Gu X, Feyrer H, Lama D, Arndt T, Rising A, Gese GV, Hällberg BM, Marklund EG, Schafer NP, Petzold K, Teilum K, Wolynes PG, Landreh M. Mass Spectrometry of RNA-Binding Proteins during Liquid-Liquid Phase Separation Reveals Distinct Assembly Mechanisms and Droplet Architectures. J Am Chem Soc 2023; 145:10659-10668. [PMID: 37145883 DOI: 10.1021/jacs.3c00932] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) of heterogeneous ribonucleoproteins (hnRNPs) drives the formation of membraneless organelles, but structural information about their assembled states is still lacking. Here, we address this challenge through a combination of protein engineering, native ion mobility mass spectrometry, and molecular dynamics simulations. We used an LLPS-compatible spider silk domain and pH changes to control the self-assembly of the hnRNPs FUS, TDP-43, and hCPEB3, which are implicated in neurodegeneration, cancer, and memory storage. By releasing the proteins inside the mass spectrometer from their native assemblies, we could monitor conformational changes associated with liquid-liquid phase separation. We find that FUS monomers undergo an unfolded-to-globular transition, whereas TDP-43 oligomerizes into partially disordered dimers and trimers. hCPEB3, on the other hand, remains fully disordered with a preference for fibrillar aggregation over LLPS. The divergent assembly mechanisms revealed by ion mobility mass spectrometry of soluble protein species that exist under LLPS conditions suggest structurally distinct complexes inside liquid droplets that may impact RNA processing and translation depending on biological context.
Collapse
Affiliation(s)
- Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet - Biomedicum, Solnavägen 9, 17165 Solna, Sweden
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Aikaterini Motso
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet - Biomedicum, Solnavägen 9, 17165 Solna, Sweden
| | - Xinyu Gu
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hannes Feyrer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet - Biomedicum, Solnavägen 9, 17165 Solna, Sweden
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet - Biomedicum, Solnavägen 9, 17165 Solna, Sweden
| | - Tina Arndt
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 57 Huddinge, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 57 Huddinge, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, S-750 07 Uppsala, Sweden
| | - Genis Valentin Gese
- Department of Cell and Molecular Biology, Karolinska Institutet - Biomedicum, Solnavägen 9, 171 65 Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet - Biomedicum, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet - Biomedicum, Solnavägen 9, 17165 Solna, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 24 Uppsala, Sweden
| | - Kaare Teilum
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet - Biomedicum, Solnavägen 9, 17165 Solna, Sweden
- Department of Cell- and Molecular Biology, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| |
Collapse
|
7
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
8
|
Saluri M, Leppert A, Gese GV, Sahin C, Lama D, Kaldmäe M, Chen G, Elofsson A, Allison TM, Arsenian-Henriksson M, Johansson J, Lane DP, Hällberg BM, Landreh M. A "grappling hook" interaction connects self-assembly and chaperone activity of Nucleophosmin 1. PNAS NEXUS 2023; 2:pgac303. [PMID: 36743470 PMCID: PMC9896144 DOI: 10.1093/pnasnexus/pgac303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
How the self-assembly of partially disordered proteins generates functional compartments in the cytoplasm and particularly in the nucleus is poorly understood. Nucleophosmin 1 (NPM1) is an abundant nucleolar protein that forms large oligomers and undergoes liquid-liquid phase separation by binding RNA or ribosomal proteins. It provides the scaffold for ribosome assembly but also prevents protein aggregation as part of the cellular stress response. Here, we use aggregation assays and native mass spectrometry (MS) to examine the relationship between the self-assembly and chaperone activity of NPM1. We find that oligomerization of full-length NPM1 modulates its ability to retard amyloid formation in vitro. Machine learning-based structure prediction and cryo-electron microscopy reveal fuzzy interactions between the acidic disordered region and the C-terminal nucleotide-binding domain, which cross-link NPM1 pentamers into partially disordered oligomers. The addition of basic peptides results in a tighter association within the oligomers, reducing their capacity to prevent amyloid formation. Together, our findings show that NPM1 uses a "grappling hook" mechanism to form a network-like structure that traps aggregation-prone proteins. Nucleolar proteins and RNAs simultaneously modulate the association strength and chaperone activity, suggesting a mechanism by which nucleolar composition regulates the chaperone activity of NPM1.
Collapse
Affiliation(s)
- Mihkel Saluri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | | | | | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden,Structural Biology and NMR laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Margit Kaldmäe
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge,, Sweden
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, 114 19 Stockholm, Sweden
| | - Timothy M Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Upper Riccarton, Christchurch 8041, New Zealand
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge,, Sweden
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Arndt T, Jaudzems K, Shilkova O, Francis J, Johansson M, Laity PR, Sahin C, Chatterjee U, Kronqvist N, Barajas-Ledesma E, Kumar R, Chen G, Strömberg R, Abelein A, Langton M, Landreh M, Barth A, Holland C, Johansson J, Rising A. Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform. Nat Commun 2022; 13:4695. [PMID: 35970823 PMCID: PMC9378615 DOI: 10.1038/s41467-022-32093-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Recombinant spider silk proteins (spidroins) have multiple potential applications in development of novel biomaterials, but their multimodal and aggregation-prone nature have complicated production and straightforward applications. Here, we report that recombinant miniature spidroins, and importantly also the N-terminal domain (NT) on its own, rapidly form self-supporting and transparent hydrogels at 37 °C. The gelation is caused by NT α-helix to β-sheet conversion and formation of amyloid-like fibrils, and fusion proteins composed of NT and green fluorescent protein or purine nucleoside phosphorylase form hydrogels with intact functions of the fusion moieties. Our findings demonstrate that recombinant NT and fusion proteins give high expression yields and bestow attractive properties to hydrogels, e.g., transparency, cross-linker free gelation and straightforward immobilization of active proteins at high density. Recombinant spider silks are of interest but the multimodal and aggregation-prone nature of them is a limitation. Here, the authors report on a miniature spidroin based on the N-terminal domain which forms a hydrogel at 37 °C which allows for ease of production and fusion protein modification to generate functional biomaterials.
Collapse
Affiliation(s)
- Tina Arndt
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | - Olga Shilkova
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Juanita Francis
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden, Box 7015
| | - Peter R Laity
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65, Solna, Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Edgar Barajas-Ledesma
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65, Solna, Sweden
| | - Rakesh Kumar
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden, Box 7015
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65, Solna, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691, Stockholm, Sweden
| | - Chris Holland
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden. .,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.
| |
Collapse
|
10
|
Kiseleva A, Nestor G, Östman JR, Kriuchkova A, Savin A, Krivoshapkin P, Krivoshapkina E, Seisenbaeva GA, Kessler VG. Modulating Surface Properties of the Linothele fallax Spider Web by Solvent Treatment. Biomacromolecules 2021; 22:4945-4955. [PMID: 34644050 PMCID: PMC8672351 DOI: 10.1021/acs.biomac.1c00787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Linothele fallax (Mello-Leitão) (L. fallax) spider web, a potentially attractive tissue engineering material, was investigated using quantitative peak force measurement atomic force microscopy and scanning electron microscopy with energy dispersive spectroscopy both in its natural state and after treatment with solvents of different protein affinities, namely, water, ethanol, and dimethyl sulfoxide (DMSO). Native L. fallax silk threads are densely covered by globular objects, which constitute their inseparable parts. Depending on the solvent, treating L. fallax modifies its appearance. In the case of water and ethanol, the changes are minor. In contrast, DMSO practically removes the globules and fuses the threads into dense bands. Moreover, the solvent treatment influences the chemistry of the threads' surface, changing their adhesive and, therefore, biocompatibility and cell adhesion properties. On the other hand, the solvent-treated web materials' contact effect on different types of biological matter differs considerably. Protein-rich matter controls humidity better when wrapped in spider silk treated with more hydrophobic solvents. However, carbohydrate plant materials retain more moisture when wrapped in native spider silk. The extracts produced with the solvents were analyzed using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry techniques, revealing unsaturated fatty acids as representative adsorbed species, which may explain the mild antibacterial effect of the spider silk. The extracted metabolites were similar for the different solvents, meaning that the globules were not "dissolved" but "fused into" the threads themselves, being supposedly rolled-in knots of the protein chain.
Collapse
Affiliation(s)
- Aleksandra Kiseleva
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Gustav Nestor
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| | - Johnny R. Östman
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| | - Anastasiia Kriuchkova
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Artemii Savin
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Pavel Krivoshapkin
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Elena Krivoshapkina
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | | | - Vadim G. Kessler
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| |
Collapse
|
11
|
Lee SO, Xie Q, Fried SD. Optimized Loopable Translation as a Platform for the Synthesis of Repetitive Proteins. ACS CENTRAL SCIENCE 2021; 7:1736-1750. [PMID: 34729417 PMCID: PMC8554844 DOI: 10.1021/acscentsci.1c00574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 06/13/2023]
Abstract
The expression of long proteins with repetitive amino acid sequences often presents a challenge in recombinant systems. To overcome this obstacle, we report a genetic construct that circularizes mRNA in vivo by rearranging the topology of a group I self-splicing intron from T4 bacteriophage, thereby enabling "loopable" translation. Using a fluorescence-based assay to probe the translational efficiency of circularized mRNAs, we identify several conditions that optimize protein expression from this system. Our data suggested that translation of circularized mRNAs could be limited primarily by the rate of ribosomal initiation; therefore, using a modified error-prone PCR method, we generated a library that concentrated mutations into the initiation region of circularized mRNA and discovered mutants that generated markedly higher expression levels. Combining our rational improvements with those discovered through directed evolution, we report a loopable translator that achieves protein expression levels within 1.5-fold of the levels of standard vectorial translation. In summary, our work demonstrates loopable translation as a promising platform for the creation of large peptide chains, with potential utility in the development of novel protein materials.
Collapse
|
12
|
Hansson ML, Chatterjee U, Francis J, Arndt T, Broman C, Johansson J, Sköld MK, Rising A. Artificial spider silk supports and guides neurite extension in vitro. FASEB J 2021; 35:e21896. [PMID: 34634154 DOI: 10.1096/fj.202100916r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023]
Abstract
Surgical intervention with the use of autografts is considered the gold standard to treat peripheral nerve injuries. However, a biomaterial that supports and guides nerve growth would be an attractive alternative to overcome problems with limited availability, morbidity at the site of harvest, and nerve mismatches related to autografts. Native spider silk is a promising material for construction of nerve guidance conduit (NGC), as it enables regeneration of cm-long nerve injuries in sheep, but regulatory requirements for medical devices demand synthetic materials. Here, we use a recombinant spider silk protein (NT2RepCT) and a functionalized variant carrying a peptide derived from vitronectin (VN-NT2RepCT) as substrates for nerve growth support and neurite extension, using a dorsal root ganglion cell line, ND7/23. Two-dimensional coatings were benchmarked against poly-d-lysine and recombinant laminins. Both spider silk coatings performed as the control substrates with regards to proliferation, survival, and neurite growth. Furthermore, NT2RepCT and VN-NT2RepCT spun into continuous fibers in a biomimetic spinning set-up support cell survival, neurite growth, and guidance to an even larger extent than native spider silk. Thus, artificial spider silk is a promising biomaterial for development of NGCs.
Collapse
Affiliation(s)
- Magnus L Hansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Experimental Traumatology Unit, Department of Neuroscience, Biomedicum B8 Karolinska Institutet, Stockholm, Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juanita Francis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tina Arndt
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Christian Broman
- Experimental Traumatology Unit, Department of Neuroscience, Biomedicum B8 Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mattias K Sköld
- Experimental Traumatology Unit, Department of Neuroscience, Biomedicum B8 Karolinska Institutet, Stockholm, Sweden.,Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
13
|
Landreh M, Sahin C, Gault J, Sadeghi S, Drum CL, Uzdavinys P, Drew D, Allison TM, Degiacomi MT, Marklund EG. Predicting the Shapes of Protein Complexes through Collision Cross Section Measurements and Database Searches. Anal Chem 2020; 92:12297-12303. [PMID: 32660238 DOI: 10.1021/acs.analchem.0c01940] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In structural biology, collision cross sections (CCSs) from ion mobility mass spectrometry (IM-MS) measurements are routinely compared to computationally or experimentally derived protein structures. Here, we investigate whether CCS data can inform about the shape of a protein in the absence of specific reference structures. Analysis of the proteins in the CCS database shows that protein complexes with low apparent densities are structurally more diverse than those with a high apparent density. Although assigning protein shapes purely on CCS data is not possible, we find that we can distinguish oblate- and prolate-shaped protein complexes by using the CCS, molecular weight, and oligomeric states to mine the Protein Data Bank (PDB) for potentially similar protein structures. Furthermore, comparing the CCS of a ferritin cage to the solution structures in the PDB reveals significant deviations caused by structural collapse in the gas phase. We then apply the strategy to an integral membrane protein by comparing the shapes of a prokaryotic and a eukaryotic sodium/proton antiporter homologue. We conclude that mining the PDB with IM-MS data is a time-effective way to derive low-resolution structural models.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden.,Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Joseph Gault
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Samira Sadeghi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 119228, Singapore
| | - Chester L Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 119228, Singapore
| | - Povilas Uzdavinys
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 114 19, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 114 19, Sweden
| | - Timothy M Allison
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Matteo T Degiacomi
- Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden
| |
Collapse
|
14
|
Peng CA, Kozubowski L, Marcotte WR. Advances in Plant-Derived Scaffold Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:122. [PMID: 32161608 PMCID: PMC7052361 DOI: 10.3389/fpls.2020.00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/27/2020] [Indexed: 05/13/2023]
Abstract
Scaffold proteins form critical biomatrices that support cell adhesion and proliferation for regenerative medicine and drug screening. The increasing demand for such applications urges solutions for cost effective and sustainable supplies of hypoallergenic and biocompatible scaffold proteins. Here, we summarize recent efforts in obtaining plant-derived biosynthetic spider silk analogue and the extracellular matrix protein, collagen. Both proteins are composed of a large number of tandem block repeats, which makes production in bacterial hosts challenging. Furthermore, post-translational modification of collagen is essential for its function which requires co-transformation of multiple copies of human prolyl 4-hydroxylase. We discuss our perspectives on how the GAANTRY system could potentially assist the production of native-sized spider dragline silk proteins and prolyl hydroxylated collagen. The potential of recombinant scaffold proteins in drug delivery and drug discovery is also addressed.
Collapse
|
15
|
Kaldmäe M, Leppert A, Chen G, Sarr M, Sahin C, Nordling K, Kronqvist N, Gonzalvo-Ulla M, Fritz N, Abelein A, Laίn S, Biverstål H, Jörnvall H, Lane DP, Rising A, Johansson J, Landreh M. High intracellular stability of the spidroin N-terminal domain in spite of abundant amyloidogenic segments revealed by in-cell hydrogen/deuterium exchange mass spectrometry. FEBS J 2019; 287:2823-2833. [PMID: 31815338 PMCID: PMC7383493 DOI: 10.1111/febs.15169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/01/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Proteins require an optimal balance of conformational flexibility and stability in their native environment to ensure their biological functions. A striking example is spidroins, spider silk proteins, which are stored at extremely high concentrations in soluble form, yet undergo amyloid-like aggregation during spinning. Here, we elucidate the stability of the highly soluble N-terminal domain (NT) of major ampullate spidroin 1 in the Escherichia coli cytosol as well as in inclusion bodies containing fibrillar aggregates. Surprisingly, we find that NT, despite being largely composed of amyloidogenic sequences, showed no signs of concentration-dependent aggregation. Using a novel intracellular hydrogen/deuterium exchange mass spectrometry (HDX-MS) approach, we reveal that NT adopts a tight fold in the E. coli cytosol and in this manner conceals its aggregation-prone regions by maintaining a tight fold under crowded conditions. Fusion of NT to the unstructured amyloid-forming Aβ40 peptide, on the other hand, results in the formation of fibrillar aggregates. However, HDX-MS indicates that the NT domain is only partially incorporated into these aggregates in vivo. We conclude that NT is able to control its aggregation to remain functional under the extreme conditions in the spider silk gland.
Collapse
Affiliation(s)
- Margit Kaldmäe
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Biomedicum, Solna, Sweden
| | - Axel Leppert
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Gefei Chen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Medoune Sarr
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Biomedicum, Solna, Sweden
| | - Kerstin Nordling
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Nina Kronqvist
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Marta Gonzalvo-Ulla
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Biomedicum, Solna, Sweden.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nicolas Fritz
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Biomedicum, Solna, Sweden
| | - Axel Abelein
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Sonia Laίn
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Biomedicum, Solna, Sweden
| | - Henrik Biverstål
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solna, Sweden
| | - David P Lane
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Biomedicum, Solna, Sweden
| | - Anna Rising
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Biomedicum, Solna, Sweden
| |
Collapse
|
16
|
Marklund EG, Benesch JL. Weighing-up protein dynamics: the combination of native mass spectrometry and molecular dynamics simulations. Curr Opin Struct Biol 2019; 54:50-58. [PMID: 30743182 DOI: 10.1016/j.sbi.2018.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022]
Abstract
Structural dynamics underpin biological function at the molecular level, yet many biophysical and structural biology approaches give only a static or averaged view of proteins. Native mass spectrometry yields spectra of the many states and interactions in the structural ensemble, but its spatial resolution is limited. Conversely, molecular dynamics simulations are innately high-resolution, but have a limited capacity for exploring all structural possibilities. The two techniques hence differ fundamentally in the information they provide, returning data that reflect different length scales and time scales, making them natural bedfellows. Here we discuss how the combination of native mass spectrometry with molecular dynamics simulations is enabling unprecedented insights into a range of biological questions by interrogating the motions of proteins, their assemblies, and interactions.
Collapse
Affiliation(s)
- Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75 123, Uppsala, Sweden.
| | - Justin Lp Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
17
|
He M, Luo P, Hong J, Wang X, Wu H, Zhang R, Qu F, Xiang Y, Xu W. Structural Analysis of Biomolecules through a Combination of Mobility Capillary Electrophoresis and Mass Spectrometry. ACS OMEGA 2019; 4:2377-2386. [PMID: 31459477 PMCID: PMC6648644 DOI: 10.1021/acsomega.8b03224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/24/2019] [Indexed: 05/08/2023]
Abstract
The 3D structures of biomolecules determine their biological function. Established methods in biomolecule structure determination typically require purification, crystallization, or modification of target molecules, which limits their applications for analyzing trace amounts of biomolecules in complex matrices. Here, we developed instruments and methods of mobility capillary electrophoresis (MCE) and its coupling with MS for the 3D structural analysis of biomolecules in the liquid phase. Biomolecules in complex matrices could be separated by MCE and sequentially detected by MS. The effective radius and the aspect ratio of each separated biomolecule were simultaneously determined through the separation by MCE, which were then used as restraints in determining biomolecule conformations through modeling. Feasibility of this method was verified by analyzing a mixture of somatostatin and bradykinin, two peptides with known liquid-phase structures. Proteins could also be structurally analyzed using this method, which was demonstrated for lysozyme. The combination of MCE and MS for complex sample analysis was also demonstrated. MCE and MCE-MS would allow us to analyze trace amounts of biomolecules in complex matrices, which has the potential to be an alternative and powerful biomolecule structure analysis technique.
Collapse
Affiliation(s)
- Muyi He
- College
of Information Science, Shenzhen University, Shenzhen 518060, China
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pan Luo
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Hong
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaofeng Wang
- Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haimei Wu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongkai Zhang
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Qu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ye Xiang
- Beijing
Advanced Innovation Center for Structural Biology, Department of Basic
Medical Sciences, School of Medicine, Tsinghua
University, Beijing 100084, China
- E-mail: (Y.X.)
| | - Wei Xu
- College
of Information Science, Shenzhen University, Shenzhen 518060, China
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, China
- E-mail: (W.X.)
| |
Collapse
|
18
|
Gault J, Lianoudaki D, Kaldmäe M, Kronqvist N, Rising A, Johansson J, Lohkamp B, Laín S, Allison TM, Lane DP, Marklund EG, Landreh M. Mass Spectrometry Reveals the Direct Action of a Chemical Chaperone. J Phys Chem Lett 2018; 9:4082-4086. [PMID: 29975538 DOI: 10.1021/acs.jpclett.8b01817] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Despite their fundamental biological importance and therapeutic potential, the interactions between chemical chaperones and proteins remain difficult to capture due to their transient and nonspecific nature. Using a simple mass spectrometric assay, we are able to follow the interactions between proteins and the chemical chaperone trimethylamine- N-oxide (TMAO). In this manner, we directly observe that the counteraction of TMAO and the denaturant urea is driven by the exclusion of TMAO from the protein surface, whereas the surfactant lauryl dimethylamine- N-oxide cannot be displaced. Our results clearly demonstrate a direct chaperoning mechanism for TMAO, corroborating extensive computational studies, and pave the way for the use of nondenaturing mass spectrometry and related techniques to study chemical chaperones in molecular detail.
Collapse
Affiliation(s)
- Joseph Gault
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Danai Lianoudaki
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Tomtebodavägen 23A , 171 65 Stockholm , Sweden
| | - Margit Kaldmäe
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Tomtebodavägen 23A , 171 65 Stockholm , Sweden
| | - Nina Kronqvist
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS) , Karolinska Institutet , 141 83 Huddinge , Sweden
| | - Anna Rising
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS) , Karolinska Institutet , 141 83 Huddinge , Sweden
- Swedish University of Agricultural Sciences, Dept of Anatomy, Physiology and Biochemistry, Box 7011 , 750 07 Uppsala , Sweden
| | - Jan Johansson
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS) , Karolinska Institutet , 141 83 Huddinge , Sweden
| | - Bernhard Lohkamp
- Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Solnavägen 9 , 171 77 Stockholm , Sweden
| | - Sonia Laín
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Tomtebodavägen 23A , 171 65 Stockholm , Sweden
| | - Timothy M Allison
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences , University of Canterbury , Christchurch 8140 , New Zealand
| | - David P Lane
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Tomtebodavägen 23A , 171 65 Stockholm , Sweden
| | - Erik G Marklund
- Department of Chemistry - BMC , Uppsala University , Box 576, 751 23 Uppsala , Sweden
| | - Michael Landreh
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Tomtebodavägen 23A , 171 65 Stockholm , Sweden
| |
Collapse
|
19
|
Zhou Y, Rising A, Johansson J, Meng Q. Production and Properties of Triple Chimeric Spidroins. Biomacromolecules 2018; 19:2825-2833. [DOI: 10.1021/acs.biomac.8b00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yizhong Zhou
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Anna Rising
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
20
|
Bauer J, Scheibel T. Dimerization of the Conserved N-Terminal Domain of a Spider Silk Protein Controls the Self-Assembly of the Repetitive Core Domain. Biomacromolecules 2017. [DOI: 10.1021/acs.biomac.7b00672] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Joschka Bauer
- Lehrstuhl
Biomaterialien, ‡Forschungszentrum für Bio-Makromoleküle (BIOmac), §Bayreuther Zentrum für
Kolloide und Grenzflächen (BZKG), ∥Bayreuther Materialzentrum (BayMat), ⊥Bayreuther Zentrum für Molekulare Biowissenschaften
(BZMB), and #Bayrisches
Polymerinstitut (BPI), Universität Bayreuth, 95440 Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl
Biomaterialien, ‡Forschungszentrum für Bio-Makromoleküle (BIOmac), §Bayreuther Zentrum für
Kolloide und Grenzflächen (BZKG), ∥Bayreuther Materialzentrum (BayMat), ⊥Bayreuther Zentrum für Molekulare Biowissenschaften
(BZMB), and #Bayrisches
Polymerinstitut (BPI), Universität Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|