1
|
Zhang Z, Li J, Yang B, Ma M, Ding X, Shi H, Ma P, Song D, Zhang Z. Near-infrared fluorescent probe for ultrasensitive detection of organophosphorus pesticides and visualization of their interaction with butyrylcholinesterase in living cells. Talanta 2024; 279:126587. [PMID: 39032455 DOI: 10.1016/j.talanta.2024.126587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The toxicity of organophosphorus pesticides (OPs) can catastrophically cause liver cell damage and inhibit the catalytic activity of cholinesterase. We designed and synthesized a near-infrared fluorescent probe HP-LZB with large Stokes shift which can specifically identify and detect butyrylcholinesterase (BChE) and visually explore the interaction between OPs and endogenous BChE in living cells. Fluorescence was turned on when HP-LZB was hydrolyzed into HP-LZ in the presence of BChE, and OPs could inhibit BChE's activity resulting in a decrease of fluorescence. Six OPs including three oxon pesticides (paraoxon, chlorpyrifos oxon and diazoxon) and their corresponding thion pesticides (parathion, chlorpyrifos and diazinon) were investigated. Both in vitro and cell experiments indicated that only oxon pesticides could inhibit BChE's activity. The limits of detection (LODs) of paraoxon, chlorpyrifos oxon and diazoxon were as low as 0.295, 0.007 and 0.011 ng mL-1 respectively and the recovery of OPs residue in vegetable samples was satisfactory. Thion pesticides themselves could hardly inhibit the activity of BChE and are only toxic when they are converted to their corresponding oxon form in the metabolic process. However, in this work, thion pesticides were found not be oxidized into their oxon forms in living HepG2 cells due to the lack of cytochrome P450 in hepatoma HepG2 cell lines. Therefore, this probe has great application potential in effectively monitoring OPs in real plant samples and visually exploring the interaction between OPs and BChE in living cells.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Bin Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Xiangdong Ding
- China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130012, China
| | - Hui Shi
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
2
|
Guo Z, Peng J, Zhou Z, Wang F, He M, Lu S, Chen X. Benzorhodol derived far-red/near-infrared fluorescent probes for selective and sensitive detection of butyrylcholinesterase activity in living cells and the non-alcoholic fatty liver of zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4054-4059. [PMID: 38869016 DOI: 10.1039/d4ay00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Liver diseases are a growing public health concern and the development of non-alcoholic fatty liver disease (NAFLD) has a significant impact on human metabolism. Butyrylcholinesterase (BChE) is a vital biomarker for NAFLD, making it crucial to monitor BChE activity with high sensitivity and selectivity. In this study, we designed and synthesized a range of benzorhodol-derived far-red/near-infrared fluorescent probes, FRBN-B, NF-SB, and NF-B, for the quantitative detection and imaging of BChE. These probes differed in the size of their conjugated systems and in the number of incorporated cyclopropanecarboxylates, acting as the recognition site for BChE. Comprehensive characterization showed that FRBN-B and NF-SB fluorescence was triggered by BChE-mediated hydrolysis, while an additional cyclopropanecarboxylate in NF-B impeded the fluorescence release. High selectivity towards BChE was observed for FRBN-B and NF-SB, with a detection limit of 7.2 × 10-3 U mL-1 for FRBN-B and 1.9 × 10-3 U mL-1 for NF-SB. The probes were further employed in the evaluation of BChE inhibitor efficacy and imaging of intracellular BChE activity. Additionally, FRBN-B was utilized for imaging the BChE activity level in liver tissues in zebrafish, demonstrating its potential as a diagnostic tool for NAFLD.
Collapse
Affiliation(s)
- Ziwei Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Junqian Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Zhiqiang Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Mingfang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Li JM, Liu YZ, Lv XF, Zhou DH, Zhang H, Chen YJ, Li K. Construction of a novel aminofluorene-based ratiometric near-infrared fluorescence probe for detecting carboxylesterase activity in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3641-3645. [PMID: 38812419 DOI: 10.1039/d4ay00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Herein, we constructed a novel aminofluorene-based fluorescence probe (FEN-CE) for the detection of carboxylesterase (CE) in living cells by a ratiometric near-infrared (NIR) fluorescence signal. FEN-CE with NIR emission (650 nm) could be hydrolyzed specifically by CE and transformed to FENH with the release of the self-immolative group, which exhibited a red-shifted emission peak of 680 nm. In addition, FEN-CE showed high selectivity for CE and was successfully used in the detection of CE activity in living cells through its ratiometric NIR fluorescence signals.
Collapse
Affiliation(s)
- Jun-Mei Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yan-Zhao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Xiao-Fang Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Ding-Heng Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yu-Jin Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Wang L, Sun T, Zhen T, Li W, Yang H, Wang S, Feng F, Chen Y, Sun H. Butyrylcholinesterase-Activated Near-Infrared Fluorogenic Probe for In Vivo Theranostics of Alzheimer's Disease. J Med Chem 2024; 67:6793-6809. [PMID: 38546542 DOI: 10.1021/acs.jmedchem.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Butyrylcholinesterase (BChE) is a promising biomarker and effective therapeutic target for Alzheimer's disease (AD). Herein, we designed a BChE-activated near-infrared (NIR) probe, DTNP, which could be activated by BChE and inhibit its enzymatic activity. DTNP is composed of a cyclopropane moiety as the recognition unit, a NIR fluorophore hemicyanine as the NIR reporter, and a BChE inhibitor as the therapeutic unit. DTNP specifically binds BChE with high sensitivity and exhibits strong "turn-on" NIR fluorescence as well as nerve cell protection. In vivo imaging shows DTNP has favorable blood-brain barrier permeability and long-term tracking ability with preliminary competence in AD diagnosis. DTNP can significantly inhibit BChE activity, promote the release of ACh, and rescue learning deficits and cognitive impairment. Therefore, DTNP, the first reported and partially validated theranostic probe for the detection of BChE in AD, may provide a foundation and inspiration for imaging and therapy in AD.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wei Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Huajing Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Suyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
5
|
Li H, Li XD, Yan CH, Ni ZH, Lü MH, Zou LW, Yang L. Rational design of a near-infrared fluorescent probe for monitoring butyrylcholinesterase activity and its application in development of inhibitors. Front Bioeng Biotechnol 2024; 12:1387146. [PMID: 38638318 PMCID: PMC11024273 DOI: 10.3389/fbioe.2024.1387146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Butyrylcholinesterase (BChE) is widely expressed in multiple tissues and has a vital role in several key human disorders, such as Alzheimer's disease and tumorigenesis. However, the role of BChE in human disorders has not been investigated. Thus, to quantitatively detect and visualize dynamical variations in BChE activity is essential for exploring the biological roles of BChE in the progression of a number of human disorders. Herein, based on the substrate characteristics of BChE, we customized and synthesized three near-infrared (NIR) fluorescent probe substrates with cyanine-skeleton, and finally selected a NIR fluorescence probe substrate named CYBA. The CYBA demonstrated a significant increase in fluorescence when interacting with BChE, but mainly avoided AChE. Upon the addition of BChE, CYBA could be specifically hydrolyzed to TBO, resulting in a significant NIR fluorescence signal enhancement at 710 nm. Systematic evaluation revealed that CYBA exhibited exceptional chemical stability in complex biosamples and possessed remarkable selectivity and sensitivity towards BChE. Moreover, CYBA was successfully applied for real-time imaging of endogenous BChE activity in two types of nerve-related living cells. Additionally, CYBA demonstrated exceptional stability in the detection of complex biological samples in plasma recovery studies (97.51%-104.01%). Furthermore, CYBA was used to construct a high-throughput screening (HTS) method for BChE inhibitors using human plasma as the enzyme source. We evaluated inhibitory effects of a series of natural products and four flavonoids were identified as potent inhibitors of BChE. Collectively, CYBA can serve as a practical tool to track the changes of BChE activity in complicated biological environments due to its excellent capabilities.
Collapse
Affiliation(s)
- Hao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Dong Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao-Hua Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Hua Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mu-Han Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li-Wei Zou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Wang H, Lai J, Xu X, Yu W, Wang X. Combination of gold nanoclusters and silicon quantum dots for ratiometric fluorometry: One system, two mechanisms. J Pharm Biomed Anal 2024; 240:115940. [PMID: 38198882 DOI: 10.1016/j.jpba.2023.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
A ratiometric fluorometry based on silicon quantum dots (SiQDs) and gold nanoclusters (AuNCs) is constructed for detecting activity of butyrylcholinesterase (BChE) in human serum. By using thiobutyrylcholine iodide (BTCh) as the substrate of BChE-catalyzed hydrolysis reaction, variation of fluorescence emission from AuNCs is employed as an indicator of BChE activity since one of the hydrolysis products, thiocholine (TCh), would influence the aggregation state of AuNCs and consequently led to the change of fluorescence quantum efficiency of AuNCs. It is interesting that there are two mechanisms working for the fluorescence emission of aggregated AuNCs: aggregation-induced emission enhancement (AIEE) and aggregation-caused quenching (ACQ) with the presence of TCh at very low and higher concentration levels, respectively. Although both of these mechanisms can be utilized for sensing BChE, their opposite influence on the fluorescence emission of aggregated AuNCs should be worthy of attention, especially in the process of developing fluorescence methods for detecting trace targets by using AuNCs. In order to eliminate the fluctuation of fluorophotometer, SiQDs is chosen as the fluorophore to develop by ratiometric fluorescence methods in this work. Additionally, obvious aggregation of AuNCs induces significant decrease of inner filter effect (IFE) on the fluorescence emitted from SiQDs, while mild aggregation of AuNCs demonstrates little IFE. The linear ranges for detecting activity of BChE are 0.004 - 0.05 U/L and 0.5 - 20 U/L by ratiometric fluorometry based on the AIEE and ACQ, respectively. The very different responses originated from AIEE and ACQ of AuNCs would respectively make their own contributions to the determination of BChE activities at very low or high levels, which facilitate the developments of enhanced or quenched fluorescence methods. However, the detection of BChE activities at medium levels might suffer from the combination of AIEE and ACQ with ambiguous fractions. Therefore, it must be careful during the processes of developing and applying fluorescence methods based on the AIEE and ACQ of AuNCs, as well as the process of evaluating their analytical performance.
Collapse
Affiliation(s)
- Haozhi Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jinyu Lai
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xiaohui Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Wei Yu
- Department of Plastic and Reconstructive Microsurgery, China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun 130033, China
| | - Xinghua Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| |
Collapse
|
7
|
Tang X, Zhang Y, Wang Q, Li Z, Zhang C. Detection of acetylcholinesterase and butyrylcholinesterase in vitro and in vivo using a new fluorescent probe. Chem Commun (Camb) 2024; 60:2082-2085. [PMID: 38293842 DOI: 10.1039/d3cc06055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A new fluorescence probe OHPD that could specifically identify acetylcholinesterase/butyrylcholinesterase has been developed and successfully applied to imaging in vivo. Probe OHPD shows significant color change, high selectivity, high sensitivity, and low detection limit for the detection of cholinesterase. Moreover, the real-time imaging in situ indicated that endogenous cholinesterase was mainly present in the yolk sac of zebrafish.
Collapse
Affiliation(s)
- Xiaojie Tang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Yuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Qiuyue Wang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Chengxiao Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
8
|
Dirak M, Chan J, Kolemen S. Optical imaging probes for selective detection of butyrylcholinesterase. J Mater Chem B 2024; 12:1149-1167. [PMID: 38196348 DOI: 10.1039/d3tb02468g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Butyrylcholinesterase (BChE), a member of the human serine hydrolase family, is an essential enzyme for cholinergic neurotransmission as it catalyzes the hydrolysis of acetylcholine. It also plays central roles in apoptosis, lipid metabolism, and xenobiotic detoxification. On the other side, abnormal levels of BChE are directly associated with the formation of pathogenic states such as neurodegenerative diseases, psychiatric and cardiovascular disorders, liver damage, diabetes, and cancer. Thus, selective and sensitive detection of BChE level in living organisms is highly crucial and is of great importance to further understand the roles of BChE in both physiological and pathological processes. However, it is a very complicated task due to the potential interference of acetylcholinesterase (AChE), the other human cholinesterase, as these two enzymes share a very similar substrate scope. To this end, optical imaging probes have attracted immense attention in recent years as they have modular structures, which can be tuned precisely to satisfy high selectivity toward BChE, and at the same time they offer real time and nondestructive imaging opportunities with a high spatial and temporal resolution. Here, we summarize BChE selective imaging probes by discussing the critical milestones achieved during the development process of these molecular sensors over the years. We put a special emphasis on design principles and biological applications of highly promising new generation activity-based probes. We also give a comprehensive outlook for the future of BChE-responsive probes and highlight the ongoing challenges. This collection marks the first review article on BChE-responsive imaging agents.
Collapse
Affiliation(s)
- Musa Dirak
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| |
Collapse
|
9
|
Acari A, Almammadov T, Dirak M, Gulsoy G, Kolemen S. Real-time visualization of butyrylcholinesterase activity using a highly selective and sensitive chemiluminescent probe. J Mater Chem B 2023. [PMID: 37377112 DOI: 10.1039/d3tb01022h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Butyrylcholinesterase (BChE), one of the critical human cholinesterases, plays crucial roles in numerous physiological and pathological processes. Accordingly, it is a striking and at the same time challenging target for bioimaging studies. Herein, we developed the first ever example of a 1,2-dixoetane-based chemiluminescent probe (BCC) for monitoring BChE activity in native biological contexts such as living cells and animals. BCC was initially shown to exhibit a highly selective and sensitive turn-on response in its luminescence signal upon reacting with BChE in aqueous solutions. Later, BCC was utilized to image endogenous BChE activity in normal and cancer cell lines. It was also shown through inhibition experiments that BChE can detect fluctuations of BChE levels successfully. In vivo imaging ability of BCC was demonstrated in healthy and tumor-bearing mice models. BCC enabled us to visualize the BChE activity in different regions of the body. Furthermore, it was successfully employed to monitor tumors derived from neuroblastoma cells with a very high signal to noise ratio. Thus, BCC appears as a highly promising chemiluminescent probe, which can be used to further understand the contribution of BChE to regular cellular processes and the formation of diseased states.
Collapse
Affiliation(s)
- Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey.
| | - Toghrul Almammadov
- Koç University, Department of Chemistry, 34450 Istanbul, Turkey
- Univesity of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Musa Dirak
- Koç University, Department of Chemistry, 34450 Istanbul, Turkey
| | - Goktug Gulsoy
- Koç University, Department of Chemistry, 34450 Istanbul, Turkey
| | - Safacan Kolemen
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey.
- Koç University, Department of Chemistry, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), 34450 Istanbul, Turkey
| |
Collapse
|
10
|
Guo WY, Fu YX, Mei LC, Chen Z, Zhang ZY, Wang F, Yang WC, Liu G, Yang GF. Rational Design of Esterase-Insensitive Fluorogenic Probes for In Vivo Imaging. ACS Sens 2023; 8:2041-2049. [PMID: 37146071 DOI: 10.1021/acssensors.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Small-molecule fluorogenic probes are indispensable tools for performing research in biomedical fields and chemical biology. Although numerous cleavable fluorogenic probes have been developed to investigate various bioanalytes, few of them meet the baseline requirements for in vivo biosensing for disease diagnosis due to their insufficient specificity resulted from the remarkable esterase interferences. To address this critical issue, we developed a general approach called fragment-based fluorogenic probe discovery (FBFPD) to design esterase-insensitive probes for in vitro and in vivo applications. With the designed esterase-insensitive fluorogenic probe, we successfully achieved light-up in vivo imaging and quantitative analysis of cysteine. This strategy was further extended to design highly specific fluorogenic probes for other representative targets, sulfites, and chymotrypsin. The present study expands the bioanalytical toolboxes available and offers a promising platform to develop esterase-insensitive cleavable fluorogenic probes for in vivo biosensing and bioimaging for the early diagnosis of diseases.
Collapse
Affiliation(s)
- Wu-Yingzheng Guo
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Yi-Xuan Fu
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Long-Can Mei
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Zhao Chen
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Zi-Ye Zhang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Fan Wang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
11
|
Pei X, Fang Y, Gu H, Zheng S, Bin X, Wang F, He M, Lu S, Chen X. A turn-on fluorescent probe based on ESIPT and AIEE mechanisms for the detection of butyrylcholinesterase activity in living cells and in non-alcoholic fatty liver of zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122044. [PMID: 36327810 DOI: 10.1016/j.saa.2022.122044] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are two important cholinesterase enzymes in human metabolism which are closely related to various diseases of the liver. BChE and AChE are difficult to be distinguished due to their similarity in biochemical properties. Therefore, developing BChE-specific probes with high sensitivity and low background reading is desirable for the relevant biological applications. Herein, we reported the design and synthesis of a fluorescent probe HBT-BChE for biological detection and imaging of BChE. The probe is triggered by BChE-mediated hydrolysis, releasing a fluorophore that holds AIEE and ESIPT properties with large Stokes shift (>100 nm), rendering the probe features of low background interference and high sensitivity. The probe can also distinguish BChE from AChE with a low detection limit of 7.540 × 10-4 U/mL. Further in vitro studies have shown the ability of HBT-BChE to detect intracellular BChE activity, as well as to evaluate the efficiency of the BChE inhibitor. More importantly, the in vivo studies of imaging the BChE activity level in liver tissues using zebrafish as the model animal demonstrated the potential of HBT-BChE as a powerful tool for non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xiangyu Pei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - YuHang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Hao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Xinni Bin
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Mingfang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
12
|
Yang Y, Zhang L, Wang J, Cao Y, Li S, Qin W, Liu Y. Diagnosis of Alzheimer's Disease and In Situ Biological Imaging via an Activatable Near-Infrared Fluorescence Probe. Anal Chem 2022; 94:13498-13506. [PMID: 36121878 DOI: 10.1021/acs.analchem.2c02627] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that makes the brain nervous system degenerate rapidly and is accompanied by some special cognitive and behavioral dysfunction. Recently, butyrylcholinesterase (BChE) was reported as an important enzyme, whose activity can provide predictive value for timely discovery and diagnosis of AD. Therefore, it is indispensable to design a detection tool for selective and rapid response toward BChE. In this study, we developed a novel near-infrared fluorescent probe (Chy-1) for the detection of BChE activity. An excellent sensitivity, good biocompatibility, and lower limit of detection (LOD) of 0.12 ng/mL made the probe extremely specific for BChE, which was successfully used in biological imaging. What is more, Chy-1 can not only clearly distinguish tumor from normal cells but also forms a clear boundary between the normal and cancer tissues due to the obvious difference in fluorescence intensity produced via in situ spraying. Most important of all, Chy-1 was also successfully applied to track the BChE activity in AD mouse models. Based on this research, the novel probe may be a powerful tool for clinical diagnosis and therapy of tumor and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuexia Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing400037, P. R. China
| | - Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Shuyan Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing400010, P.R. China
| |
Collapse
|
13
|
Xiang J, Xiang C, Zhou L, Sun M, Feng L, Liu C, Cai L, Gong P. Rational Design, Synthesis of Fluorescence Probes for Quantitative Detection of Amyloid-β in Alzheimer's Disease Based on Rhodamine-Metal Complex. Anal Chem 2022; 94:11791-11797. [PMID: 35977343 DOI: 10.1021/acs.analchem.2c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficient detection and monitoring of amyloid-β plaques (Aβ42) can greatly promote the diagnosis and therapy of Alzheimer's disease (AD). Fluorescence imaging is a promising method for this, but the accurate determination of Aβ42 still remains a challenge. The development of a reliable fluorescent probe to detect Aβ42 is essential. Herein, we report a rational design strategy for Aβ42 fluorescence probes based on rhodamine-copper complexes, Rho1-Cu-Rho4-Cu, among them Rho4-Cu exhibits the best performance including high sensitivity (detection limit = 24 nM), high affinity (Kd = 23.4 nM), and high selectivity; hence, Rho4-Cu is selected for imaging Aβ42 in AD mice, and the results showed that this probe can differentiate normal mice and AD mice effectively.
Collapse
Affiliation(s)
- Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lihua Zhou
- School of Applied Biology, Shenzhen Institute of Technology, No. 1 Jiangjunmao, Shenzhen 518116, China
| | - Mengsi Sun
- Biochemistry Core, ShenZhen Bay Laboratory, Shenzhen 518132, China
| | - Lixiong Feng
- School of Applied Biology, Shenzhen Institute of Technology, No. 1 Jiangjunmao, Shenzhen 518116, China
| | - Chuangjun Liu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
14
|
Li YX, Xie DT, Yang YX, Chen Z, Guo WY, Yang WC. Development of Small-Molecule Fluorescent Probes Targeting Enzymes. Molecules 2022; 27:molecules27144501. [PMID: 35889374 PMCID: PMC9324355 DOI: 10.3390/molecules27144501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
As biological catalysts, enzymes are vital in controlling numerous metabolic reactions. The regulation of enzymes in living cells and the amount present are indicators of the metabolic status of cell, whether in normal condition or disease. The small-molecule fluorescent probes are of interest because of their high sensitivity and selectivity, as well as their potential for automated detection. Fluorescent probes have been useful in targeting particular enzymes of interest such as proteases and caspases. However, it is difficult to develop an ideal fluorescent probe for versatile purposes. In the future, the design and synthesis of enzyme-targeting fluorescent probes will focus more on improving the selectivity, sensitivity, penetration ability and to couple the fluorescent probes with other available imaging molecules/technologies.
Collapse
Affiliation(s)
- Yuan-Xiang Li
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China; (Y.-X.L.); (D.-T.X.); (Y.-X.Y.)
| | - Dong-Tai Xie
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China; (Y.-X.L.); (D.-T.X.); (Y.-X.Y.)
| | - Ya-Xi Yang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China; (Y.-X.L.); (D.-T.X.); (Y.-X.Y.)
| | - Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; (Z.C.); (W.-Y.G.)
| | - Wu-Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; (Z.C.); (W.-Y.G.)
| | - Wen-Chao Yang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China; (Y.-X.L.); (D.-T.X.); (Y.-X.Y.)
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; (Z.C.); (W.-Y.G.)
- Correspondence: ; Tel.: +86-27-67867706; Fax: +86-27-67867141
| |
Collapse
|
15
|
Yang JF, Chen WJ, Zhou LM, Hewage KAH, Fu YX, Chen MX, He B, Pei RJ, Song K, Zhang JH, Yin J, Hao GF, Yang GF. Real-Time Fluorescence Imaging of the Abscisic Acid Receptor Allows Nondestructive Visualization of Plant Stress. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28489-28500. [PMID: 35642545 DOI: 10.1021/acsami.2c02156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmental stress greatly decreases crop yield. The application of noninvasive techniques is one of the most practical and feasible ways of monitoring the health condition of plants under stress. However, it remains largely unsolved. A chemical fluorescent probe can be applied as a typical nondestructive method, but it has not been applied in living plants for stress detection to date. The abscisic acid (ABA) receptor plays a central role in conferring tolerance to environmental stresses and is an excellent target for developing fluorescent probes. Herein, we developed a fluorescence molecular imaging technology to monitor live plant stress by visualizing the protein expression level of the ABA receptor PYR1. A computer-aided designed indicator dye, flubactin, exhibited an 8-fold enhancement in fluorescence intensity upon interaction with PYR1. In vitro and in vivo experiments showed that flubactin is suitable to be used to detect salt stress in plants in real time. Moreover, the low toxicity of flubactin promotes its application in the future. Our work opens a new era for the nondestructive visualization of plant stress in vivo.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Wei-Jie Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Li-Ming Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Kamalani Achala H Hewage
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Bo He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Rong-Jie Pei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ke Song
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Jian-Hua Zhang
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong 300072, China
| | - Jun Yin
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
16
|
Xiang C, Xiang J, Yang X, Li C, Zhou L, Jiang D, Peng Y, Xu Z, Deng G, Zhu B, Zhang P, Cai L, Gong P. Ratiometric imaging of butyrylcholinesterase activity in mice with nonalcoholic fatty liver using an AIE-based fluorescent probe. J Mater Chem B 2022; 10:4254-4260. [PMID: 35583194 DOI: 10.1039/d2tb00422d] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Butyrylcholinesterase (BChE) is an essential human biomarker which is related to liver and neurodegenerative diseases. It is of great significance to develop a fluorescent probe that can image BChE in vitro and in vivo. Unfortunately, most fluorescent probes that are based on a single change in fluorescence intensity are susceptible to environmental interference. Therefore, we reported an easily available ratiometric fluorescent probe, TB-BChE, with aggregation-induced emission (AIE) characteristics for ratiometric imaging of BChE. TB-BChE demonstrated excellent sensitivity (LOD = 39.24 ng mL-1) and specificity for BChE. Moreover, we have successfully studied the ratiometric imaging of TB-BChE to BChE in a nonalcoholic fatty liver disease model. These results indicated that TB-BChE is expected to become a powerful analysis tool for butyrylcholinesterase research in basic medicine and clinical applications.
Collapse
Affiliation(s)
- Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Lihua Zhou
- School of Applied Biology, Shenzhen Institute of Technology, No. 1 Jiangjunmao, Shenzhen 518116, P. R. China
| | - Daoyong Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yonglin Peng
- Pinete (Zhongshan) Biotechnology Co., Ltd. Digital trade building, No. 6, Xiangxing Road, Torch Development Zone, Zhongshan, 528400, China
| | - Zhen Xu
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Guanjun Deng
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Baode Zhu
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
17
|
High-throughput optical assays for sensing serine hydrolases in living systems and their applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Di Y, Zhang E, Yang Z, Shen Q, Fu X, Song G, Zhu C, Bai H, Huang Y, Lv F, Liu L, Wang S. Selective Fluorescence Imaging of Cancer Cells Based on ROS-Triggered Intracellular Cross-Linking of Artificial Enzyme. Angew Chem Int Ed Engl 2022; 61:e202116457. [PMID: 35064623 DOI: 10.1002/anie.202116457] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 01/23/2023]
Abstract
Inside living cells, regulation of catalytic activity of artificial enzymes remains challenging due to issues such as biocompatibility, efficiency, and stability of the catalyst, by which the practical applications of artificial enzymes have been severely hindered. Here, an artificial enzyme, PTT-SGH, with responsiveness to reactive oxygen species (ROS), was obtained by introducing a catalytic histidine residue to pentaerythritol tetra(3-mercaptopropionate) (PTT). The artificial enzyme formed large aggregates in cells via the intracellular ROS-mediated oxidation of thiol groups. The process was significantly facilitated in tumor cells because of the higher ROS concentration in the tumor microenvironment. The catalytic activity of this artificial enzyme was intensively enhanced through deprotonation of cross-linked PTT-SGH, which showed typical esterase activities. Selective fluorescence imaging of tumor cells was achieved using the artificial enzyme to trigger the cleavage of the ester bond of the caged fluorophore inside living cells.
Collapse
Affiliation(s)
- Yufei Di
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Endong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuancheng Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuanwei Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Di Y, Zhang E, Yang Z, Shen Q, Fu X, Song G, Zhu C, Bai H, Huang Y, Lv F, Liu L, Wang S. Selective Fluorescence Imaging of Cancer Cells Based on ROS‐Triggered Intracellular Cross‐Linking of Artificial Enzyme. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yufei Di
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Endong Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xuancheng Fu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chuanwei Zhu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
20
|
Zhang P, Fu C, Liu H, Guo X, Zhang Q, Gao J, Chen W, Yuan W, Ding C. AND-Logic Strategy for Accurate Analysis of Alzheimer's Disease via Fluorescent Probe Lighted Up by Two Specific Biomarkers. Anal Chem 2021; 93:11337-11345. [PMID: 34353021 DOI: 10.1021/acs.analchem.1c02943] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) has become a global threat to the elderly health with a short survival time after diagnosis. Due to the asymptomatic stage during the early development, patients are usually diagnosed at the middle or late stage. Therefore, an efficient tool for AD early diagnosis deserves considerable attention, which could make a significant contribution to the treatment intervention. A fluorescent probe has been widely applied for detecting and visualizing species of interest in vitro and in vivo, and the proper reaction between the probe and analytes is responsible for the fluorescence change to provide a lighting-on or ratiometric responsive pattern with satisfactory sensing behavior. In this work, we report the first attempt to build up an AND-logic probe P2 for AD accuracy diagnosis taking butyrylcholinesterase (BChE) and reactive oxygen species (ROSs) as dual targets. Upon the co-stimulation by these two factors through enzymatic hydrolysis and redox reaction, the NIR emission could be readily turned on. This AND sensing pattern avoided the false-positive response effectively, and other diseases sharing one biomarker could hardly induce a NIR fluorescence response. The sensing assay has also been confirmed to be feasible in vitro and in vivo with good sensibility and selectivity. It is worth mentioning that the probe structure has been optimized in terms of the linkage length. This study shows that probe P2 with a connecting arm of medium length (one methylene, n = 1) has superior sensing performance, promising to provide a reference for the relative structure design.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Caixia Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haihong Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wenjuan Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wei Yuan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
21
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
22
|
Zhang Q, Fu C, Guo X, Gao J, Zhang P, Ding C. Fluorescent Determination of Butyrylcholinesterase Activity and Its Application in Biological Imaging and Pesticide Residue Detection. ACS Sens 2021; 6:1138-1146. [PMID: 33503372 DOI: 10.1021/acssensors.0c02398] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Butyrylcholinesterase (BChE) is an essential human cholinesterase relevant to liver conditions and neurodegenerative diseases, which makes it a pivotal biomarker of health. It therefore remains challenging and highly desired to elaborate efficient chemical tools for BChE with simple operations and satisfactory working performance. In this work, a background-free detection strategy was built by virtue of the judicious coupling of a specific BChE-enzymatic reaction and in situ cyclization. High sensitivity with a low limit of detection (LOD) of 0.075 μg/mL could be readily achieved from the blank background and the as-produced emissive indicators, and the specific reaction site contributed to the high selectivity over other bio-species even acetylcholinesterase (AChE). In addition to the multifaceted spectral experiments to verify the sensing mechanism, this work assumed comprehensive studies on the application. The bio-investigation ranged from cells to an organism, declaring a noteworthy prospect in disease diagnosis, especially for Alzheimer's disease (AD), a common neurodegenerative disease with over-expressed BChE. Moreover, its excellent work for inhibition efficacy elucidation was also proved with the accuracy IC50 of tacrine for BChE (8.6 nM), giving rise to an expanded application for trace pesticide determination.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caixia Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
23
|
Qu Z, Yu T, Liu Y, Bi L. Determination of butyrylcholinesterase activity based on thiamine luminescence modulated by MnO 2 nanosheets. Talanta 2021; 224:121831. [PMID: 33379049 DOI: 10.1016/j.talanta.2020.121831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
In this paper, a novel strategy for biosensing butyrylcholinesterase (BChE) activity is developed based on manganese dioxide (MnO2) nanosheets to modulate the photoluminescence of thiamine (TH). The oxidase-like activity of MnO2 nanosheets enables them to catalyze the oxidation of non-fluorescent substrate TH to generate strong fluorescent thiochrome (TC). When the target BChE is introduced to form thiocholine in the presence of S-butyrylthiocholine iodide (BTCh), MnO2 nanosheets are reduced by thiocholine to Mn2+, resulting in the loss of their oxidase-like activity and the reduction of TC fluorescence. Based on this, a BChE activity fluorescence biosensor is constructed utilizing the luminescence behavior variation of TH and the oxidase-like activity of MnO2 nanosheets. The fluorescence biosensor shows a sensitive response to BChE, and the detection limit reaches 0.036 U L-1. In addition, the feasibility of the biosensor in real samples analysis is studied with satisfactory results.
Collapse
Affiliation(s)
- Zhengyi Qu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Tian Yu
- College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Yuzhong Liu
- Jilin University First Hospital, Changchun, 130021, PR China
| | - Lihua Bi
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
24
|
Pajk S, Knez D, Košak U, Zorović M, Brazzolotto X, Coquelle N, Nachon F, Colletier JP, Živin M, Stojan J, Gobec S. Development of potent reversible selective inhibitors of butyrylcholinesterase as fluorescent probes. J Enzyme Inhib Med Chem 2020; 35:498-505. [PMID: 31914836 PMCID: PMC6968640 DOI: 10.1080/14756366.2019.1710502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
Brain butyrylcholinesterase (BChE) is an attractive target for drugs designed for the treatment of Alzheimer's disease (AD) in its advanced stages. It also potentially represents a biomarker for progression of this disease. Based on the crystal structure of previously described highly potent, reversible, and selective BChE inhibitors, we have developed the fluorescent probes that are selective towards human BChE. The most promising probes also maintain their inhibition of BChE in the low nanomolar range with high selectivity over acetylcholinesterase. Kinetic studies of probes reveal a reversible mixed inhibition mechanism, with binding of these fluorescent probes to both the free and acylated enzyme. Probes show environment-sensitive emission, and additionally, one of them also shows significant enhancement of fluorescence intensity upon binding to the active site of BChE. Finally, the crystal structures of probes in complex with human BChE are reported, which offer an excellent base for further development of this library of compounds.
Collapse
Affiliation(s)
- Stane Pajk
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Košak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Zorović
- Faculty of Medicine, Institute of Pathological Physiology, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | | | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | | | - Marko Živin
- Faculty of Medicine, Institute of Pathological Physiology, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Stojan
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Guo L, Zhang YJ, Yu YL, Wang JH. In Situ Generation of Prussian Blue by MIL-53 (Fe) for Point-of-Care Testing of Butyrylcholinesterase Activity Using a Portable High-Throughput Photothermal Device. Anal Chem 2020; 92:14806-14813. [PMID: 33058681 DOI: 10.1021/acs.analchem.0c03575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Butyrylcholinesterase (BuChE), the primary source of serum cholinesterase activity, is an indispensable biochemical marker for clinical diagnosis of liver function and organophosphorus poisoning. The requirement for bulky and expensive instruments represents a huge hindrance for point-of-care testing (POCT) of BuChE, especially in resource-limited settings. Herein, an easy-operated, economic, and portable photothermal (PT) biosensing platform for high-throughput BuChE detection was rationally designed. BuChE could "light up" the PT signal through in situ generation of Prussian blue (PB) by MIL-53 (Fe), which allowed us to translate biological signals into temperature signals. Such temperature change signals could be monitored at high throughput (six samples for a single measurement) by a miniature self-made integrated PT device via combining separable 96-well plates, a three-dimensional (3D) printed sample bracket, 808 nm lasers, and thermometers, satisfying the requirement for rapid on-site detection in a large batch with low cost. In addition, the large specific surface area, 3D network structure, and high porosity of MIL-53 (Fe) offered a beneficial platform for its reaction with enzymatic hydrolysate, resulting in high sensing sensitivity and low detection limit (0.3 U L-1), which was at least 20 000 times lower than the normal human serum BuChE activity. This facile, affordable, and broad applicability PT sensing platform provides a beneficial reference for the rational design of other disease diagnostic approaches suitable for POCT.
Collapse
Affiliation(s)
- Lan Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ya-Jie Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
26
|
Rational design of a near-infrared fluorescence probe for highly selective sensing butyrylcholinesterase (BChE) and its bioimaging applications in living cell. Talanta 2020; 219:121278. [DOI: 10.1016/j.talanta.2020.121278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/02/2023]
|
27
|
A Bioorthogonally Synthesized and Disulfide-Containing Fluorescence Turn-On Chemical Probe for Measurements of Butyrylcholinesterase Activity and Inhibition in the Presence of Physiological Glutathione. Catalysts 2020. [DOI: 10.3390/catal10101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a biomarker in human blood. Aberrant BChE activity has been associated with human diseases. Here we developed a fluorescence resonance energy transfer (FRET) chemical probe to specifically quantify BChE activity in serum, while simultaneously discriminating against glutathione (GSH). The FRET chemical probe 11 was synthesized from a key trifunctional bicyclononyne exo-6 and derivatives of 5-(2-aminoethylamino)-1-naphthalenesulfonic acid (EDANS) and 4-[4-(dimethylamino)phenylazo]benzoic acid (DABCYL). EDANS fluorescence visualization and kinetic analysis of 11 in the presence of diverse compounds confirmed the outstanding reactivity and specificity of 11 with thiols. The thiol-dependent fluorescence turn-on property of 11 was attributed to a general base-catalyzed SN2 nucleophilic substitution mechanism and independent of metal ions. Moreover, all thiols, except GSH, reacted swiftly with 11. Kinetic studies of 11 in the presence of covalently modified GSH derivatives corroborated that the steric hindrance of 11 imposing on GSH was the likely cause of the distinguished reactivity. Since GSH commonly interferes in assays measuring BChE activity in blood samples, the 11-based fluorescent assay was employed to directly quantify BChE activity without GSH interference, and delivered a linear range of 4.3–182.2 U L−1 for BChE activity with detection limit of 4.3 U L−1, and accurately quantified serum BChE activity in the presence of 10 μM GSH. Finally, the 11-based assay was exploited to determine Ki of 5 nM for tacrine inhibition on BChE catalysis. We are harnessing the modulated characteristics of 6 to synthesize advanced chemical probes able to more sensitively screen for BChE inhibitors and quantify BChE activity in serum.
Collapse
|
28
|
Dai M, Reo YJ, Song CW, Yang YJ, Ahn KH. Development of photo- and chemo-stable near-infrared-emitting dyes: linear-shape benzo-rosol and its derivatives as unique ratiometric bioimaging platforms. Chem Sci 2020; 11:8901-8911. [PMID: 34123144 PMCID: PMC8163444 DOI: 10.1039/d0sc03314f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Microscopic imaging aided with fluorescent probes has revolutionized our understanding of biological systems. Organic fluorophores and probes thus continue to evolve for bioimaging applications. Fluorophores such as cyanines and hemicyanines emit in the near-infrared (NIR) region and thus allow deeper imaging with minimal autofluorescence; however, they show limited photo- and chemo-stability, demanding new robust NIR fluorophores. Such photo- and chemo-stable NIR fluorophores, linear-shape π-extended rosol and rosamine analogues, are disclosed here which provide bright fluorescence images in cells as well as in tissues by confocal laser-scanning microscopy. Furthermore, they offer unique ratiometric imaging platforms for activatable probes with dual excitation and dual emission capability, as demonstrated with a 2,4-dinitrophenyl ether derivative of benzo-rosol.
Collapse
Affiliation(s)
- Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyungbuk 37673 Republic of Korea
| | - Ye Jin Reo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyungbuk 37673 Republic of Korea
| | - Chang Wook Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyungbuk 37673 Republic of Korea
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyungbuk 37673 Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyungbuk 37673 Republic of Korea
| |
Collapse
|
29
|
Yoo S, Han MS. A fluorescent probe for butyrylcholinesterase activity in human serum based on a fluorophore with specific binding affinity for human serum albumin. Chem Commun (Camb) 2019; 55:14574-14577. [PMID: 31663530 DOI: 10.1039/c9cc07737e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-specific binding of a fluorescent probe to human serum albumin is problematic because it induces signal interference when the probe detects the target biomarker in human serum. To eliminate this problem, we used intrinsically problematic non-specific fluorescence in designing a fluorescent probe for butyrylcholinesterase activity in serum. The probe containing a fluorophore with specific binding affinity for albumin could sensitively detect butyrylcholinesterase activity in serum with high selectivity to acetylcholinesterase and screen the efficiency of butyrylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Soyeon Yoo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
30
|
Yang Y, Liu H, Chen Z, Wu T, Jiang Z, Tong L, Tang B. A Simple 3D-Printed Enzyme Reactor Paper Spray Mass Spectrometry Platform for Detecting BuChE Activity in Human Serum. Anal Chem 2019; 91:12874-12881. [DOI: 10.1021/acs.analchem.9b02728] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Huimin Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Tianhong Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
31
|
Wang H, Zhang Y, Yang Y, He Z, Wu C, Zhang W, Zhang W, Liu J, Li P, Tang B. In situ photoacoustic imaging of cysteine to reveal the mechanism of limited GSH synthesis in pulmonary fibrosis. Chem Commun (Camb) 2019; 55:9685-9688. [PMID: 31347620 DOI: 10.1039/c9cc03814k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We developed a photoacoustic and fluorescent dual-mode imaging probe, CCYS, for the detection of cysteine with high selectivity and sensitivity in a living system for the first time. By using CCYS, we found that the limited synthesis of glutathione in pulmonary fibrosis was not caused by cysteine deficiency.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yixin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yuyun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Zixu He
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Ju Liu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China. and Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated to Shandong First Medical University, P. R. China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
32
|
Chen G, Feng H, Xi W, Xu J, Pan S, Qian Z. Thiol-ene click reaction-induced fluorescence enhancement by altering the radiative rate for assaying butyrylcholinesterase activity. Analyst 2019; 144:559-566. [PMID: 30417195 DOI: 10.1039/c8an01808a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Butyrylcholinesterase (BChE) generally acts as an important plasma biomarker for clinical diagnosis due to its major contribution to human plasma cholinesterase levels, but its current fluorometric assay relying on fluorogenic substrates frequently suffers from the lack of sufficiently fast response time and specific recognition of substrates relative to the traditional Ellman's method. In this work, we report a fluorescent molecular probe for assaying BChE activity based on thiol-triggered fluorescence enhancement via thiol-ene click reactions. A low-temperature experiment and theoretical analysis exclude the possibility of weak fluorescence of the probe caused by an intramolecular photoinduced electron transfer process and support the main cause of an ultraslow radiative rate due to the introduction of two acrylyl groups. This probe has sensitive fluorescence responses to thiols via thiol-ene click chemistry, and it can distinguish between glutathione and cysteine or homocysteine in different emission colors. The rapid reaction kinetics of this probe enables it to monitor hydrolysis reactions catalyzed by butyrylcholinesterase (BChE) in a real-time manner. This probe is used to develop the first fluorometric assay of BChE activity based on fluorescence enhancement triggered by thiol-ene click chemistry using butyrylthiocholine as the substrate. The established BChE assay shows excellent sensitivity, and is capable of avoiding the interference from glutathione and acetylcholinesterase (AChE) in a complex matrix. The inhibition test of tacrine on BChE with this assay substantiates its feasibility in screening potential inhibitors of BChE. This work demonstrates a design strategy of fluorescent probes lighted up by thiol-ene click reactions, reveals the main cause of thiol-triggered fluorescence enhancement by altering the radiative rate, and provides the first fluorometric assay of BChE based on rapid thiol-ene click reactions.
Collapse
Affiliation(s)
- Guilin Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | | | | | | | | | | |
Collapse
|
33
|
Huang S, Wang X, Lin G, Cheng J, Chen X, Sun W, Xiang R, Yu Y, Li L, Yang S. Discovery of human TyrRS inhibitors by structure-based virtual screening, structural optimization, and bioassays. RSC Adv 2019; 9:9323-9330. [PMID: 35517706 PMCID: PMC9062088 DOI: 10.1039/c9ra00458k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/18/2019] [Indexed: 02/05/2023] Open
Abstract
The human tyrosyl transfer-RNA (tRNA) synthetase (TyrRS), which is well known for its essential aminoacylation function in protein synthesis, has been shown to translocate to the nucleus and protect against DNA damage caused by external stimuli. Small molecules that can fit into the active site pocket of TyrRS are thought to affect the nuclear role. The exploitation of TyrRS inhibitors has attracted attention recently. In this investigation, we adopted a structure-based virtual screening strategy and subsequent structure-activity relationship analysis to discover new TyrRS inhibitors, and identified a potent compound 5,7-dihydroxy-6,8-bis((3-hydroxyphenyl)thio)-2-phenyl-4H-chromen-4-one (compound 11, K i = 8.8 μM). In intact HeLa cells, this compound showed a protective effect against DNA damage. Compound 11 is a good lead compound for the further development of drugs against disorders caused by DNA damage.
Collapse
Affiliation(s)
- Shenzhen Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| | - Xiang Wang
- Department of Clinical Medicine, School of Medicine, Nankai University Tianjin 300071 China
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| | - Jie Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| | - Xiuli Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| | - Weining Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University Chengdu Sichuan 610041 China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University Tianjin 300071 China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University Chengdu Sichuan 610041 China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| |
Collapse
|
34
|
Liu SY, Xiong H, Yang JQ, Yang SH, Li Y, Yang WC, Yang GF. Discovery of Butyrylcholinesterase-Activated Near-Infrared Fluorogenic Probe for Live-Cell and In Vivo Imaging. ACS Sens 2018; 3:2118-2128. [PMID: 30203965 DOI: 10.1021/acssensors.8b00697] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Butyrylcholinesterase (BChE) is widely distributed in various tissues and highly implicated in several important human diseases, especially Alzheimer's disease (AD). However, the role of BChE in AD is still controversial, which may be partially attributed to the lack of a direct tool for real-time and noninvasive monitoring of BChE in in vivo. Here, we report three rationally designed near-infrared fluorogenic probes that possess excellent discrimination for butyrylcholinesterase (BChE) over the related enzyme acetylcholinesterase (AChE). The refined probe, BChE-NIRFP, not only functions as an exquisite substrate for BChE in in vitro assays but also represents a superb "signal-on" imaging tool to real-time track BChE levels in human cells, zebrafish, and a mouse model of AD. A further application of BChE-NIRFP to identify the cellular mechanism reveals that Aβ fibrils and insulin resistance may be important contributors to the abnormally elevated BChE levels observed during AD progression. Based on the results from the present study, this new probe is a valuable tool for basic and clinical research designed to obtain a complete understanding of the physiological roles of BChE in diverse human diseases, particularly AD.
Collapse
Affiliation(s)
- Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jia-Qian Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Shu-Hou Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30071, P.R. China
| |
Collapse
|
35
|
Xiong H, Li RR, Liu SY, Wu FX, Yang WC, Yang GF. Discovery of Specific Nonpeptide Probe for Chymotrypsin via Molecular Docking-Based Virtual Screening and the Application. ACS APPLIED BIO MATERIALS 2018; 1:310-317. [DOI: 10.1021/acsabm.8b00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Rong-Rong Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Feng-Xu Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 30071, P.R. China
| |
Collapse
|
36
|
Chen G, Feng H, Jiang X, Xu J, Pan S, Qian Z. Redox-Controlled Fluorescent Nanoswitch Based on Reversible Disulfide and Its Application in Butyrylcholinesterase Activity Assay. Anal Chem 2018; 90:1643-1651. [PMID: 29298486 DOI: 10.1021/acs.analchem.7b02976] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Butyrylcholinesterase (BChE) mainly contributing to plasma cholinesterase activity is an important indicator for routinely diagnosing liver function and organophosphorus poisoning in clinical diagnosis, but its current assays are scarce and frequently suffer from some significant interference and instability. Herein, we report a redox-controlled fluorescence nanoswtich based on reversible disulfide bonds, and further develop a fluorometric assay of BChE via thiol-triggered disaggregation-induced emission. Thiol-functionalized carbon quantum dots (thiol-CQDs) with intense fluorescence is found to be responsive to hydrogen peroxide, and their redox reaction transforms thiol-CQDs to nonfluorescent thiol-CQD assembly. The thiols inverse this process by a thiol-exchange reaction to turn on the fluorescence. The fluorescence can be reversibly switched by the formation and breaking of disulfide bonds caused by external redox stimuli. The specific thiol-triggered disaggregation-induced emission enables us to assay BChE activity in a fluorescence turn-on and real-time way using butyrylthiocholine iodide as the substrate. As-established BChE assay achieves sufficient sensitivity for practical determination in human serum, and is capable of avoiding the interference from micromolar glutathione and discriminatively quantifying BChE from its sister enzyme acetylcholinesterase. The first design of reversible redox-controlled nanosiwtch based on disulfide expands the application of disulfide chemistry in sensing and clinical diagnostics, and this novel BChE assay enriches the detection methods for cholinesterase activity.
Collapse
Affiliation(s)
- Guilin Chen
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| | - Hui Feng
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| | - Xiaogan Jiang
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| | - Jing Xu
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| | - Saifei Pan
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| | - Zhaosheng Qian
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, People's Republic of China
| |
Collapse
|
37
|
Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 2018; 47:7140-7180. [DOI: 10.1039/c7cs00862g] [Citation(s) in RCA: 515] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of recent advances in small-molecule enzymatic fluorescent probes for cancer imaging, including design strategies and cancer imaging applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Chengyan Xu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Zhe Li
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Haiyang Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| |
Collapse
|
38
|
Wang HY, Zhang H, Chen S, Liu Y. Fluorescein-Inspired Near-Infrared Chemodosimeter for Luminescence Bioimaging. Curr Med Chem 2017; 26:4029-4041. [PMID: 29065823 DOI: 10.2174/0929867324666171024101715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022]
Abstract
Luminescence bioimaging is widely used for noninvasive monitoring of biological targets in real-time with high temporal and spatial resolution. For efficient bioimaging in vivo, it is essential to develop smart organic dye platforms. Fluorescein (FL), a traditional dye, has been widely used in the biological and clinical studies. However, visible excitation and emission limited their further application for in vivo bioimaging. Nearinfrared (NIR) dyes display advantages of bioimaging because of their minimum absorption and photo-damage to biological samples, as well as deep tissue penetration and low auto-luminescence from background in the living system. Thus, some great developments of near-infrared fluorescein-inspired dyes have emerged for bioapplication in vitro and in vivo. In this review, we highlight the advances in the development of the near-infrared chemodosimeters for detection and bioimaging based on the modification of fluoresceininspired dyes naphtho-fluorescein (NPF) and cyanine-fluorescein (Cy-FL).
Collapse
Affiliation(s)
- Hai-Yan Wang
- Shenzhen Key Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China.,National Institutes of Science and Technology, Gaithersburg, MD, United States
| | - Huisheng Zhang
- Shenzhen Key Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Siping Chen
- Shenzhen Key Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|