1
|
Wijesinghe KH, Hood C, Mattern D, Angel LA, Dass A. Ion mobility-tandem mass spectrometry of bulky tert-butyl thiol ligated gold nanoparticles. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e4998. [PMID: 38263883 DOI: 10.1002/jms.4998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 01/25/2024]
Abstract
Gold nanoparticles (AuNPs) synthesized in the 1-3 nm range have a specific number of gold core atoms and outer protecting ligands. They have become one of the "hot topics" in recent decades because of their interesting physical and chemical properties. The characterization of their structures is usually achieved by crystal X-ray diffraction although the structures of some AuNPs remain unknown because they have not been successfully crystallized. An alternative method for studying the structure of AuNPs is electrospray ionization-ion mobility-tandem mass spectrometry (ESI-IM-MSMS). This research evaluated how effectively ESI-IM-MSMS using the commercially available Waters Synapt XS instrument yielded useful structural information from two AuNPs; Au23 (S-tBu)16 and Au30 (S-tBu)18 . The study used the maximum range of available collision energies along with ion mobility separation to measure the energy-dependence of the product ions and their drift times which is a measure of their spatial size. For Au23 (S-tBu)16 , the dissociation gave the masses of the outer protecting monomeric [RS-Au-SR] and trimeric [SR-Au-SR-Au-SR-Au-SR] staples where R = tBu, and complete dissociation of the outer layer Au and tBu groups to reveal the Au15 S8 core. For Au30 (S-tBu)18 , the dissociation products was primarily through the loss of the partial ligands S-tBu and tBu from the outer protecting layer and the loss of single Au4 (S-tBu)4 unit. These results showed the that ESI-IM-MSMS analysis of the smaller Au23 (S-tBu)16 gave information on all it major structural components whereas for Au30 (S-tBu)18 , the overall structural information was limited to the ligands of the outer layer.
Collapse
Affiliation(s)
- Kalpani H Wijesinghe
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Christopher Hood
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Daniell Mattern
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Laurence A Angel
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
2
|
Philliber M, Baxter ET, Johnson GE. Synthesis and Stability of Mixed-Diphosphine Ligated Gold Clusters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2138-2146. [PMID: 36166416 DOI: 10.1021/jasms.2c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sub-nanometer gold clusters are promising size- and composition-tunable materials that may be used for advanced technological applications such as catalysis, energy generation, and microelectronics. Synthesis and characterization of phosphine ligated gold clusters containing different ligands provide insight into how steric and electronic effects resulting from changes in chemical functionality influence cluster size, stability, and formation in solution. Herein, we demonstrate that synthesizing gold clusters using two different diphosphines in solution at the same time results in a broad distribution of novel mixed-ligand clusters. In comparison, adding a second diphosphine to a solution of gold clusters presynthesized with another diphosphine does not result in extensive formation of mixed-ligand species. Utilizing high-mass resolution electrospray ionization mass spectrometry, we determined novel cluster compositions and observed size-dependent trends in gold clusters that undergo ligand exchange forming mixed diphosphine species. Adjacent peaks in the mass spectra, separated by characteristic mass-to-charge ratios, provide evidence for multiple 1,3-bis(diphenylphosphino)propane (L3) and 1,5-bis(diphenylphosphino)pentane (L5) ligands on cationic clusters containing 8, 10, 11, and 22 gold atoms. Energy-resolved collision-induced dissociation experiments provide qualitative insight into how different diphosphine ligands affect the relative stability of specific size gold clusters. Our results indicate that mixed-ligand clusters containing both L3 and L5 are generally more stable than their single ligand counterparts containing either L3 or L5. These molecular-level insights will facilitate the rational and scalable synthesis of gold clusters for targeted applications.
Collapse
Affiliation(s)
- Mallory Philliber
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemistry, University of Utah, 315 S 1400 E, Room 2020, Salt Lake City, Utah 84112, United States
| | - Eric T Baxter
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Grant E Johnson
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
3
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
4
|
Basu S, Paul A, Antoine R. Controlling the Chemistry of Nanoclusters: From Atomic Precision to Controlled Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:62. [PMID: 35010012 PMCID: PMC8746821 DOI: 10.3390/nano12010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Metal nanoclusters have gained prominence in nanomaterials sciences, owing to their atomic precision, structural regularity, and unique chemical composition. Additionally, the ligands stabilizing the clusters provide great opportunities for linking the clusters in higher order dimensions, eventually leading to the formation of a repertoire of nanoarchitectures. This makes the chemistry of atomic clusters worth exploring. In this mini review, we aim to focus on the chemistry of nanoclusters. Firstly, we summarize the important strategies developed so far for the synthesis of atomic clusters. For each synthetic strategy, we highlight the chemistry governing the formation of nanoclusters. Next, we discuss the key techniques in the purification and separation of nanoclusters, as the chemical purity of clusters is deemed important for their further chemical processing. Thereafter which we provide an account of the chemical reactions of nanoclusters. Then, we summarize the chemical routes to the spatial organization of atomic clusters, highlighting the importance of assembly formation from an application point of view. Finally, we raise some fundamentally important questions with regard to the chemistry of atomic clusters, which, if addressed, may broaden the scope of research pertaining to atomic clusters.
Collapse
Affiliation(s)
- Srestha Basu
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Anumita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France
| |
Collapse
|
5
|
Li Q, Huang B, Yang S, Zhang H, Chai J, Pei Y, Zhu M. Unraveling the Nucleation Process from a Au(I)-SR Complex to Transition-Size Nanoclusters. J Am Chem Soc 2021; 143:15224-15232. [PMID: 34498861 DOI: 10.1021/jacs.1c06354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomically precise noble metal nanoclusters provide a critical benchmark for the fundamental research of the origin of condensed matter because they retain the original state of the metal bonds. Also, knowledge about the transition from organometallic complexes to a nanoclusters is important for understanding the structural evolution of the nanoclusters, particularly their nucleation mechanism. Herein, three transition-size gold nanoclusters are prepared via a controlled diphosphine-mediated top-down routine. Starting from small-size nanoclusters, three new nanoclusters including Au13(SAdm)8(L4)2(BPh4) (Au13), Au14(S-c-C6H11)10L4 (Au14), and Au16(S-c-C6H11)11LPh* (Au16) are obtained by controlled clipping on the surface and kernel of initial nanoclusters. Combining their atomically precise structures with DFT theoretical calculations, the overall atom-by-atom structural evolution process from Au12(SR)12 (0 e-) to Au18(SR)14 (4 e-) is mapped out. In addition, studies on their electronic structures show that the evolution from an organometallic complex to nanoclusters is accompanied by a dramatic decrease in the HOMO-LUMO gaps. Most importantly, the formation of the first Au-Au bond is captured in the "Au4S4 to Au5" nucleation process from Au12(SR)12 complex to the Au13 nanocluster. This work provides a deep insight into the origin of inner core in Au NCs and their structural transition relationship with metal complexes.
Collapse
Affiliation(s)
- Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, China
| | - Baoyu Huang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Hui Zhang
- School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
6
|
Fagan JW, Weerawardene KLDM, Cirri A, Aikens CM, Johnson CJ. Toward quantitative electronic structure in small gold nanoclusters. J Chem Phys 2021; 155:014301. [PMID: 34241394 DOI: 10.1063/5.0055210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ligand-protected gold nanoclusters (AuNCs) feature a dense but finite electronic structure that can be rationalized using qualitative descriptions such as the well-known superatomic model and predicted using quantum chemical calculations. However, the lack of well-resolved experimental probes of a AuNC electronic structure has made the task of evaluating the accuracy of electronic structure descriptions challenging. We compare electronic absorption spectra computed using time-dependent density functional theory to recently collected high resolution experimental spectra of Au9(PPh3)8 3+ and Au8(PPh3)7 2+ AuNCs with strikingly similar features. After applying a simple scaling correction, the computed spectrum of Au8(PPh3)7 2+ yields a suitable match, allowing us to assign low-energy metal-metal transitions in the experimental spectrum. No similar match is obtained after following the same procedure for two previously reported isomers for Au9(PPh3)8 3+, suggesting either a deficiency in the calculations or the presence of an additional isomer. Instead, we propose assignments for Au9(PPh3)8 3+ based off of similarities Au8(PPh3)7 2+. We further model these clusters using a simple particle-in-a-box analysis for an asymmetrical ellipsoidal superatomic core, which allows us to reproduce the same transitions and extract an effective core size and shape that agrees well with that expected from crystal structures. This suggests that the superatomic model, which is typically employed to explain the qualitative features of nanocluster electronic structures, remains valid even for small AuNCs with highly aspherical cores.
Collapse
Affiliation(s)
- Jonathan W Fagan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | | | - Anthony Cirri
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
7
|
Omoda T, Takano S, Tsukuda T. Toward Controlling the Electronic Structures of Chemically Modified Superatoms of Gold and Silver. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2001439. [PMID: 32696588 DOI: 10.1002/smll.202001439] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Atomically precise gold/silver clusters protected by organic ligands L, [(Au/Ag)x Ly ]z , have gained increasing interest as building units of functional materials because of their novel photophysical and physicochemical properties. The properties of [(Au/Ag)x Ly ]z are intimately associated with the quantized electronic structures of the metallic cores, which can be viewed as superatoms from the analogy of naked Au/Ag clusters. Thus, establishment of the correlation between the geometric and electronic structures of the superatomic cores is crucial for rational design and improvement of the properties of [(Au/Ag)x Ly ]z . This review article aims to provide a qualitative understanding on how the electronic structures of [(Au/Ag)x Ly ]z are affected by geometric structures of the superatomic cores with a focus on three factors: size, shape, and composition, on the basis of single-crystal X-ray diffraction data. The knowledge accumulated here will constitute a basis for the development of ligand-protected Au/Ag clusters as new artificial elements on a nanometer scale.
Collapse
Affiliation(s)
- Tsubasa Omoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
8
|
Wang Y, Liu XH, Wang R, Cula B, Chen ZN, Chen Q, Koch N, Pinna N. Secondary Phosphine Oxide Functionalized Gold Clusters and Their Application in Photoelectrocatalytic Hydrogenation Reactions. J Am Chem Soc 2021; 143:9595-9600. [PMID: 34128669 DOI: 10.1021/jacs.1c04048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ligands in ligand-protected metal clusters play a crucial role, not only because of their interaction with the metal core, but also because of the functionality they provide to the cluster. Here, we report the utilization of secondary phosphine oxide (SPO), as a new family of functional ligands, for the preparation of an undecagold cluster Au11-SPO. Different from the commonly used phosphine ligand (i.e., triphenylphosphine, TPP), the SPOs in Au11-SPO work as electron-withdrawing anionic ligands. While coordinating to gold via the phosphorus atom, the SPO ligand keeps its O atom available to act as a nucleophile. Upon photoexcitation, the clusters are found to inject holes into p-type semiconductors (here, bismuth oxide is used as a model), sensitizing the p-type semiconductor in a different way compared to the photosensitization of a n-type semiconductor. Furthermore, the Au11-SPO/Bi2O3 photocathode exhibits a much higher activity toward the hydrogenation of benzaldehyde than a TPP-protected Au11-sensitized Bi2O3 photocathode. Control experiments and density functional theory studies point to the crucial role of the cooperation between gold and the SPO ligands on the selectivity toward the hydrogenation of the C═O group in benzaldehyde.
Collapse
Affiliation(s)
- Yu Wang
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Xiao-He Liu
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Rongbin Wang
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Beatrice Cula
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qingyun Chen
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Norbert Koch
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 12489, Germany
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| |
Collapse
|
9
|
Lloyd Williams OH, Rijs NJ. Reaction Monitoring and Structural Characterisation of Coordination Driven Self-Assembled Systems by Ion Mobility-Mass Spectrometry. Front Chem 2021; 9:682743. [PMID: 34169059 PMCID: PMC8217442 DOI: 10.3389/fchem.2021.682743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023] Open
Abstract
Nature creates exquisite molecular assemblies, required for the molecular-level functions of life, via self-assembly. Understanding and harnessing these complex processes presents an immense opportunity for the design and fabrication of advanced functional materials. However, the significant industrial potential of self-assembly to fabricate highly functional materials is hampered by a lack of knowledge of critical reaction intermediates, mechanisms, and kinetics. As we move beyond the covalent synthetic regime, into the domain of non-covalent interactions occupied by self-assembly, harnessing and embracing complexity is a must, and non-targeted analyses of dynamic systems are becoming increasingly important. Coordination driven self-assembly is an important subtype of self-assembly that presents several wicked analytical challenges. These challenges are "wicked" due the very complexity desired confounding the analysis of products, intermediates, and pathways, therefore limiting reaction optimisation, tuning, and ultimately, utility. Ion Mobility-Mass Spectrometry solves many of the most challenging analytical problems in separating and analysing the structure of both simple and complex species formed via coordination driven self-assembly. Thus, due to the emerging importance of ion mobility mass spectrometry as an analytical technique tackling complex systems, this review highlights exciting recent applications. These include equilibrium monitoring, structural and dynamic analysis of previously analytically inaccessible complex interlinked structures and the process of self-sorting. The vast and largely untapped potential of ion mobility mass spectrometry to coordination driven self-assembly is yet to be fully realised. Therefore, we also propose where current analytical approaches can be built upon to allow for greater insight into the complexity and structural dynamics involved in self-assembly.
Collapse
Affiliation(s)
| | - Nicole J. Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Koyasu K, Tsukuda T. Gas-phase studies of chemically synthesized Au and Ag clusters. J Chem Phys 2021; 154:140901. [DOI: 10.1063/5.0041812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033,
Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520,
Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033,
Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520,
Japan
| |
Collapse
|
11
|
Ligare MR, Morrison KA, Hewitt MA, Reveles JU, Govind N, Hernandez H, Baker ES, Clowers BH, Laskin J, Johnson GE. Ion Mobility Spectrometry Characterization of the Intermediate Hydrogen-Containing Gold Cluster Au 7(PPh 3) 7H 52. J Phys Chem Lett 2021; 12:2502-2508. [PMID: 33667097 DOI: 10.1021/acs.jpclett.0c03664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We employ ion mobility spectrometry and density functional theory to determine the structure of Au7(PPh3)7H52+ (PPh3 = triphenylphosphine), which was recently identified by high mass resolution mass spectrometry. Experimental ion-neutral collision cross sections represent the momentum transfer between the ionic clusters and gas molecules averaged over the relative thermal velocities of the colliding pair, thereby providing structural insights. Theoretical calculations indicate the geometry of Au7(PPh3)7H52+ is similar to Au7(PPh3)7+, with three hydrogen atoms bridging two gold atoms and two hydrogen atoms forming single Au-H bonds. Collision-induced dissociation products observed during IMS experiments reveal that smaller hydrogen-containing clusters may be produced through fragmentation of Au7(PPh3)7H52+. Our findings indicate that hydrogen-containing species like Au7(PPh3)7H52+ act as intermediates in the formation of larger phosphine ligated gold clusters. These results advance the understanding and ability to control the mechanisms of size-selective cluster formation, which is necessary for scalable synthesis of clusters with tailored properties.
Collapse
Affiliation(s)
- Marshall R Ligare
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Kelsey A Morrison
- Department of Chemistry, Washington State University, P.O. Box 644630, Pullman, Washington 99164, United States
| | - Michael A Hewitt
- Department of Chemistry, Grinnell College, Grinnell, Iowa 50112, United States
| | - J Ulises Reveles
- Advanced Career Education (ACE) Center at Highland Springs, Highland Springs, Virginia 23075, United States
| | - Niranjan Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Heriberto Hernandez
- Department of Chemistry, Grinnell College, Grinnell, Iowa 50112, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, P.O. Box 644630, Pullman, Washington 99164, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Grant E Johnson
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Jin R, Li G, Sharma S, Li Y, Du X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem Rev 2020; 121:567-648. [DOI: 10.1021/acs.chemrev.0c00495] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Sachil Sharma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
13
|
Comby-Zerbino C, Bertorelle F, Dugourd P, Antoine R, Chirot F. Structure and Charge Heterogeneity in Isomeric Au25(MBA)18 Nanoclusters—Insights from Ion Mobility and Mass Spectrometry. J Phys Chem A 2020; 124:5840-5848. [DOI: 10.1021/acs.jpca.0c03131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Clothilde Comby-Zerbino
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5306, Institut Lumière Matière, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Franck Bertorelle
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5306, Institut Lumière Matière, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Philippe Dugourd
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5306, Institut Lumière Matière, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5306, Institut Lumière Matière, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Fabien Chirot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5280, Institut des Sciences Analytiques, 5 rue de la Doua, Villeurbanne F-69100, France
| |
Collapse
|
14
|
Cirri A, Hernández HM, Johnson CJ. High Precision Electronic Spectroscopy of Ligand-Protected Gold Nanoclusters: Effects of Composition, Environment, and Ligand Chemistry. J Phys Chem A 2020; 124:1467-1479. [PMID: 31916764 DOI: 10.1021/acs.jpca.9b09164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Atomically precise gold nanoclusters (AuNCs) are a class of nanomaterials valued for their electronic properties and diverse structural features. While the advent of X-ray crystallography of AuNCs has revealed their geometric structures with high precision, detailed electronic structure analysis is challenged by environmental, compositional, and thermal averaging effects present in electronic spectra of typical samples. To circumvent these challenges, we have adapted mass spectrometer-based electronic absorption spectroscopy techniques to acquire high-resolution electronic spectra of atomically precisely defined nanoclusters separated from a synthetic mixture. Here we discuss recent results using this approach to link the surface chemistry of triphenylphosphine-protected AuNCs to their electronic structure and expand on key elements of the experiment and the link between these gas-phase measurements and solution-phase behavior of AuNCs. Chemically derivatized Au8(P(p-X-Ph)3)72+ and Au9(P(p-X-Ph)3)83+ clusters, where X = -H, -CH3, or -OCH3, are used to derive systematic trends in the response of the electronic spectrum to the electron-donating character of the ligand shell. We find a linear relationship between the substituent Hammett parameter σp and the transition energy between both sets of clusters' highest occupied and lowest unoccupied molecular orbitals, a transition that is localized in the metal core within the limits of the superatomic model. The similarity of the mass-selective and solution-phase UV/vis spectra of Au9(PPh3)83+ indicates that the interpretation of these experiments is transferable to the condensed phase. He and N2 environments are introduced to a series of isovalent clusters as a subtle probe of discrete environmental effects over electronic structure. Strikingly, select bands in the UV/vis spectrum respond strongly to the identity of the environment, which we interpret as a state-selective indicator of interfacially relevant electronic transitions. Physically predictable trends such as these will aid in building molecular design principles necessary for the development of novel materials based on nanoclusters.
Collapse
Affiliation(s)
- Anthony Cirri
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook , New York 11794-3400 , United States
| | - Hanna Morales Hernández
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook , New York 11794-3400 , United States
| | - Christopher J Johnson
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
15
|
Comby-Zerbino C, Perić M, Bertorelle F, Chirot F, Dugourd P, Bonačić-Koutecký V, Antoine R. Catenane Structures of Homoleptic Thioglycolic Acid-Protected Gold Nanoclusters Evidenced by Ion Mobility-Mass Spectrometry and DFT Calculations. NANOMATERIALS 2019; 9:nano9030457. [PMID: 30893867 PMCID: PMC6474107 DOI: 10.3390/nano9030457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 11/17/2022]
Abstract
Thiolate-protected metal nanoclusters have highly size- and structure-dependent physicochemical properties and are a promising class of nanomaterials. As a consequence, for the rationalization of their synthesis and for the design of new clusters with tailored properties, a precise characterization of their composition and structure at the atomic level is required. We report a combined ion mobility-mass spectrometry approach with density functional theory (DFT) calculations for determination of the structural and optical properties of ultra-small gold nanoclusters protected by thioglycolic acid (TGA) as ligand molecules, Au10(TGA)10. Collision cross-section (CCS) measurements are reported for two charge states. DFT optimized geometrical structures are used to compute CCSs. The comparison of the experimentally- and theoretically-determined CCSs allows concluding that such nanoclusters have catenane structures.
Collapse
Affiliation(s)
- Clothilde Comby-Zerbino
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F-69100 Villeurbanne, France.
| | - Martina Perić
- Center of Excellence for Science and Technology-Integration of Mediterranean region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, HR-21000 Split, Croatia.
| | - Franck Bertorelle
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F-69100 Villeurbanne, France.
| | - Fabien Chirot
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, Univ Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France.
| | - Philippe Dugourd
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F-69100 Villeurbanne, France.
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, HR-21000 Split, Croatia.
- Department of Chemistry, Humboldt Universitat zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F-69100 Villeurbanne, France.
| |
Collapse
|
16
|
Hirata K, Tomihara R, Kim K, Koyasu K, Tsukuda T. Characterization of chemically modified gold and silver clusters in gas phase. Phys Chem Chem Phys 2019; 21:17463-17474. [PMID: 31363731 DOI: 10.1039/c9cp02622c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atomically precise Au and Ag clusters protected by organic ligands can be viewed as chemically modified Au/Ag superatoms and have attracted interest as promising building units of functional materials and ideal platforms for studying the size-dependent evolution of structures and properties. Their structures, stability, and physicochemical properties have been characterized in solution and solid (or crystalline) phases by various methods conventionally used in materials science. However, novel and complementary information on their intrinsic stability and structures can be obtained by applying a variety of gas-phase methods, including mass spectrometry, ion mobility mass spectrometry, collision- or surface-induced dissociation mass spectrometry, photoelectron spectroscopy, and photodissociation mass spectrometry, to the chemically modified Au/Ag superatoms isolated in the gas phase. This perspective describes our recent efforts in the gas-phase studies on chemically synthesized Au/Ag superatoms.
Collapse
Affiliation(s)
- Keisuke Hirata
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
17
|
Valadbeigi Y, Ilbeigi V, Michalczuk B, Sabo M, Matejcik S. Study of Atmospheric Pressure Chemical Ionization Mechanism in Corona Discharge Ion Source with and without NH3 Dopant by Ion Mobility Spectrometry combined with Mass Spectrometry: A Theoretical and Experimental Study. J Phys Chem A 2018; 123:313-322. [DOI: 10.1021/acs.jpca.8b11417] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Younes Valadbeigi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Vahideh Ilbeigi
- TOF Tech. Pars Company, Isfahan Science & Technology Town, Isfahan, Iran
| | - Bartosz Michalczuk
- Department of Experimental Physics, Comenius University, Mlynska dolina F2, 84248 Bratislava, Slovak Republic
| | - Martin Sabo
- Department of Experimental Physics, Comenius University, Mlynska dolina F2, 84248 Bratislava, Slovak Republic
| | - Stefan Matejcik
- Department of Experimental Physics, Comenius University, Mlynska dolina F2, 84248 Bratislava, Slovak Republic
| |
Collapse
|
18
|
Bertorelle F, Russier-Antoine I, Comby-Zerbino C, Chirot F, Dugourd P, Brevet PF, Antoine R. Isomeric Effect of Mercaptobenzoic Acids on the Synthesis, Stability, and Optical Properties of Au 25(MBA) 18 Nanoclusters. ACS OMEGA 2018; 3:15635-15642. [PMID: 31458220 PMCID: PMC6643454 DOI: 10.1021/acsomega.8b02615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 05/03/2023]
Abstract
We report a simple size focusing, two-step "bottom-up" protocol to prepare water-soluble Au25(MBA)18 nanoclusters, using the three isomers of mercaptobenzoic acids (p/m/o-MBA) as capping ligands and Me3NBH3 as a mild reducing agent. The relative stability of the gas-phase multiply deprotonated Au25(MBA)18 ions was investigated by collision-induced dissociation. This permitted us to evaluate the possible isomeric effect on the Au-S interfacial bond stress. We also investigated their optical properties. The absorption spectra of Au25(MBA)18 isomers were very similar and showed bands at 690, 470, and 430 nm. For all Au25(MBA)18 isomeric clusters, no measurable one-photon excited fluorescence under UV-vis light was found, in neither solid- nor solution-state. The two-photon excited emission spectra and first hyperpolarizabilities of the clusters were also determined. The results are discussed in terms of the possible isomeric effect on excitations within the metal core and the possibility of charge transfer excitations from the ligands to the metal nanocluster.
Collapse
Affiliation(s)
- Franck Bertorelle
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Isabelle Russier-Antoine
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Clothilde Comby-Zerbino
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Fabien Chirot
- Univ
Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon,
Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Philippe Dugourd
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Pierre-François Brevet
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Rodolphe Antoine
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
- E-mail: (R.A.)
| |
Collapse
|
19
|
Chakraborty P, Baksi A, Mudedla SK, Nag A, Paramasivam G, Subramanian V, Pradeep T. Understanding proton capture and cation-induced dimerization of [Ag29(BDT)12]3−clusters by ion mobility mass spectrometry. Phys Chem Chem Phys 2018; 20:7593-7603. [DOI: 10.1039/c7cp08181b] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a unique reaction of [Ag29(BDT)12]3−cluster with protons and dimerization of the cluster induced by alkali metal ions.
Collapse
Affiliation(s)
- Papri Chakraborty
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Ananya Baksi
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras
- Chennai 600036
- India
| | | | - Abhijit Nag
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Ganesan Paramasivam
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras
- Chennai 600036
- India
| | | | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|