1
|
Shi Y, Nakamura S, Mitomo H, Yonamine Y, Wang G, Ijiro K. Plasmonic circular dichroism-based metal ion detection using gold nanorod-DNA complexes. Chem Commun (Camb) 2024; 60:11794-11797. [PMID: 39330876 DOI: 10.1039/d4cc04017a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
We report that complexes formed between gold nanorods (AuNRs) and metal-mediated DNA exhibit plasmonic circular dichroism (CD) signals up to ∼400 times stronger than the molecular CD signal of DNA. This substantial enhancement enables the detection of metal ions, offering a promising approach to analytical applications in chiral biochemistry.
Collapse
Affiliation(s)
- Yali Shi
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Japan
| | - Satoshi Nakamura
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
- Institute for the Promotion of General Graduate Education (IPGE), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | - Guoqing Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| |
Collapse
|
2
|
Chattopadhyay S, Lipok M, Pfaffenberger ZJ, Olesiak-Bańska J, Biteen JS. Single-Particle Photoluminescence Measures a Heterogeneous Distribution of Differential Circular Absorbance of Gold Nanoparticle Aggregates near Constricted Thioflavin T Molecules. J Phys Chem Lett 2024; 15:1618-1622. [PMID: 38306468 DOI: 10.1021/acs.jpclett.3c03450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The chirality of biomacromolecules is critical for their function, but the optical signal of this chirality is small in the visible range. Plasmonic nanoparticles are antennas that can couple to this chiral signal. Here, we examine the molecular-scale mechanism behind the induced circular dichroism of gold nanorods (AuNRs) in solution with insulin fibrils and the fibril-intercalating dye thioflavin T (ThT) with polarization-resolved single-molecule fluorescence and single-particle photoluminescence (PL) imaging. We compared the PL upon excitation by left- and right-handed circularly polarized light to calculate the differential absorbance of AuNRs near insulin fibrils with and without ThT. Overall, our results indicate that AuNRs do not act as chiral absorbers near constricted ThT molecules. Instead, we hypothesize that fibrils promote AuNR aggregation, and this templating is mediated by subtle changes in the solution conditions; under the right conditions, only a few chiral aggregates with significantly higher circular dichroism signal contribute to a large net circular dichroism.
Collapse
Affiliation(s)
- Saaj Chattopadhyay
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Maciej Lipok
- Institute of Advanced Materials, Wroclaw University of Science and Technology, 50-37044 Wroclaw, Poland
| | | | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, 50-37044 Wroclaw, Poland
| | - Julie S Biteen
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48104, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
3
|
Sun L, Tao Y, Yang G, Liu C, Sun X, Zhang Q. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306297. [PMID: 37572380 DOI: 10.1002/adma.202306297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.
Collapse
Affiliation(s)
- Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G. Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications. ACS NANO 2022; 16:19789-19809. [PMID: 36454684 DOI: 10.1021/acsnano.2c08145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.
Collapse
Affiliation(s)
- Shenli Wang
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Xing Liu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Jie Chen
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Weiwei Fu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Yuan Zhang
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, P. R. China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
Li H, Gao X, Zhang C, Ji Y, Hu Z, Wu X. Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications. BIOSENSORS 2022; 12:957. [PMID: 36354466 PMCID: PMC9688444 DOI: 10.3390/bios12110957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 05/27/2023]
Abstract
As chiral antennas, plasmonic nanoparticles (NPs) can enhance chiral responses of chiral materials by forming hybrid structures and improving their own chirality preference as well. Chirality-dependent properties of plasmonic NPs broaden application potentials of chiral nanostructures in the biomedical field. Herein, we review the wet-chemical synthesis and self-assembly fabrication of gold-NP-based chiral nanostructures. Discrete chiral NPs are mainly obtained via the seed-mediated growth of achiral gold NPs under the guide of chiral molecules during growth. Irradiation with chiral light during growth is demonstrated to be a promising method for chirality control. Chiral assemblies are fabricated via the bottom-up assembly of achiral gold NPs using chiral linkers or guided by chiral templates, which exhibit large chiroplasmonic activities. In describing recent advances, emphasis is placed on the design and synthesis of chiral nanostructures with the tuning and amplification of plasmonic circular dichroism responses. In addition, the review discusses the most recent or even emerging trends in biomedical fields from biosensing and imaging to disease diagnosis and therapy.
Collapse
Affiliation(s)
- Hanbo Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinshuang Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhijian Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Qu DH, Xu H, Zhang Q, Gan JA, Wang Z, Chen M, Shan Y, Chen S, Tong F. Hysteresis Nanoarchitectonics with Chiral Gel Fibers and Achiral Gold Nanospheres for Reversible Chiral Inversion. Chem Asian J 2022; 17:e202101354. [PMID: 35007397 DOI: 10.1002/asia.202101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Indexed: 11/07/2022]
Abstract
Intelligent control over the handedness of circular dichroism (CD) is of special significance in self-organized biological and artificial systems. Herein, we report a chiral organic molecule (R1) containing a disulfide unit self-assembles into M-type helical fibers gels, which undergoes chirality inversion by incorporating gold nanospheres due to the formation of Au-S bonds between R1 and gold nanospheres. Upon heating at 80oC, the aggregation of gold nanospheres results in a disappearance of the Au-S bond, allowing the reversible switching back to M-type helical fibers. The original chirality of M-type fibers could also be retained by adding anisotropic gold nanorods. A series of characterization methods, involving CD, Raman, Infrared spectroscopy, electric microscopy, and small-angle X-ray scattering (SAXS) measurements were used to investigate the mechanism of chiral evolutions. Our results provide a facile way of fabricating hysteresis nanoarchitectonics to achieve dynamic supramolecular chirality using inorganic metallic nanoparticles.
Collapse
Affiliation(s)
- Da-Hui Qu
- Key Labs for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, CHINA
| | - Hui Xu
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Qi Zhang
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Jia-An Gan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Zhuo Wang
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Meng Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Yahan Shan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Shaoyu Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Fei Tong
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, 200237, Shanghai, CHINA
| |
Collapse
|
7
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
8
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
9
|
Abstract
Gold nanorods assembled in a side-by-side chiral configuration have potential applications in sensing due to their strong chiroptical surface plasmon resonances. Recent experiments have shown that dimers of gold nanorods bridged by double-stranded DNA exhibit variable chiral configurations depending on the chemical and ionic properties of the solvent medium. Here, we uncover the underlying physics governing this intriguing chiral behavior of such DNA-bridged nanorods by theoretically evaluating their configurational free energy landscape. Our results reveal how chiral configurations emerge from an interplay between the twist-stretch coupling of the intervening DNA and the intermolecular interactions between the nanorods, with dimers exhibiting left-handed chirality when the interparticle interactions are dominated by attractive depletion or van der Waals forces and right-handed chirality when dominated by repulsive electrostatic or steric forces. We demonstrate how changes in the depletant or ion concentration of the solvent medium lead to different classes of configurational responses by the dimers, including chirality-switching behavior, in good agreement with experimental observations. Based on extensive analyses of how material properties like nanorod aspect ratio, DNA length, and graft height modulate the free energy landscape, we propose strategies for tuning the environmentally responsive reconfigurability of the nanorod dimers. Overall, this work should help control the chirality and related optical activity of nanoparticle dimers and higher-order assemblies for various applications.
Collapse
Affiliation(s)
- Brian Hyun-Jong Lee
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Wang ZY, Zhang NN, Li JC, Lu J, Zhao L, Fang XD, Liu K. Serum albumin guided plasmonic nanoassemblies with opposite chiralities. SOFT MATTER 2021; 17:6298-6304. [PMID: 34160542 DOI: 10.1039/d1sm00784j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral assemblies by combining natural biomolecules with plasmonic nanostructures hold great promise for plasmonic enhanced sensing, imaging, and catalytic applications. Herein, we demonstrate that human serum albumin (HSA) and porcine serum albumin (PSA) can guide the chiral assembly of gold nanorods (GNRs) with left-handed chiroptical responses opposite to those by a series of other homologous animal serum albumins (SAs) due to the difference of their surface charge distributions. Under physiological pH conditions, the assembly of HSA or PSA with GNRs yielded left-handed twisted aggregates, while bovine serum albumin (BSA), sheep serum albumin, and equine serum albumin behaved on the contrary. The driving force for the chiral assembly is mainly attributed to electrostatic interaction. The opposite chiroptical signals acquired are correlated with the chiral surface charge distributions of the tertiary structures of SAs. Moreover, the chirality of the assembly induced by both HSA and BSA can be enhanced or reversed by adjusting the pH values. This work provides new insights into the modulation of protein-induced chiral assemblies and promotes their applications.
Collapse
Affiliation(s)
- Zhao-Yi Wang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Jin-Cheng Li
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Jun Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China. and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Li Zhao
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Xue-Dong Fang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
11
|
Wang S, Zhang Y, Qin X, Zhang L, Zhang Z, Lu W, Liu M. Guanosine Assembly Enabled Gold Nanorods with Dual Thermo- and Photoswitchable Plasmonic Chiroptical Activity. ACS NANO 2020; 14:6087-6096. [PMID: 32374982 DOI: 10.1021/acsnano.0c01819] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Noble metal nanostructures with plasmonic circular dichroism (PCD) have attracted interest, and a modulation of PCD is of great importance for their potential applications. Herein, we propose a supramolecular strategy for achieving dual thermal and photoswitchable PCD. When guanosine (G), deoxyguanosine (dG), and boric acid modified achiral gold nanorods (GNRs) were coassembled into a hydrogel, hybrid nanofibers with PCD were produced. When the hydrogel was heated, the nanofiber was disassembled and the PCD disappeared. As the hydrogel was thermally reversible, a thermo-controlled PCD could be realized. The hybrid hydrogel also showed photoswitchable PCD. When the gel was irradiated with an IR laser, the PCD disappeared. It can be restored by being placed at room temperature. Moreover, the hybrid gel was selectively responsive to the circularly polarized light (CPL). For (G/dG)-GNR hybrid assemblies, the R-CPL irradiation showed photothermal efficiency higher than that of L-CPL, which made it useful for an IR-irradiation-controlled release of drug molecules.
Collapse
Affiliation(s)
- Song Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuening Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xujin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Bigdeli A, Ghasemi F, Fahimi-Kashani N, Abbasi-Moayed S, Orouji A, Jafar-Nezhad Ivrigh Z, Shahdost-Fard F, Hormozi-Nezhad MR. Optical nanoprobes for chiral discrimination. Analyst 2020; 145:6416-6434. [DOI: 10.1039/d0an01211d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chiral recognition can be achieved by exploiting chiral properties of nanoparticles within various colorimetric and luminescent sensing systems.
Collapse
Affiliation(s)
- Arafeh Bigdeli
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
| | - Forough Ghasemi
- Department of Nanotechnology
- Agricultural Biotechnology Research Institute of Iran (ABRII)
- Agricultural Research
- Education
- and Extension Organization (AREEO)
| | | | | | - Afsaneh Orouji
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
| | | | | | - M. Reza Hormozi-Nezhad
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
- Institute for Nanoscience and Nanotechnology
| |
Collapse
|
13
|
Chen L, Zheng J, Feng J, Qian Q, Zhou Y. Reversible modulation of plasmonic chiral signals of achiral gold nanorods using a chiral supramolecular template. Chem Commun (Camb) 2019; 55:11378-11381. [PMID: 31478536 DOI: 10.1039/c9cc06050b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report here the fabrication of a multiple stimuli-responsive chiral plasmonic system based on the reversible self-assembly of phenylboronic acid-capped gold nanorods (PBA-Au NRs) guided by a supramolecular glycopeptide mimetic template. The plasmonic chiral signals of PBA-Au NRs can be reversibly switched on and off by temperature, light, pH and glucose concentration variations.
Collapse
Affiliation(s)
- Limin Chen
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China. and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Jing Zheng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Jie Feng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Qiuping Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| | - Yunlong Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China. and Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, P. R. China
| |
Collapse
|
14
|
Zhang Q, Hernandez T, Smith KW, Hosseini Jebeli SA, Dai AX, Warning L, Baiyasi R, McCarthy LA, Guo H, Chen DH, Dionne JA, Landes CF, Link S. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 2019; 365:1475-1478. [DOI: 10.1126/science.aax5415] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Qingfeng Zhang
- Department of Chemistry, Rice University, Houston, TX, USA
- Smalley-Curl Institute, Rice University, Houston, TX, USA
| | | | - Kyle W. Smith
- Department of Chemistry, Rice University, Houston, TX, USA
| | | | - Alan X. Dai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Lauren Warning
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Rashad Baiyasi
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | | | - Hua Guo
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | - Dong-Hua Chen
- Department of Structural Biology, Stanford University, Stanford, CA, USA
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Christy F. Landes
- Department of Chemistry, Rice University, Houston, TX, USA
- Smalley-Curl Institute, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Stephan Link
- Department of Chemistry, Rice University, Houston, TX, USA
- Smalley-Curl Institute, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
15
|
Nemati A, Shadpour S, Querciagrossa L, Mori T, Zannoni C, Hegmann T. Highly Sensitive, Tunable Chirality Amplification through Space Visualized for Gold Nanorods Capped with Axially Chiral Binaphthyl Derivatives. ACS NANO 2019; 13:10312-10326. [PMID: 31424907 DOI: 10.1021/acsnano.9b03787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The creation and transmission of chirality in molecular systems is a well-known, widely applied notion. Our understanding of how the chirality of nanomaterials can be controlled, measured, transmitted through space, and applied is less well understood. Dynamic assemblies for chiral sensing or metamaterials engineered from chiral nanomaterials require exact methods to determine transmission and amplification of nanomaterial chirality through space. We report the synthesis of a series of gold nanorods (GNRs) with a constant aspect ratio of ∼4.3 capped with C2-symmetric, axially chiral binaphthyl thiols, preparation of dispersions in the nematic liquid crystal 5CB, measurements of the helical pitch, and the determination of the helical twisting power as well as the average distance between the chiral nanomaterial additives. By comparison to the neat organic chiral derivatives, we demonstrate how the amplification of chirality facilitated by GNRs decorated with chiral molecules can be used to clearly distinguish the chiral induction strength of a homologous series of binaphthyl derivatives, differing only in the length of the nontethered aliphatic chain, in the induced chiral nematic liquid crystal phase. Considering systematic errors in sample preparation and optical measurements, these chiral molecules would otherwise be deemed identical with respect to chiral induction. Notably, we find some of the highest ever-reported values of the helical twisting power. We further support our experimentally derived arguments of a more comprehensive understanding of chirality transfer by calculations of a suitable pseudoscalar chirality indicator.
Collapse
Affiliation(s)
- Ahlam Nemati
- Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44242 , United States
| | - Sasan Shadpour
- Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44242 , United States
| | - Lara Querciagrossa
- Dipartimento di Chimica Industriale "Toso Montanari" and INSTM , Università di Bologna , Viale Risorgimento 4 , IT-40136 Bologna , Italy
| | - Taizo Mori
- Graduate School of Frontier Science , The University of Tokyo , 5-1-5, Kashiwanoha , Kashiwa 277-0827 , Japan
| | - Claudio Zannoni
- Dipartimento di Chimica Industriale "Toso Montanari" and INSTM , Università di Bologna , Viale Risorgimento 4 , IT-40136 Bologna , Italy
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44242 , United States
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| |
Collapse
|
16
|
Wang X, Wang X, Wang M, Zhang D, Yang Q, Liu T, Lei R, Zhu S, Zhao Y, Chen C. Probing Adsorption Behaviors of BSA onto Chiral Surfaces of Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703982. [PMID: 29573549 DOI: 10.1002/smll.201703982] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Chiral properties of nanoscale materials are of importance as they dominate interactions with proteins in physiological environments; however, they have rarely been investigated. In this study, a systematic investigation is conducted for the adsorption behaviors of bovine serum albumin (BSA) onto the chiral surfaces of gold nanoparticles (AuNPs), involving multiple techniques and molecular dynamic (MD) simulation. The adsorption of BSA onto both L- and D-chiral surfaces of AuNPs shows discernible differences involving thermodynamics, adsorption orientation, exposed charges, and affinity. As a powerful supplement, MD simulation provides a molecular-level understanding of protein adsorption onto nanochiral surfaces. Salt bridge interaction is proposed as a major driving force at protein-nanochiral interface interaction. The spatial distribution features of functional groups (COO- , NH3+ , and CH3 ) of chiral molecules on the nanosurface play a key role in the formation and location of salt bridges, which determine the BSA adsorption orientation and binding strength to chiral surfaces. Sequentially, BSA corona coated on nanochiral surfaces affects their uptake by cells. The results enhance the understanding of protein corona, which are important for biological effects of nanochirality in living organisms.
Collapse
Affiliation(s)
- Xinyi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
- College of Environment, Liaoning University, Shenyang, 110036, China
- College of Science, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaofeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Mingzhe Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Di Zhang
- College of Science, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qi Yang
- College of Science, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Rong Lei
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100029, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|