1
|
Quintelier M, Hajizadeh A, Zintler A, Gonçalves BF, Fernández de Luis R, Esrafili Dizaji L, Vande Velde CML, Wuttke S, Hadermann J. In Situ Study of the Activation Process of MOF-74 Using Three-Dimensional Electron Diffraction. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:7274-7282. [PMID: 39156719 PMCID: PMC11325536 DOI: 10.1021/acs.chemmater.4c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
Metal-organic framework (MOF)-74 is known for its effectiveness in selectively capturing carbon dioxide (CO2). Especially the Zn and Cu versions of MOF-74 show high efficiency of this material for CO2. However, the activation of this MOF, which is a crucial step for its utilization, is so far not well understood. Here, we are closing the knowledge gap by examining the activation using, for the first time in the MOF, three-dimensional electron diffraction (3DED) during in situ heating. The use of state-of-the-art direct electron detectors enables rapid acquisition and minimal exposure times, therefore minimizing beam damage to the very electron beam-sensitive MOF material. The activation process of Zn-MOF-74 and Cu-MOF-74 is systematically studied in situ, proving the creation of open metal sites. Differences in thermal stability between Zn-MOF-74 and Cu-MOF-74 are attributed to the strength of the metal-oxygen bonds and Jahn-Teller distortions. In the case of Zn-MOF-74, we observe previously unknown remaining electrostatic potentials inside the MOF pores, which indicate the presence of remaining atoms that might impede gas flow throughout the structure when using the MOF for absorption purposes. We believe our study exemplifies the significance of employing advanced characterization techniques to enhance our material understanding, which is a crucial step for unlocking the full potential of MOFs in various applications.
Collapse
Affiliation(s)
| | | | - Alexander Zintler
- EMAT,
Department of Physics, University of Antwerp, 2020 Antwerp, Belgium
| | - Bruna F. Gonçalves
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU Science Park 48940 Leioa, Spain
| | - Roberto Fernández de Luis
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU Science Park 48940 Leioa, Spain
| | - Leili Esrafili Dizaji
- Faculty
of Applied Engineering, iPRACS, University
of Antwerp, 2020 Antwerp, Belgium
| | | | - Stefan Wuttke
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU Science Park 48940 Leioa, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Joke Hadermann
- EMAT,
Department of Physics, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
2
|
Gulcay-Ozcan E, Iacomi P, Brântuas PF, Rioland G, Maurin G, Devautour-Vinot S. Metal-Organic Frameworks for Phthalate Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48216-48224. [PMID: 37793090 DOI: 10.1021/acsami.3c10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Indoor air contamination by phthalate ester (PAE) derivatives has become a significant concern since traces of PAEs can cause endocrine disruption, among other health issues. PAE abatement from the environment is thus mandatory to further ensure a good quality of indoor air. Herein, we explored the physisorption-based capture of volatile PAEs by metal-organic frameworks (MOFs). A high-throughput computational screening approach was first applied on databases compiling more than 20,000 MOF structures in order to identify the best MOFs for adsorbing traces of dimethyl phthalate (DMP), considered as a representative molecule of the family of PAE contaminants. Among the 20 top candidates, MOF-74(Ni), which combines substantial DMP uptake at the 10 ppm concentration level (∼0.20 g g-1) with high adsorption enthalpy at infinite dilution (-ΔHads(DMP),0 = 109.9 kJ mol-1), was revealed as an excellent porous material to capture airborne DMP. This prediction was validated by further experiments: gravimetric sorption isotherms were carried out on MOF-74(Ni), replacing DMP by dimethyl maleate (DMM), a molecule with a higher vapor pressure and indeed easier to manipulate compared to DMP while mimicking the adsorption behavior of DMP by MOFs, as evidenced by Monte Carlo calculations. Notably, saturation of DMM by MOF-74(Ni) (∼0.35 g g-1 at 343 K) occurs at very low equivalent concentration of the sorbate, i.e., 15 ppm, while half of the DMM molecules remain trapped in the MOF pores, even by heating the system up to 473 K under vacuum. This computational-experimental study reveals for the first time the potential of MOFs for the capture of phthalate ester contaminants as vapors of key importance to address indoor air quality issues.
Collapse
Affiliation(s)
- Ezgi Gulcay-Ozcan
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, Toulouse 31401 Cedex 09, France
- Department of Chemical Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Paul Iacomi
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
- Surface Measurement Systems, Unit 5, Wharfside, Rosemont Road, London HA0 4PE, U.K
| | - Pedro F Brântuas
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, Toulouse 31401 Cedex 09, France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
| | - Sabine Devautour-Vinot
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
| |
Collapse
|
3
|
Zhang L, Li H, Zhang X, Li Q, Zhu G, Liu FQ. A marine coating: Self-healing, stable release of Cu 2+, anti-biofouling. MARINE POLLUTION BULLETIN 2023; 195:115524. [PMID: 37703634 DOI: 10.1016/j.marpolbul.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
We developed a marine coating consisting of Cu-MOF-74, multi-walled carbon nanotube containing carboxyl groups (MWCNT-COOH) and self-healing polymers, which simultaneously possesses self-healing and anti-biofouling properties. Cu-MOF-74 can stably release Cu2+ by virtue of the coordination dissociative mechanism. Studies have proved that MWCNT can inhibit the growth of bacteria, so adding the MWCNT can help to reduce the amount of the copper ions and ensure the antibacterial effect of the coating. In addition, the cross-linked network and abundant -COOH provided by the polymers and MWCNT-COOH further prevent the loss of copper ions. Moreover, the coating we prepared has good performance of self-healing at room temperature or slightly heated because the polymers possess abundant non-covalent hydrogen bonds. Finally, the coating not only has superior antibacterial property, but also effectively prevents the adhesion of macrofouling organism. Therefore, the coating has a longer service life and its environmental friendliness has also been improved.
Collapse
Affiliation(s)
- Liuqin Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huali Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohu Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Qiuping Li
- Aviation Key Laboratory of Science and Technology on Structural Corrosion Prevention and Control, China Special Vehicle Research Institute, Jingmen 448035, China
| | - Guangyu Zhu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Fa-Qian Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
4
|
Pnevskaya AY, Bugaev AL. Theoretical screening of M3(btc)2 metal-organic frameworks for ethylene and 1-methylcyclopropene storage. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
5
|
Colorado-Peralta R, María Rivera-Villanueva J, Manuel Mora-Hernández J, Morales-Morales D, Ángel Alfonso-Herrera L. An overview of the role of supramolecular interactions in gas storage using MOFs. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Day GS, Rowe GT, Ybanez C, Ozdemir RO, Ornstein J. Evaluation of Iron-Based Metal-Organic Framework Activation Temperatures in Acetylene Adsorption. Inorg Chem 2022; 61:9242-9250. [PMID: 35684999 DOI: 10.1021/acs.inorgchem.2c00890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the major issues regarding long-term human space exploration is the need for a breathable atmosphere. A major component toward achieving this goal is both the removal of exhaled carbon dioxide (CO2) and the generation or recovery of oxygen (O2). NASA's current technology only operates at about 50% efficiency due to the need to vent the methane that is produced during the CO2 reduction process. One method of improving the efficiency of this process is through plasma pyrolysis, wherein the methane is pyrolyzed to produce hydrogen and various dehydrogenated carbon byproducts. In this process, acetylene is one of the main components of this byproduct stream. Unfortunately, while the concentration of this effluent is generally high in hydrogen (>90% typically), the presence of the acetylene waste product can act as a poison for the ruthenium-alumina catalyst used in the CO2-reducing Sabatier process, requiring a removal step. Metal-organic frameworks (MOFs) represent a valuable method for removing these unsaturated hydrocarbons due to their high tunability, particularly through the incorporation of open metal sites. In this study, two common iron-based MOFs, MIL-100 and PCN-250, were studied for their ability to adsorb acetylene. A combination of gas adsorption analysis and density functional theory calculation results shows the ability of these materials to undergo a thermal-induced reduction event, which results in an improvement in gas adsorption performance. This improvement in gas performance appears to be at least partially due to the increased presence of π-backbonding toward the acetylene molecules.
Collapse
Affiliation(s)
- Gregory S Day
- Framergy, Inc., 800 Raymond Stotzer Pkwy 2011, College Station, Texas 77845, United States
| | - Gerard T Rowe
- Department of Chemistry and Physics, University of South Carolina Aiken, University Parkway, Aiken, South Carolina 29801, United States
| | - Carlos Ybanez
- Framergy, Inc., 800 Raymond Stotzer Pkwy 2011, College Station, Texas 77845, United States
| | - Ray O Ozdemir
- Framergy, Inc., 800 Raymond Stotzer Pkwy 2011, College Station, Texas 77845, United States
| | - Jason Ornstein
- Framergy, Inc., 800 Raymond Stotzer Pkwy 2011, College Station, Texas 77845, United States
| |
Collapse
|
7
|
Leyao W, Jiarui Z, Yingna B, Liwei Z. The syntheses and efficient electromagnetic wave absorption properties of two Cu based coordination polymers. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Identification of optimal metal-organic frameworks by machine learning: Structure decomposition, feature integration, and predictive modeling. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Steinert DM, Schmitz A, Fetzer M, Seifert P, Janiak C. A caveat on the effect of modulators in the synthesis of the aluminum furandicarboylate metal‐organic framework MIL‐160. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Alexa Schmitz
- Heinrich Heine University Düsseldorf: Heinrich-Heine-Universitat Dusseldorf GERMANY
| | - Marcus Fetzer
- Heinrich Heine University Düsseldorf: Heinrich-Heine-Universitat Dusseldorf GERMANY
| | - Philipp Seifert
- Heinrich Heine University Düsseldorf: Heinrich-Heine-Universitat Dusseldorf GERMANY
| | - Christoph Janiak
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Institut für Anorganische Chemie und Strukturchemie Universitätsstr. 1 40225 Düsseldorf GERMANY
| |
Collapse
|
10
|
Swaroopa Datta Devulapalli V, McDonnell RP, Ruffley JP, Shukla PB, Luo TY, De Souza ML, Das P, Rosi NL, Karl Johnson J, Borguet E. Identifying UiO-67 Metal-Organic Framework Defects and Binding Sites through Ammonia Adsorption. CHEMSUSCHEM 2022; 15:e202102217. [PMID: 34725931 DOI: 10.1002/cssc.202102217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal-organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO-67-X (X: H, NH2 , CH3 ) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature-programmed desorption mass spectrometry (TPD-MS) and in-situ temperature-programmed infrared (TP-IR) spectroscopy. Ammonia was observed to interact with μ3 -OH groups present on the secondary building unit of UiO-67-X MOFs via hydrogen bonding. TP-IR studies revealed that under cryogenic UHV conditions, UiO-67-X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C-H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH-π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD-MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol-1 , suggesting physisorption of ammonia to UiO-67-X. In addition, missing linker defect sites, consisting of H2 O coordinated to Zr4+ sites, were detected through the formation of nNH3 ⋅H2 O clusters, characterized through in-situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO-67 MOFs. This highlights an advantage of using NH3 for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO-67-X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.
Collapse
Affiliation(s)
| | - Ryan P McDonnell
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Present Address: Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Jonathan P Ruffley
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Priyanka B Shukla
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mattheus L De Souza
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prasenjit Das
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
11
|
Chapman E, Ullah S, Wang H, Feng L, Wang K, Zhou HC, Li J, Thonhauser T, Tan K. Tuning the Adsorption Properties of Metal-Organic Frameworks through Coadsorbed Ammonia. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43661-43667. [PMID: 34491050 DOI: 10.1021/acsami.1c11876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we report a novel strategy to increase the gas adsorption selectivity of metal organic framework materials by coadsorbing another molecular species. Specifically, we find that addition of tightly bound NH3 molecules in the well-known metal-organic framework MOF-74 dramatically alters its adsorption behavior of C2H2 and C2H4. Combining in situ infrared spectroscopy and ab initio calculations, we find that-as a result of coadsorbed NH3 molecules attaching to the open metal sites-C2H2 binds more strongly and diffuses much faster than C2H4, occupying the available space adjacent to metal-bound NH3 molecules. Most remarkably, C2H4 is now almost completely excluded from entering the MOF once C2H2 has been loaded. This finding dispels the widespread belief that strongly coadsorbed species in nanoporous materials always undermine their performance in adsorbing or separating weakly bound target molecules. Furthermore, it suggests a new route to tune the adsorption behavior of MOF materials through harnessing the interactions among coadsorbed guests.
Collapse
Affiliation(s)
- Eric Chapman
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Saif Ullah
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Hao Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Liang Feng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kunyu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Kui Tan
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
12
|
Zhao Y, Wu M, Guo Y, Mamrol N, Yang X, Gao C, Van der Bruggen B. Metal-organic framework based membranes for selective separation of target ions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Liao Y, Sheridan T, Liu J, Farha O, Hupp J. Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30565-30575. [PMID: 34161064 DOI: 10.1021/acsami.1c05062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid degradation/destruction of chemical warfare agents, especially ones containing a phosphorous-fluorine bond, is of notable interest due to their extreme toxicity and typically rapid rate of human incapacitation. Recent studies of the hydrolytic destruction of a key nerve agent simulant, dimethyl 4-nitrophenylphosphate (DMNP), catalyzed by Zr6-based metal-organic frameworks (MOFs), have suggested deactivation of the active sites due to inhibition by the products as the reaction progresses. In this study, the interactions of two MOFs, NU-1000 and MOF-808, and two hydrolysis products, dimethyl phosphate (DMP) and ethyl methyl phosphonate (EMP), from the hydrolysis of the simulant (DMNP) and nerve agent ethyl methylphosphonofluoridate (EMPF), resembling the hydrolysis degradation product of the G-series nerve agent, Sarin (GB), have been investigated to deconvolute the effect of product inhibition from other effects on catalytic activity. Kinetic studies via in situ nuclear magnetic resonance spectroscopy indicated substantial product inhibition upon catalyst activity after several tens to several thousand turnovers, depending on specific conditions. Apparent product binding constants were obtained by fitting initial reaction rates at pH 7.0 and pH 10.5 to a Langmuir-Freundlich binding/adsorption model. For the fits, varying amounts/concentrations of candidate inhibitors were introduced before the start of catalytic hydrolysis. The derived binding constants proved suitable for quantitatively describing product inhibition effects upon reaction rates over the extended time course of simulant hydrolysis by aqua-ligand-bearing hexa-zirconium(IV) nodes.
Collapse
Affiliation(s)
- Yijun Liao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas Sheridan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Li Y, Zhao Y, Li S, Yuan D, Jiang Y, Bu X, Hu M, Zhai Q. Ultrahigh-Uptake Capacity-Enabled Gas Separation and Fruit Preservation by a New Single-Walled Nickel-Organic Framework. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003141. [PMID: 34194926 PMCID: PMC8224448 DOI: 10.1002/advs.202003141] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/07/2021] [Indexed: 06/02/2023]
Abstract
High gas-uptake capacity is desirable for many reasons such as gas storage and sequestration. Moreover, ultrahigh capacity can enable a practical separation process by mitigating the selectivity factor that sometimes compromises separation efficiency. Herein, a single-walled nickel-organic framework with an exceptionally high gas capture capability is reported. For example, C2H4 and C2H6 uptake capacities are at record-setting levels of 224 and 289 cm3 g-1 at 273 K and 1 bar (169 and 110 cm3 g-1 at 298 K and 1 bar), respectively. Such ultrahigh capacities for both gases give rise to an excellent separation performance, as shown for C2H6/C2H4 with breakthrough times of 100, 60 and 30 min at 273, 283 and 298 K and under 1 atm. This new material is also shown to readily remove ethylene released from fruits, and once again, its ultrahigh capacity plays a key role in the extraordinary length of time achieved in the preservation of the fruit freshness.
Collapse
Affiliation(s)
- Yong‐Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'anShaanxi710062China
- School of Chemistry and Chemical EngineeringInstitute of Applied CatalysisYantai UniversityYantaiShandong264005China
| | - Yong‐Ni Zhao
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'anShaanxi710062China
| | - Shu‐Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'anShaanxi710062China
| | - Da‐Qiang Yuan
- Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Yu‐Cheng Jiang
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'anShaanxi710062China
| | - Xianhui Bu
- Department of Chemistry and BiochemistryCalifornia State UniversityLong BeachCA90840USA
| | - Man‐Cheng Hu
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'anShaanxi710062China
| | - Quan‐Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'anShaanxi710062China
| |
Collapse
|
15
|
Pastore VJ, Sullivan MG, Rzayev J, Cook TR. Postsynthetic polymer-ligand exchange hybridization in M-MOF-74 composites. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1876852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vincent J. Pastore
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Meghan G. Sullivan
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Javid Rzayev
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Timothy R. Cook
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, USA
| |
Collapse
|
16
|
Core-shell Co-MOF-74@Mn-MOF-74 catalysts with Controllable shell thickness and their enhanced catalytic activity for toluene oxidation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Xie S, Qin Q, Liu H, Jin L, Wei X, Liu J, Liu X, Yao Y, Dong L, Li B. MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for Low-Temperature NH 3-SCR and In Situ DRIFTS Study Reaction Mechanism. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48476-48485. [PMID: 33048536 DOI: 10.1021/acsami.0c11035] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monometallic and bimetallic MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) catalysts were prepared by the solvothermal method for NH3-SCR. XRD, BET, SEM, and EDS-mapping tests indicate the successful synthesis of the MOF-74-M catalyst with uniform distribution of metal elements and large specific surface area, and the morphology is almost hexagonal. Adding Mn element to a single-metal catalyst can enhance activity, which is mainly because of the existence of various valence states of Mn so that it has excellent redox properties; the catalytic activity of water and sulfur resistance tests showed that the catalytic activity of MOF-74-M increases after adding a proper amount of SO2, mainly because of the increase in acidic sites. In situ DRIFTS results indicate that the low-temperature range of MOF-74-MnCo and MOF-74-Mn is dominated by the E-R mechanism and the high-temperature range is dominated by the L-H mechanism. The entire temperature range of MOF-74-Zn is dominated by the L-H mechanism.
Collapse
Affiliation(s)
- Shangzhi Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qiuju Qin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Hao Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lijian Jin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaoling Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiaxing Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xia Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yinchao Yao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lihui Dong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Bin Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
18
|
Redfern LR, Lo WS, Dillingham IJ, Eatman JG, Mian MR, Tsung CK, Farha OK. Enhancing Four-Carbon Olefin Production from Acetylene over Copper Nanoparticles in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31496-31502. [PMID: 32543827 DOI: 10.1021/acsami.0c08244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Four-carbon olefins, such as 1-butene and 1,3-butadiene, are important chemical feedstocks for the production of adhesives and synthetic rubber. These compounds are found in the C4 fraction of "green oil" products that can arise during the hydrogenation of acetylene. Here, we demonstrate that control of the catalyst structure increases the yield and productivity of these important olefins with a family of catalyst materials comprising Cu nanoparticles (CuNPs) bound within the pores of Zr-based metal-organic frameworks. Using carbon monoxide as a probe molecule, we characterize the surfaces of these catalytic CuNPs with diffuse reflectance infrared Fourier transform spectroscopy, revealing that the electronic structure of the CuNP surfaces is size-dependent. Furthermore, we find that as the CuNP diameter decreases, the selectivity for C4 products increases and that lowering the stoichiometric ratio of H2/acetylene improves the selectivity and productivity of the catalyst.
Collapse
Affiliation(s)
- Louis R Redfern
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Ian J Dillingham
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jamila G Eatman
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Omar K Farha
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Kim SI, Kim AR, Kim SY, Lee JY, Bae YS. High styrene/ethylbenzene selectivity in a metal-organic framework with coordinatively unsaturated cobalt(II) sites. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Ejegbavwo OA, Berseneva AA, Martin CR, Leith GA, Pandey S, Brandt AJ, Park KC, Mathur A, Farzandh S, Klepov VV, Heiser BJ, Chandrashekhar M, Karakalos SG, Smith MD, Phillpot SR, Garashchuk S, Chen DA, Shustova NB. Heterometallic multinuclear nodes directing MOF electronic behavior. Chem Sci 2020; 11:7379-7389. [PMID: 34123019 PMCID: PMC8159452 DOI: 10.1039/d0sc03053h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metal node engineering in combination with modularity, topological diversity, and porosity of metal–organic frameworks (MOFs) could advance energy and optoelectronic sectors. In this study, we focus on MOFs with multinuclear heterometallic nodes for establishing metal−property trends, i.e., connecting atomic scale changes with macroscopic material properties by utilization of inductively coupled plasma mass spectrometry, conductivity measurements, X-ray photoelectron and diffuse reflectance spectroscopies, and density functional theory calculations. The results of Bader charge analysis and studies employing the Voronoi–Dirichlet partition of crystal structures are also presented. As an example of frameworks with different nodal arrangements, we have chosen MOFs with mononuclear, binuclear, and pentanuclear nodes, primarily consisting of first-row transition metals, that are incorporated in HHTP-, BTC-, and NIP-systems, respectively (HHTP3− = triphenylene-2,3,6,7,10,11-hexaone; BTC3− = 1,3,5-benzenetricarboxylate; and NIP2− = 5-nitroisophthalate). Through probing framework electronic profiles, we demonstrate structure–property relationships, and also highlight the necessity for both comprehensive analysis of trends in metal properties, and novel avenues for preparation of heterometallic multinuclear isoreticular structures, which are critical components for on-demand tailoring of properties in heterometallic systems. Metal node engineering in combination with modularity, topological diversity, and porosity of metal–organic frameworks (MOFs) could advance energy and optoelectronic sectors.![]()
Collapse
Affiliation(s)
- Otega A Ejegbavwo
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Anna A Berseneva
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Shubham Pandey
- Department of Materials Science and Engineering, University of Florida Gainesville Florida 32611 USA
| | - Amy J Brandt
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Sharfa Farzandh
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Vladislav V Klepov
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Brittany J Heiser
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Mvs Chandrashekhar
- Department of Electrical Engineering, University of South Carolina Columbia South Carolina 29208 USA
| | - Stavros G Karakalos
- College of Engineering and Computing, University of South Carolina Columbia South Carolina 29208 USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida Gainesville Florida 32611 USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Donna A Chen
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| |
Collapse
|
21
|
Xu S, Guo X, Qiao Z, Huang H, Zhong C. Methyl-Shield Cu-BTC with High Water Stability through One-Step Synthesis and In Situ Functionalization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shanshan Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiangyu Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
22
|
Easy Processing of Metal–Organic Frameworks into Pellets and Membranes. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we present a simple and inexpensive method for the immobilization of Metal–Organic Framework (MOF) particles in the form of pellets and membranes. This processing procedure is possible using polymethacrylate polymer (PMMA) as a binding or coating agent, improving stability and significantly increasing the water repellency. HKUST and MMOF-74 (M = Mg2+, Zn2+, Co2+ or Ni2+) are stable with the processing and high loadings of MOF materials into the processed pellet or membranes. These methods can provide the know-how for the immobilization of MOFs for, for example, application in air purification and the removal of toxic compounds and are well-suited for deployment in air purification devices.
Collapse
|
23
|
Duong TD, Sapchenko SA, da Silva I, Godfrey HGW, Cheng Y, Daemen LL, Manuel P, Frogley MD, Cinque G, Ramirez-Cuesta AJ, Yang S, Schröder M. Observation of binding of carbon dioxide to nitro-decorated metal–organic frameworks. Chem Sci 2020. [DOI: 10.1039/c9sc04294f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synergistic effects between –NO2 groups and open metal sites lead to optimal binding of CO2 molecules within MFM-102-NO2via hydrogen bonding to C–H groups.
Collapse
Affiliation(s)
| | - Sergey A. Sapchenko
- School of Chemistry
- University of Manchester
- Manchester
- UK
- Nikolaev Institute of Inorganic Chemistry
| | | | | | | | | | | | | | | | | | - Sihai Yang
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | | |
Collapse
|
24
|
Wang M, Tang Y, Jin Y. Modulating Catalytic Performance of Metal–Organic Framework Composites by Localized Surface Plasmon Resonance. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03971] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Minmin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226000, Jiangsu, China
| | - Yanfeng Tang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226000, Jiangsu, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| |
Collapse
|
25
|
Barnett BR, Parker ST, Paley MV, Gonzalez MI, Biggins N, Oktawiec J, Long JR. Thermodynamic Separation of 1-Butene from 2-Butene in Metal–Organic Frameworks with Open Metal Sites. J Am Chem Soc 2019; 141:18325-18333. [DOI: 10.1021/jacs.9b09942] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brandon R. Barnett
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Surya T. Parker
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | | | - Naomi Biggins
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Jeffrey R. Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Lorzing GR, Gosselin AJ, Trump BA, York AHP, Sturluson A, Rowland CA, Yap GPA, Brown CM, Simon CM, Bloch ED. Understanding Gas Storage in Cuboctahedral Porous Coordination Cages. J Am Chem Soc 2019; 141:12128-12138. [PMID: 31271534 DOI: 10.1021/jacs.9b05872] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porous molecular solids are promising materials for gas storage and gas separation applications. However, given the relative dearth of structural information concerning these materials, additional studies are vital for further understanding their properties and developing design parameters for their optimization. Here, we examine a series of isostructural cuboctahedral, paddlewheel-based coordination cages, M24(tBu-bdc)24 (M = Cr, Mo, Ru; tBu-bdc2- = 5-tert-butylisophthalate), for high-pressure methane storage. As the decrease in crystallinity upon activation of these porous molecular materials precludes diffraction studies, we turn to a related class of pillared coordination cage-based metal-organic frameworks, M24(Me-bdc)24(dabco)6 (M = Fe, Co; Me-bdc2- = 5-methylisophthalate; dabco = 1,4-diazabicyclo[2.2.2]octane) for neutron diffraction studies. The five porous materials display BET surface areas from 1057-1937 m2/g and total methane uptake capacities of up to 143 cm3(STP)/cm3. Both the porous cages and cage-based frameworks display methane adsorption enthalpies of -15 to -22 kJ/mol. Also supported by molecular modeling, neutron diffraction studies indicate that the triangular windows of the cage are favorable methane adsorption sites with CD4-arene interactions between 3.7 and 4.1 Å. At both low and high loadings, two additional methane adsorption sites on the exterior surface of the cage are apparent for a total of 56 adsorption sites per cage. These results show that M24L24 cages are competent gas storage materials and further adsorption sites may be optimized by judicious ligand functionalization to control extracage pore space.
Collapse
Affiliation(s)
| | | | - Benjamin A Trump
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Arthur H P York
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Arni Sturluson
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | | | | | - Craig M Brown
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Cory M Simon
- School of Chemical, Biological, and Environmental Engineering , Oregon State University , Corvallis , Oregon 97331 , United States
| | | |
Collapse
|
27
|
Yang X, Liang T, Sun J, Zaworotko MJ, Chen Y, Cheng P, Zhang Z. Template-Directed Synthesis of Photocatalyst-Encapsulating Metal–Organic Frameworks with Boosted Photocatalytic Activity. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01783] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaojie Yang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | | | - Michael J. Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94T9PX, Republic of Ireland
| | | | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Qiao Y, Ni Y, Kong F, Li R, Zhang C, Kong A, Shan Y. Pyrolytic Carbon-coated Cu-Fe Alloy Nanoparticles with High Catalytic Performance for Oxygen Electroreduction. Chem Asian J 2019; 14:2676-2684. [PMID: 31152498 DOI: 10.1002/asia.201900524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/19/2019] [Indexed: 11/12/2022]
Abstract
Well-dispersed carbon-coated or nitrogen-doped carbon-coated copper-iron alloy nanoparticles (FeCu@C or FeCu@C-N) in carbon-based supports are obtained using a bimetallic metal-organic framework (Cu/Fe-MOF-74) or a mixture of Cu/Fe-MOF-74 and melamine as sacrificial templates and an active-component precursor by using a pyrolysis method. The investigation results attest formation of Cu-Fe alloy nanoparticles. The obtained FeCu@C catalyst exhibits a catalytic activity with a half-wave potential of 0.83 V for oxygen reduction reaction (ORR) in alkaline medium, comparable to that on commercial Pt/C catalyst (0.84 V). The catalytic activity of FeCu@C-N for ORR (Ehalf-wave =0.87 V) outshines all reported analogues. The excellent performance of FeCu@C-N should be attributed to a change in the energy of the d-band center of Cu resulting from the formation of the copper-iron alloy, the interaction between alloy nanoparticles and supports and N-doping in the carbon matrix. Moreover, FeCu@C and FeCu@C-N show better electrochemical stability and methanol tolerance than commercial Pt/C and are expected to be widely used in practical applications.
Collapse
Affiliation(s)
- Yu Qiao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yangyang Ni
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Fantan Kong
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Ruijing Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Aiguo Kong
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yongkui Shan
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
29
|
Wang Y, Peh SB, Zhao D. Alternatives to Cryogenic Distillation: Advanced Porous Materials in Adsorptive Light Olefin/Paraffin Separations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900058. [PMID: 30993886 DOI: 10.1002/smll.201900058] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/02/2019] [Indexed: 06/09/2023]
Abstract
As primary feedstocks in the petrochemical industry, light olefins such as ethylene and propylene are mainly obtained from steam cracking of naphtha and short chain alkanes (ethane and propane). Due to their similar physical properties, the separations of olefins and paraffins-pivotal processes to meet the olefin purity requirement of downstream processing-are typically performed by highly energy-intensive cryogenic distillation at low temperatures and high pressures. To reduce the energy input and save costs, adsorptive olefin/paraffin separations have been proposed as promising techniques to complement or even replace cryogenic distillation, and growing efforts have been devoted to developing advanced adsorbents to fulfill this challenging task. In this Review, a holistic view of olefin/paraffin separations is first provided by summarizing how different processes have been established to leverage the differences between olefins and paraffins for effective separations. Subsequently, recent advances in the development of porous materials for adsorptive olefin/paraffin separations are highlighted with an emphasis on different separation mechanisms. Last, a perspective on possible directions to push the limit of the research in this field is presented.
Collapse
Affiliation(s)
- Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
30
|
Luo X, Shi J, Zhao H, Ma C, Hu D, Zhang H, Shen Q, Sun N, Wei W. Biased adsorption of ethane over ethylene on low-cost hyper-crosslinked polymers. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Duan HH, Bai CH, Li JY, Yang Y, Yang BL, Gou XF, Yue ML, Li ZX. Temperature-Dependent Morphologies of Precursors: Metal-Organic Framework-Derived Porous Carbon for High-Performance Electrochemical Double-Layer Capacitors. Inorg Chem 2019; 58:2856-2864. [PMID: 30730708 DOI: 10.1021/acs.inorgchem.8b03541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, three Cu metal-organic framework samples with tunable rhombic, squama, and trucated bipyramid morphologies have been synthesized at 0, 25, and 60 °C, respectively, and further employed as precursors to initially prepare Cu@C composites by the calcination-thermolysis procedure. Then Cu@C composites have been etched with HCl and subsequently activated with KOH to obtain activated porous carbon (APC-0, -25, and -60). Interestingly, APC-25 presents a loose multilevel morphology of cabbage and possesses the largest specific surface area (1880.4 m2 g-1) and pore volume (0.81 cm3 g-1) among these APC materials. Consequently, APC-25 also exhibits the highest specific capacitance of 196 F g-1 at 0.5 A g-1, and the corresponding symmetric supercapacitor cell (SSC) achieves a remarkable energy density of 11.8 Wh kg-1 at a power density of 350 W kg-1. Furthermore, APC-25 shows excellent cycling stability, and the loss of capacitance is only 7.7% even after 10000 cycles at 1 A g-1. Significantly, five light-emitting diodes can be lit by six SSCs, which proves that APC-25 can be used in energy storage devices.
Collapse
Affiliation(s)
- Hui-Hui Duan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Cai-He Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Jia-Yi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Ying Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Bo-Long Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Xiao-Feng Gou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Man-Li Yue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| | - Zuo-Xi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Material Sciences , Northwest University , Xi'an 710069 , P. R. China
| |
Collapse
|
32
|
Wu Z, Wei S, Wang M, Zhou S, Wang J, Wang Z, Guo W, Lu X. CO2 capture and separation over N2 and CH4 in nanoporous MFM-300(In, Al, Ga, and In-3N): Insight from GCMC simulations. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Liu J, Ye J, Li Z, Otake KI, Liao Y, Peters AW, Noh H, Truhlar DG, Gagliardi L, Cramer CJ, Farha OK, Hupp JT. Beyond the Active Site: Tuning the Activity and Selectivity of a Metal-Organic Framework-Supported Ni Catalyst for Ethylene Dimerization. J Am Chem Soc 2018; 140:11174-11178. [PMID: 30141922 DOI: 10.1021/jacs.8b06006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To modify its steric and electronic properties as a support for heterogeneous catalysts, electron-withdrawing and electron-donating ligands, hexafluoroacetylacetonate (Facac-) and acetylacetonate (Acac-), were introduced to the metal-organic framework (MOF), NU-1000, via a process akin to atomic layer deposition (ALD). In the absence of Facac- or Acac-, NU-1000-supported, AIM-installed Ni(II) sites yield a mixture of C4, C6, C8, and polymeric products in ethylene oligomerization. (AIM = ALD-like deposition in MOFs). In contrast, both Ni-Facac-AIM-NU-1000 and Ni-Acac-AIM-NU-1000 exhibit quantitative catalytic selectivity for C4 species. Experimental findings are supported by density functional theory calculations, which show increases in the activation barrier for the C-C coupling step, due mainly to rearrangement of the siting of Facac- or Acac- to partially ligate added nickel. The results illustrate the important role of structure-tuning support modifiers in controlling the activity of MOF-sited heterogeneous catalysts and in engendering catalytic selectivity. The results also illustrate the ease with which crystallographically well-defined modifications of the catalyst support can be introduced when the node-coordinating molecular modifier is delivered via the vapor phase.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Jingyun Ye
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Zhanyong Li
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Ken-Ichi Otake
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Yijun Liao
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Aaron W Peters
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Hyunho Noh
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Donald G Truhlar
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Laura Gagliardi
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christopher J Cramer
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Omar K Farha
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Department of Chemistry, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia.,Department of Chemical and Biological Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Joseph T Hupp
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
34
|
Gao W, Wang G, Fan YZ, Peng SL, Chen CX, Zhang P, Mao L, Xiong Y, Mei XF, Jiang JJ, Su CY. A mesoporous metal-organic framework based on T-shape ligand with Ca2+ release behavior under simulated physiological conditions and praisable biocompatibility. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
35
|
Chen Y, Li P, Modica JA, Drout RJ, Farha OK. Acid-Resistant Mesoporous Metal–Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. J Am Chem Soc 2018; 140:5678-5681. [DOI: 10.1021/jacs.8b02089] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yijing Chen
- Department of Chemistry and the International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Peng Li
- Department of Chemistry and the International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Justin A. Modica
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Riki J. Drout
- Department of Chemistry and the International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Omar K. Farha
- Department of Chemistry and the International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
36
|
Mendecki L, Ko M, Zhang X, Meng Z, Mirica KA. Porous Scaffolds for Electrochemically Controlled Reversible Capture and Release of Ethylene. J Am Chem Soc 2017; 139:17229-17232. [DOI: 10.1021/jacs.7b08102] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lukasz Mendecki
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Michael Ko
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Xiaoping Zhang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Katherine A. Mirica
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|