1
|
Verma T, Hendiani S, Carbajo C, Andersen SB, Hammarlund EU, Burmølle M, Sand KK. Recurrence and propagation of past functions through mineral facilitated horizontal gene transfer. Front Microbiol 2024; 15:1449094. [PMID: 39575186 PMCID: PMC11580795 DOI: 10.3389/fmicb.2024.1449094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Horizontal gene transfer is one of the most important drivers of bacterial evolution. Transformation by uptake of extracellular DNA is traditionally not considered to be an effective mode of gene acquisition, simply because extracellular DNA is degraded in a matter of days when it is suspended in e.g. seawater. Recently the age span of stored DNA was increased to at least 2 Ma. Here, we show that Acinetobacter baylyi can incorporate 60 bp DNA fragments adsorbed to common sedimentary minerals and that the transformation frequencies scale with mineral surface properties. Our work highlights that ancient environmental DNA can fuel the evolution of contemporary bacteria. In contrast to heritable stochastic mutations, the processes by which bacteria acquire new genomic material during times of increased stress and needs, indicate a non-random mechanism that may propel evolution in a non-stochastic manner.
Collapse
Affiliation(s)
- Taru Verma
- Section of Geogenetics, Globe Institute, University of Copenhagen, Øster Voldgade, Denmark
| | - Saghar Hendiani
- Section of Geogenetics, Globe Institute, University of Copenhagen, Øster Voldgade, Denmark
| | - Carlota Carbajo
- Section of Geogenetics, Globe Institute, University of Copenhagen, Øster Voldgade, Denmark
| | - Sandra B. Andersen
- Section for Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade, Denmark
| | - Emma U. Hammarlund
- Section of Cell and Tissue Biology Cancer Research, Department of Experimental Medical Sciences, Lund University, Sölvegatan, Sweden
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken, Denmark
| | - Karina K. Sand
- Section of Geogenetics, Globe Institute, University of Copenhagen, Øster Voldgade, Denmark
| |
Collapse
|
2
|
Kraevsky SV, Barinov NA, Morozova OV, Palyulin VV, Kremleva AV, Klinov DV. Features of DNA-Montmorillonite Binding Visualized by Atomic Force Microscopy. Int J Mol Sci 2023; 24:9827. [PMID: 37372975 DOI: 10.3390/ijms24129827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
In the present work, complexes of DNA with nano-clay montmorillonite (Mt) were investigated by means of atomic force microscopy (AFM) under various conditions. In contrast to the integral methods of analysis of the sorption of DNA on clay, AFM allowed us to study this process at the molecular level in detail. DNA molecules in the deionized water were shown to form a 2D fiber network weakly bound to both Mt and mica. The binding sites are mostly along Mt edges. The addition of Mg2+ cations led to the separation of DNA fibers into separate molecules, which bound mainly to the edge joints of the Mt particles according to our reactivity estimations. After the incubation of DNA with Mg2+, the DNA fibers were capable of wrapping around the Mt particles and were weakly bound to the Mt edge surfaces. The reversible sorption of nucleic acids onto the Mt surface allows it to be used for both RNA and DNA isolation for further reverse transcription and polymerase chain reaction (PCR). Our results show that the strongest binding sites for DNA are the edge joints of Mt particles.
Collapse
Affiliation(s)
- Sergey V Kraevsky
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Alikhanov Institute for Theoretical and Experimental Physics, National Research Center "Kurchatov Institute", ac. Kurchatov, sq, 1, 123182 Moscow, Russia
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, 119121 Moscow, Russia
| | - Nikolay A Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700 Dolgoprudny, Russia
| | - Olga V Morozova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700 Dolgoprudny, Russia
- National Research Center of Epidemiology and Microbiology Named after N.F. Gamaleya, Ivanovsky Institute of Virology of the Russian Ministry of Health, 16 Gamaleya Street, 123098 Moscow, Russia
| | - Vladimir V Palyulin
- Applied AI Center, Skolkovo Institute of Science and Technology, Bol'shoy Bul'var, 30, bld 1, 121205 Moscow, Russia
| | - Alena V Kremleva
- Department Chemie, Technische Universität München, 85748 Garching, Germany
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700 Dolgoprudny, Russia
| |
Collapse
|
3
|
Rasmussen B, Muhling J, Fischer W. Greenalite Nanoparticles in Alkaline Vent Plumes as Templates for the Origin of Life. ASTROBIOLOGY 2021; 21:246-259. [PMID: 33085498 PMCID: PMC7876356 DOI: 10.1089/ast.2020.2270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/07/2020] [Indexed: 05/07/2023]
Abstract
Mineral templates are thought to have played keys roles in the emergence of life. Drawing on recent findings from 3.45-2.45 billion-year-old iron-rich hydrothermal sedimentary rocks, we hypothesize that greenalite (Fe3Si2O5(OH)4) was a readily available mineral in hydrothermal environments, where it may have acted as a template and catalyst in polymerization, vesicle formation and encapsulation, and protocell replication. We argue that venting of dissolved Fe2+ and SiO2(aq) into the anoxic Hadean ocean favored the precipitation of nanometer-sized particles of greenalite in hydrothermal plumes, producing a continuous flow of free-floating clay templates that traversed the ocean. The mixing of acidic, metal-bearing hydrothermal plumes from volcanic ridge systems with more alkaline, organic-bearing plumes generated by serpentinization of ultramafic rocks brought together essential building blocks for life in solutions conducive to greenalite precipitation. We suggest that the extreme disorder in the greenalite crystal lattice, producing structural modulations resembling parallel corrugations (∼22 Å wide) on particle edges, promoted the assembly and alignment of linear RNA-type molecules (∼20 Å diameter). In alkaline solutions, greenalite nanoparticles could have accelerated the growth of membrane vesicles, while their encapsulation allowed RNA-type molecules to continue to form on the mineral templates, potentially enhancing the growth and division of primitive cell membranes. Once self-replicating RNA evolved, the mineral template became redundant, and protocells were free to replicate and roam the ocean realm.
Collapse
Affiliation(s)
- B. Rasmussen
- School of Earth Sciences, The University of Western Australia, Perth, Australia
| | - J.R. Muhling
- School of Earth Sciences, The University of Western Australia, Perth, Australia
| | - W.W. Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
4
|
Zhai H, Zhang W, Wang L, Putnis CV. Dynamic force spectroscopy for quantifying single-molecule organo–mineral interactions. CrystEngComm 2021. [DOI: 10.1039/d0ce00949k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organo–mineral interactions have long been the focus in the fields of biomineralization and geomineralization, since such interactions not only modulate the dynamics of crystal nucleation and growth but may also change crystal phases, morphologies, and structures.
Collapse
Affiliation(s)
- Hang Zhai
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
- Department of Plant and Environmental Sciences
| | - Wenjun Zhang
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Lijun Wang
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Christine V. Putnis
- Institut für Mineralogie
- University of Münster
- 48149 Münster
- Germany
- School of Molecular and Life Science
| |
Collapse
|
5
|
Sand KK, Jelavić S, Dobberschütz S, Ashby PD, Marshall MJ, Dideriksen K, Stipp SLS, Kerisit SN, Friddle RW, DeYoreo JJ. Mechanistic insight into biopolymer induced iron oxide mineralization through quantification of molecular bonding. NANOSCALE ADVANCES 2020; 2:3323-3333. [PMID: 36134299 PMCID: PMC9417541 DOI: 10.1039/d0na00138d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/12/2020] [Indexed: 06/16/2023]
Abstract
Microbial production of iron (oxyhydr)oxides on polysaccharide rich biopolymers occurs on such a vast scale that it impacts the global iron cycle and has been responsible for major biogeochemical events. Yet the physiochemical controls these biopolymers exert on iron (oxyhydr)oxide formation are poorly understood. Here we used dynamic force spectroscopy to directly probe binding between complex, model and natural microbial polysaccharides and common iron (oxyhydr)oxides. Applying nucleation theory to our results demonstrates that if there is a strong attractive interaction between biopolymers and iron (oxyhydr)oxides, the biopolymers decrease the nucleation barriers, thus promoting mineral nucleation. These results are also supported by nucleation studies and density functional theory. Spectroscopic and thermogravimetric data provide insight into the subsequent growth dynamics and show that the degree and strength of water association with the polymers can explain the influence on iron (oxyhydr)oxide transformation rates. Combined, our results provide a mechanistic basis for understanding how polymer-mineral-water interactions alter iron (oxyhydr)oxides nucleation and growth dynamics and pave the way for an improved understanding of the consequences of polymer induced mineralization in natural systems.
Collapse
Affiliation(s)
- K K Sand
- Physical Sciences Division, Pacific Northwest National Laboratory Richland WA USA
- Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA USA
| | - S Jelavić
- Nano-Science Center, Department of Chemistry, University of Copenhagen Denmark
| | - S Dobberschütz
- Nano-Science Center, Department of Chemistry, University of Copenhagen Denmark
| | - P D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA USA
| | - M J Marshall
- Biologic Sciences Division, Pacific Northwest National Laboratory Richland WA USA
| | - K Dideriksen
- Nano-Science Center, Department of Chemistry, University of Copenhagen Denmark
| | - S L S Stipp
- Nano-Science Center, Department of Chemistry, University of Copenhagen Denmark
| | - S N Kerisit
- Physical Sciences Division, Pacific Northwest National Laboratory Richland WA USA
| | - R W Friddle
- Sandia National Laboratories Livermore California 94550 USA
| | - J J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory Richland WA USA
- Department of Material Science and Engineering, University of Washington Seattle WA USA
| |
Collapse
|
6
|
Yang G, Zhou L. Montmorillonite-catalyzed conversions of carbon dioxide to formic acid: Active site, competitive mechanisms, influence factors and origin of high catalytic efficiency. J Colloid Interface Sci 2020; 563:8-16. [PMID: 31865051 DOI: 10.1016/j.jcis.2019.12.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 11/30/2022]
Abstract
Design of heterogeneous catalysts for CO2 conversions to value-added chemicals is highly desirable. Montmorillonite and other clay minerals have been used widely in catalytic reactions including CO2 hydrogenation, while a molecular-level understanding remains lacking. In this study, periodic density functional theory calculations are employed and a comprehensive understanding about montmorillonite-catalyzed CO2 hydrogenation to formic acid is given, including active site, mechanism, influence factors, competitive reaction paths, and origin of superior catalysis. Catechol that is readily available and can also be considered as a fragment of abundantly distributed humic substances is an effective hydrogen source. The penta-coordinated M3+ (M2+) sites of edge surfaces are active sites, and reactions occur preferentially at M2+ rather than M3+ sites. The catalytic activities depend strongly on the identity of M2+ (M3+) cations, and all reaction paths follow the concerted mechanisms transferring two hydrogen atoms in one step, with those producing formate being highly preferred. M2+/Al3+ substitutions and substituent effects are two critical factors to affect catalytic activities, and with synergy of Mg2+/Al3+ substitutions and -NMe2 substituent, reactions are exergonic (-0.09 eV) and activation barriers are so low (0.48 eV) that formate can be facilely produced at ambient conditions. Edge surfaces of clay minerals are bifunctional catalysts, with M2+ cations showing Lewis acids and MOH groups playing similar effects as basic additives. Results provide new insights about heterogeneous catalysis of CO2 hydrogenation and other reactions.
Collapse
Affiliation(s)
- Gang Yang
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, Southwest University, Chongqing 400715, China; State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Lijun Zhou
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Rodrigues F, Georgelin T, Gabant G, Rigaud B, Gaslain F, Zhuang G, Gardênnia da Fonseca M, Valtchev V, Touboul D, Jaber M. Confinement and Time Immemorial: Prebiotic Synthesis of Nucleotides on a Porous Mineral Nanoreactor. J Phys Chem Lett 2019; 10:4192-4196. [PMID: 31305079 DOI: 10.1021/acs.jpclett.9b01448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the successful one-pot synthesis of adenosine mono-, di-, and triphosphate in the confined space of a mordenite zeolite. This is also the first report of ATP synthesized onto a porous mineral surface. The results revealed a plausible prebiotic route to ribonucleotides and highlighted the contribution of microporous minerals in the origins of life.
Collapse
Affiliation(s)
- Francisco Rodrigues
- Sorbonne University , CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale , 4 Place Jussieu , F-75005 Paris , France
- Department of Chemistry , State University of Paraíba , UEPB, Campina Grande , Paraíba 58429-500, Brazil
| | - Thomas Georgelin
- Centre de Biophysique Moléculaire , CNRS, Rue Charles Sadron, 45000 Orléans , France
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire , CNRS, Rue Charles Sadron, 45000 Orléans , France
| | - Baptiste Rigaud
- CNRS Institut des Matériaux de Paris Centre (FR2482) , 4 Place Jussieu , 75005 Paris , France
| | - Fabrice Gaslain
- MINES ParisTech , PSL - Research University , MAT - Centre des Matériaux, CNRS UMR 7633, BP 87, F-91003 Evry , France
| | - Guanzheng Zhuang
- Sorbonne University , CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale , 4 Place Jussieu , F-75005 Paris , France
| | - Maria Gardênnia da Fonseca
- Department of Chemistry , Federal University of Paraíba , UFPB, João Pessoa , Paraíba 58059-900 , Brazil
| | - Valentin Valtchev
- Normandy University , Laboratoire Catalyse & Spectrochimie, ENSICAEN , 6 bl Maréchal Juin , 14050 Caen , France
| | - David Touboul
- CNRS-Institut de Chimie des Substances Naturelles, UPR2301 , Université Paris-Saclay , 91198 Gif-sur-Yvette cedex, France
| | - Maguy Jaber
- Sorbonne University , CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale , 4 Place Jussieu , F-75005 Paris , France
| |
Collapse
|
8
|
How do Nucleotides Adsorb Onto Clays? Life (Basel) 2018; 8:life8040059. [PMID: 30486384 PMCID: PMC6316844 DOI: 10.3390/life8040059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Adsorption of prebiotic building blocks is proposed to have played a role in the emergence of life on Earth. The experimental and theoretical study of this phenomenon should be guided by our knowledge of the geochemistry of the habitable early Earth environments, which could have spanned a large range of settings. Adsorption being an interfacial phenomenon, experiments can be built around the minerals that probably exhibited the largest specific surface areas and were the most abundant, i.e., phyllosilicates. Our current work aims at understanding how nucleotides, the building blocks of RNA and DNA, might have interacted with phyllosilicates under various physico-chemical conditions. We carried out and refined batch adsorption studies to explore parameters such as temperature, pH, salinity, etc. We built a comprehensive, generalized model of the adsorption mechanisms of nucleotides onto phyllosilicate particles, mainly governed by phosphate reactivity. More recently, we used surface chemistry and geochemistry techniques, such as vibrational spectroscopy, low pressure gas adsorption, X-ray microscopy, and theoretical simulations, in order to acquire direct data on the adsorption configurations and localization of nucleotides on mineral surfaces. Although some of these techniques proved to be challenging, questioning our ability to easily detect biosignatures, they confirmed and complemented our pre-established model.
Collapse
|