1
|
Sau A, Mahapatra D, Maji A, Dey S, Roy A, Kundu S. Methyl Formate, an Alternative Transfer Hydrogenating Agent for Chemoselective Reduction of N-Heteroarenes and Azoarenes. Org Lett 2024; 26:4486-4491. [PMID: 38770879 DOI: 10.1021/acs.orglett.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The search for efficient molecular hydrogen precursors and their catalytic exploration is necessary for the evolution of catalytic transfer hydrogenation. Methyl formate (MF) having high hydrogen content still remains unexplored for such transformations. Herein, we disclosed a bifunctional Ir(III)-complex catalyzed chemoselective TH protocol for N-heteroarenes and azoarenes using MF. A variety of substrates including ten bioactive molecules have been synthesized under mild reaction conditions. A probable mechanistic pathway was proposed based on control experiments and mechanistic studies.
Collapse
Affiliation(s)
- Anirban Sau
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Divya Mahapatra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ankur Maji
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sadhan Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arkamitra Roy
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
2
|
Frackenpohl J, Barber DM, Bojack G, Bollenbach-Wahl B, Braun R, Getachew R, Hohmann S, Ko KY, Kurowski K, Laber B, Mattison RL, Müller T, Reingruber AM, Schmutzler D, Svejda A. Synthesis and biological profile of 2,3-dihydro[1,3]thiazolo[4,5- b]pyridines, a novel class of acyl-ACP thioesterase inhibitors. Beilstein J Org Chem 2024; 20:540-551. [PMID: 38440172 PMCID: PMC10910475 DOI: 10.3762/bjoc.20.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
The present work covers novel herbicidal lead structures that contain a 2,3-dihydro[1,3]thiazolo[4,5-b]pyridine scaffold as structural key feature carrying a substituted phenyl side chain. These new compounds show good acyl-ACP thioesterase inhibition in line with strong herbicidal activity against commercially important weeds in broadacre crops, e.g., wheat and corn. The desired substituted 2,3-dihydro[1,3]thiazolo[4,5-b]pyridines were prepared via an optimized BH3-mediated reduction involving tris(pentafluorophenyl)borane as a strong Lewis acid. Remarkably, greenhouse trials showed that some of the target compounds outlined herein display promising control of grass weed species in preemergence application, combined with a dose response window that enables partial selectivity in certain crops.
Collapse
Affiliation(s)
- Jens Frackenpohl
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - David M Barber
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Guido Bojack
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Birgit Bollenbach-Wahl
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ralf Braun
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rahel Getachew
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Sabine Hohmann
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Kwang-Yoon Ko
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Karoline Kurowski
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Bernd Laber
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rebecca L Mattison
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Thomas Müller
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Anna M Reingruber
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Dirk Schmutzler
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Andrea Svejda
- Research & Development, Weed Control, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Pramanik M, Guerzoni MG, Richards E, Melen RL. Recent Advances in Asymmetric Catalysis Using p-Block Elements. Angew Chem Int Ed Engl 2024; 63:e202316461. [PMID: 38038149 PMCID: PMC11497282 DOI: 10.1002/anie.202316461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
The development of new methods for enantioselective reactions that generate stereogenic centres within molecules are a cornerstone of organic synthesis. Typically, metal catalysts bearing chiral ligands as well as chiral organocatalysts have been employed for the enantioselective synthesis of organic compounds. In this review, we highlight the recent advances in main group catalysis for enantioselective reactions using the p-block elements (boron, aluminium, phosphorus, bismuth) as a complementary and sustainable approach to generate chiral molecules. Several of these catalysts benefit in terms of high abundance, low toxicity, high selectivity, and excellent reactivity. This minireview summarises the utilisation of chiral p-block element catalysts for asymmetric reactions to generate value-added compounds.
Collapse
Affiliation(s)
- Milan Pramanik
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research HubMaindy RoadCathays, CardiffCF24 4HQCymru/WalesUK
| | - Michael G. Guerzoni
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research HubMaindy RoadCathays, CardiffCF24 4HQCymru/WalesUK
| | - Emma Richards
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research HubMaindy RoadCathays, CardiffCF24 4HQCymru/WalesUK
| | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research HubMaindy RoadCathays, CardiffCF24 4HQCymru/WalesUK
| |
Collapse
|
4
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Bhatt T, Natte K. Transfer Hydrogenation of N- and O-Containing Heterocycles Including Pyridines with H 3N-BH 3 Under the Catalysis of the Homogeneous Ruthenium Precatalyst. Org Lett 2024; 26:866-871. [PMID: 38270139 DOI: 10.1021/acs.orglett.3c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In this study, we report a transfer hydrogenation protocol that utilizes borane-ammonia (H3N-BH3) as the hydrogen source and a commercially available RuCl3·xH2O precatalyst for the selective aromatic reduction of quinolines, quinoxalines, pyridines, pyrazines, indoles, benzofurans, and furan derivatives to form the corresponding alicyclic heterocycles in good to excellent isolated yields. Applications of this straightforward protocol include the efficient preparation of useful key pharmaceutical intermediates, such as donepezil and flumequine, including a biologically active compound.
Collapse
Affiliation(s)
- Tarun Bhatt
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Kishore Natte
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| |
Collapse
|
6
|
Zhang J, Chen Z, Chen M, Zhou Q, Zhou R, Wang W, Shao Y, Zhang F. Lanthanide/B(C 6F 5) 3-Promoted Hydroboration Reduction of Indoles and Quinolines with Pinacolborane. J Org Chem 2024. [PMID: 38178689 DOI: 10.1021/acs.joc.3c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We have developed a lanthanide/B(C6F5)3-promoted hydroboration reduction of indoles and quinolines with pinacolborane (HBpin). This reaction provides streamlined access to a range of nitrogen-containing compounds in moderate to excellent yields. Large-scale synthesis and further transformations to bioactive compounds indicate that the method has potential practical applications. Preliminary mechanistic studies suggest that amine additives promote the formation of indole-borane intermediates, and the lanthanide/B(C6F5)3-promoted hydroboration reduction proceeds via hydroboration of indole-borane intermediates with HBpin and in situ-formed BH3 species, followed by the protodeborylation process.
Collapse
Affiliation(s)
- Jianping Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ziyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Mingxin Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qi Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Rongrong Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenli Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
7
|
Nad P, Mukherjee A. A Lewis Acid-Base Pair Catalyzed Dearomative Transformation of Unprotected Indoles via B-H Bond Activation. Chem Asian J 2023; 18:e202300714. [PMID: 37811913 DOI: 10.1002/asia.202300714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
A sustainable and metal-free protocol has been described for the reduction of unprotected indoles. The catalytic system consists of B(C6 F5 )3 and THF as a Lewis acid-base pair that can activate the B-H bond of pincolborane (HBpin). The catalytic system encompasses a broad substrate scope. Control experiments were conducted to understand the possible catalytic intermediates involved during the present protocol.
Collapse
Affiliation(s)
- Pinaki Nad
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh (India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh (India
| |
Collapse
|
8
|
Xu ZM, Hu Z, Huang Y, Bao SJ, Niu Z, Lang JP, Al-Enizi AM, Nafady A, Ma S. Introducing Frustrated Lewis Pairs to Metal-Organic Framework for Selective Hydrogenation of N-Heterocycles. J Am Chem Soc 2023. [PMID: 37384612 DOI: 10.1021/jacs.3c04929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Hydrogenated nitrogen heterocyclic compounds play a critical role in the pharmaceutical, polymer, and agrochemical industries. Recent studies on partial hydrogenation of nitrogen heterocyclic compounds have focused on costly and toxic precious metal catalysts. As an important class of main-group catalysts, frustrated Lewis pairs (FLPs) have been widely applied in catalytic hydrogenation reactions. In principle, the combination of FLPs and metal-organic framework (MOF) is anticipated to efficiently enhance the recyclability performance of FLPs; however, the previously studied MOF-FLPs showed low reactivity in the hydrogenation of N-heterocycles compounds. Herein, we offer a novel P/B type MOF-FLP catalyst that was achieved via a solvent-assisted linker incorporation approach to boost catalytic hydrogenation reactions. Using hydrogen gas under moderate pressure, the proposed P/B type MOF-FLP can serve as a highly efficient heterogeneous catalyst for selective hydrogenation of quinoline and indole to tetrahydroquinoline and indoline-type drug compounds in high yield and excellent recyclability.
Collapse
Affiliation(s)
- Ze-Ming Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhuoyi Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yali Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shu-Jin Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
9
|
Ju MY, Fan ZH, Ma Y, Jing Y, Chen XM, Chen X. Syntheses, Structures, and Reactivities of N-Heterocyclic Carbene-Coordinated Aminoborane Complexes. Inorg Chem 2023. [PMID: 37224452 DOI: 10.1021/acs.inorgchem.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recent research has attracted considerable attention toward N-heterocyclic carbene-coordinated boranes (NHC-borane) and their B-substituted derivatives because of their unique characteristics. In the present work, we focused on the syntheses, structures, and reactivities of such types of amine complexes, [NHC·BH2NH3]X ((NHC = IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and IMe (1,3-dimethylimidazol-2-ylidene); X = Cl, I, OTf). We have developed a synthetic method to access NHC·BH2NH2 through the reaction of NaH with [IPr·BH2NH3]I, which was synthesized by the reaction of IPr·BH2I with NH3. As a Lewis base, NHC·BH2NH2 could further react with HCl or HOTf to produce the corresponding salts of [IPr·BH2NH3]+. IPr·BH2NH2BH2X (X = Cl, I) were synthesized by the reaction of HCl/I2 with IPr·BH2NH2BH3 and then converted to [IPr·BH2NH2BH2·IPr]X (X = Cl, I) by reacting with IPr. The IMe-coordinated boranes reacted quite similarly. The preliminary results revealed that the introduction of the NHC molecule has a considerable impact on the solubility and reactivities of aminoboranes.
Collapse
Affiliation(s)
- Ming-Yue Ju
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zi-Heng Fan
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yubin Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi Jing
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xi-Meng Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
10
|
Li Q, Luo Y, Chen J, Xia Y. Visible-Light-Promoted Hydrogenation of Azobenzenes to Hydrazobenzenes with Thioacetic Acid as the Reductant. J Org Chem 2023; 88:2443-2452. [PMID: 36718625 DOI: 10.1021/acs.joc.2c02873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A catalyst- and metal-free hydrogenation of azobenzenes to hydrazobenzenes in the presence of thioacetic acid was achieved under visible light irradiation. The transformation was carried out under mild conditions in an air atmosphere at ambient temperature, generating a variety of hydrazobenzenes with yields up to 99%. The current process is compatible with a variety of substituents and is highly chemoselective for azo reduction when other unsaturated functionalities (carbonyl, alkenyl, alkynyl, etc.) are contained. Preliminary mechanistic study indicated that the transformation could be a radical process.
Collapse
Affiliation(s)
- Qiao Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
11
|
Tummalapalli KSS, Zhao X, Rainier JD. A Biaryl-Cyclohexenone Photoelectrocyclization/Dearomatization Sequence to Substituted Terpenes. Tetrahedron 2023; 131:133180. [PMID: 37593114 PMCID: PMC10430876 DOI: 10.1016/j.tet.2022.133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Described here is the development of sequential cross-coupling, photoelectrocyclizations, and reductive dearomatizations of biaryl cyclohexenones as a means of synthesizing terpene skeletons. This methodology promises to provide insight that will enable us and others to use this approach to generate a variety of biologically active small molecules, including members of the abietane and morphinan skeletons.
Collapse
Affiliation(s)
| | - Xuchen Zhao
- Department of Chemistry University of Utah Salt Lake City, UT 84112
| | - Jon D Rainier
- Department of Chemistry University of Utah Salt Lake City, UT 84112
| |
Collapse
|
12
|
Zhan Z, Yan J, Yu Z, Shi L. Recent Advances in Asymmetric Catalysis Associated with B(C 6F 5) 3. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020642. [PMID: 36677700 PMCID: PMC9866679 DOI: 10.3390/molecules28020642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The prevalence and significance of asymmetric catalysis in the modern medicinal industry has been witnessed in recent years, which have already been used to manufacture the (S)-Naproxen and the (S)-Propranolol. With matched specificities such as the Lewis acidity and steric bulk, B(C6F5)3 has gained accelerating attention on its application in asymmetric catalysis of Diels-Alder cycloaddition reactions, carbonyl-ene cyclization, and other various reactions, which have been demonstrated by the elegant examples from the most recent literature. Some significant progress in the reaction of indirect activation of substrates through in situ generation of numerous supramolecular catalysts from B(C6F5)3 based on Lewis-acid-assisted Lewis acid (LLA) or Lewis acid assisted Brønsted acid (LBA) strategies or the reaction promoted by cooperative actions of chiral co-catalysts and B(C6F5)3 which played a direct role on the activation of substrates have been demonstrated in this review.
Collapse
|
13
|
Chen S, Xue W, Tang C. Core-Shell Nano-Cobalt Catalyzed Chemoselective Reduction of N-Heteroarenes with Ammonia Borane. CHEMSUSCHEM 2022; 15:e202201522. [PMID: 36161705 DOI: 10.1002/cssc.202201522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
An easily prepared core-shell heterogeneous nanocobalt catalyst was reported, which could achieve selective reduction of N-heteroarenes with ammonia borane under mild conditions and ambient atmosphere. Various quinoline, quinoxaline, naphthyridine, isoquinoline, acridine, and phenanthroline derivatives were hydrogenated with high selectivity and efficiency. Notably, substrates bearing sensitive functional groups under molecular hydrogen reduction conditions, such as cyano, ester, and halogens were well tolerated by the catalytic system. Moreover, with our novel method several bioactive molecules were prepared. Also, this catalyst could be applied in the liquid organic hydrogen storage system by reversible hydrogenation and dehydrogenation of heteroarene in high efficiencies.
Collapse
Affiliation(s)
- Sanxia Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Wenxuan Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
14
|
Wu W, Zhang F, Liu N, Wei Z, Xu J, He Z, Guo Y, Fan B. In‐catalyzed Transfer Hydrogenation of Azobenzenes to Hydrazobenzenes with Hydrosilanes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Wu
- Yunnan Minzu University Key Laboratory of Chemistry in Ethnic Medicinal Resources CHINA
| | - Fuqin Zhang
- Yunnan Minzu University School of chemistry and environment CHINA
| | - Na Liu
- Yunnan Minzu University School of chemistry and environment CHINA
| | - Zixiang Wei
- Yunnan Minzu University School of chemistry and environment CHINA
| | - Jianbin Xu
- Yunnan Minzu University School of Chemistry and Environment Yuehua Street, Chenggong District 650504 Kunmin CHINA
| | - Zhenxiu He
- Yunnan Minzu University Key Laboratory of Chemistry in Ethnic Medicinal Resources CHINA
| | - Yafei Guo
- Yunnan Minzu University School of chemistry and environment CHINA
| | - Baomin Fan
- Yunnan Minzu University School of chemistry and environment CHINA
| |
Collapse
|
15
|
Frustrated Lewis pairs in situ formation in B-based porous aromatic frameworks for efficient o-phenylenediamine cyclization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zou Y, Zhang M, Liu Y, Ma Y, Zhang S, Qu Y. Highly selective transfer hydrogenation of furfural into furfuryl alcohol by interfacial frustrated Lewis pairs on CeO2. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Guo X, Unglaube F, Kragl U, Mejía E. B(C6F5)3-Catalyzed Transfer Hydrogenation of Esters and Organic Carbonates Towards Alcohols with Ammonia Borane. Chem Commun (Camb) 2022; 58:6144-6147. [DOI: 10.1039/d2cc01442d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report an efficient metal-free system for the transfer hydrogenation of esters and carbonates by-passing the otherwise ubiquitous formation of transesterification side-products. The Lewis acid B(C6F5)3 is used as...
Collapse
|
18
|
Zhang BB, Peng S, Wang F, Lu C, Nie J, Chen Z, Yang G, Ma C. Borane-catalyzed cascade Friedel–Crafts alkylation/[1,5]-hydride transfer/Mannich cyclization to afford tetrahydroquinolines. Chem Sci 2022; 13:775-780. [PMID: 35173942 PMCID: PMC8768868 DOI: 10.1039/d1sc05629h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
We report a redox-neutral annulation reaction of tertiary amines with electron-deficient alkynes under metal-free and oxidant-free conditions.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Shuo Peng
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Feiyi Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Cuifen Lu
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Junqi Nie
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Zuxing Chen
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Guichun Yang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Chao Ma
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
19
|
Zhang S, Xu H, He J, Zhang Y. Application of Mutualism in Organic Synthetic Chemistry: Mutually Promoted C−H Functionalization of Indole and Reduction of Quinoline. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sutao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 People's Republic of China
| | - Hai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 People's Republic of China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 People's Republic of China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 People's Republic of China
| |
Collapse
|
20
|
Gao C, Xuan Q, Song Q. Cu‐Catalyzed
Chemoselective Reduction of
N
‐Heteroaromatics
with
NH
3
·
BH
3
in Aqueous Solution. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Gao
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard Xiamen Fujian 361021 China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard Xiamen Fujian 361021 China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard Xiamen Fujian 361021 China
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
- State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
21
|
Practical iridium-catalyzed direct α-arylation of N-heteroarenes with (hetero)arylboronic acids by H 2O-mediated H 2 evolution. Nat Commun 2021; 12:4206. [PMID: 34244498 PMCID: PMC8270951 DOI: 10.1038/s41467-021-24468-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Despite the widespread applications of 2-(hetero)aryl N-heteroarenes in numerous fields of science and technology, universal access to such compounds is hampered due to the lack of a general method for their synthesis. Herein, by a H2O-mediated H2-evolution cross-coupling strategy, we report an iridium(III)-catalyzed facile method to direct α-arylation of N-heteroarenes with both aryl and heteroaryl boronic acids, proceeding with broad substrate scope and excellent functional compatibility, oxidant and reductant-free conditions, operational simplicity, easy scalability, and no need for prefunctionalization of N-heteroarenes. This method is applicable for structural modification of biomedical molecules, and offers a practical route for direct access to 2-(hetero)aryl N-heteroarenes, a class of potential cyclometalated C^N ligands and N^N bidentate ligands that are difficult to prepare with the existing α-C-H arylation methods, thus filling an important gap in the capabilities of synthetic organic chemistry.
Collapse
|
22
|
Sahoo MK, Sivakumar G, Jadhav S, Shaikh S, Balaraman E. Convenient semihydrogenation of azoarenes to hydrazoarenes using H 2. Org Biomol Chem 2021; 19:5289-5293. [PMID: 34076020 DOI: 10.1039/d1ob00850a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The high atom-economical and eco-benign nature of hydrogenation reactions make them much more superior to conventional reduction and transfer hydrogenation. Herein, a convenient and highly selective hydrogenation reaction of azoarenes using molecular hydrogen to access diverse hydrazoarenes is reported. The present catalytic method is general and operationally simple, and it operates under exceedingly mild conditions (room temperature and 1 atm of hydrogen pressure). The reusability of catalysts used in this method is also successfully demonstrated.
Collapse
Affiliation(s)
- Manoj K Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati-517507, India.
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati-517507, India.
| | - Sanjay Jadhav
- Organic Chemistry Division, Dr Homi Bhabha Road, CSIR-National Chemical Laboratory (CSIR-NCL), Pune-411008, India
| | - Samrin Shaikh
- Organic Chemistry Division, Dr Homi Bhabha Road, CSIR-National Chemical Laboratory (CSIR-NCL), Pune-411008, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati-517507, India.
| |
Collapse
|
23
|
Lau S, Gasperini D, Webster RL. Amine-Boranes as Transfer Hydrogenation and Hydrogenation Reagents: A Mechanistic Perspective. Angew Chem Int Ed Engl 2021; 60:14272-14294. [PMID: 32935898 PMCID: PMC8248159 DOI: 10.1002/anie.202010835] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 11/10/2022]
Abstract
Transfer hydrogenation (TH) has historically been dominated by Meerwein-Ponndorf-Verley (MPV) reactions. However, with growing interest in amine-boranes, not least ammonia-borane (H3 N⋅BH3 ), as potential hydrogen storage materials, these compounds have also started to emerge as an alternative reagent in TH reactions. In this Review we discuss TH chemistry using H3 N⋅BH3 and their analogues (amine-boranes and metal amidoboranes) as sacrificial hydrogen donors. Three distinct pathways were considered: 1) classical TH, 2) nonclassical TH, and 3) hydrogenation. Simple experimental mechanistic probes can be employed to distinguish which pathway is operating and computational analysis can corroborate or discount mechanisms. We find that the pathway in operation can be perturbed by changing the temperature, solvent, amine-borane, or even the substrate used in the system, and subsequently assignment of the mechanism can become nontrivial.
Collapse
Affiliation(s)
- Samantha Lau
- Department of ChemistryUniversity of BathClaverton DownBathUK
| | | | - Ruth L. Webster
- Department of ChemistryUniversity of BathClaverton DownBathUK
| |
Collapse
|
24
|
Wu R, Gao K. B(C 6F 5) 3-catalyzed tandem protonation/deuteration and reduction of in situ-formed enamines. Org Biomol Chem 2021; 19:4032-4036. [PMID: 33871498 DOI: 10.1039/d1ob00316j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient B(C6F5)3-catalyzed tandem protonation/deuteration and reduction of in situ-formed enamines in the presence of water and pinacolborane was developed. Regioselective β-deuteration of tertiary amines was achieved with high chemo- and regioselectivity. D2O was used as a readily available and cheap source of deuterium. Mechanistic studies indicated that B(C6F5)3 could activate water to promote the protonation and reduction of enamines.
Collapse
Affiliation(s)
- Rongpei Wu
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, P.R. China.
| | - Ke Gao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, P.R. China.
| |
Collapse
|
25
|
Wang Q, Meng W, Feng X, Du H. B(
C
6
F
5
)
3
‐Catalyzed
Hydroboration of Alkenes with
N
‐Heterocyclic
Carbene Boranes
via
B—H Bond Activation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qiaotian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China University of Chinese Academy of Sciences Beijing 100049 China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
26
|
Song M, Zhou H, Wang G, Ma B, Jiang Y, Yang J, Huo C, Wang XC. Visible-Light-Promoted Diboron-Mediated Transfer Hydrogenation of Azobenzenes to Hydrazobenzenes. J Org Chem 2021; 86:4804-4811. [PMID: 33688729 DOI: 10.1021/acs.joc.1c00394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-promoted transfer hydrogenation of azobenzenes has been developed. In the presence of B2pin2 and upon visible-light irradiation, the reactions proceeded smoothly in methanol at ambient temperature. The azobenzenes with diverse functional groups have been reduced to the corresponding hydrazobenzenes with a yield of up to 96%. Preliminary mechanistic studies indicated that the hydrogen atom comes from the solvent and the transformation is achieved through a radical pathway.
Collapse
Affiliation(s)
- Menghui Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongyan Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.,College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yajing Jiang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
27
|
Lau S, Gasperini D, Webster RL. Amine–Boranes as Transfer Hydrogenation and Hydrogenation Reagents: A Mechanistic Perspective. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Samantha Lau
- Department of Chemistry University of Bath Claverton Down Bath UK
| | - Danila Gasperini
- Department of Chemistry University of Bath Claverton Down Bath UK
| | - Ruth L. Webster
- Department of Chemistry University of Bath Claverton Down Bath UK
| |
Collapse
|
28
|
Gong Y, He J, Wen X, Xi H, Wei Z, Liu W. Transfer hydrogenation of N-heteroarenes with 2-propanol and ethanol enabled by manganese catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo01552d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient well-defined manganese catalyzed transfer hydrogenation of N-heteroarenes using 2-propanol and ethanol as hydrogen sources is developed. DFT calculations support an outer sphere hydrogenation mechanism.
Collapse
Affiliation(s)
- Yingjie Gong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jingxi He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoting Wen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhihong Wei
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
| | - Weiping Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
29
|
Cui X, Huang W, Wu L. Zirconium-hydride-catalyzed transfer hydrogenation of quinolines and indoles with ammonia borane. Org Chem Front 2021. [DOI: 10.1039/d1qo00672j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herein, by applying zirconium-hydride complex as the catalyst, the transfer hydrogenation of quinoline and indole derivatives with ammonia borane as a proton and hydride source is achieved.
Collapse
Affiliation(s)
- Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Wei Huang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
30
|
Abstract
Quinoxalines are observed in several bioactive molecules and have been widely employed in designing molecules for DSSC's, optoelectronics, and sensing applications. Therefore, developing newer synthetic routes as well as novel ways for their functionalization is apparent.
Collapse
Affiliation(s)
- Gauravi Yashwantrao
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
31
|
Wang B, Xu H, Zhang H, Zhang GM, Li FY, He S, Shi ZC, Wang JY. B(C6F5)3-catalyzed three-component tandem reaction to construct novel polycyclic quinone derivatives: synthesis of a carbonate salt chromogenic chemosensor. Org Chem Front 2021. [DOI: 10.1039/d1qo01199e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series novel polycyclic quinone derivatives were constructed providing a carbonate salt chromogenic chemosensor.
Collapse
Affiliation(s)
- Bei Wang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hong Xu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guo-Ming Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fu-Yu Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuai He
- Southwest Minzu University, Chengdu 610041, PR China
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu 610041, PR China
| | - Ji-Yu Wang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
| |
Collapse
|
32
|
Szántó G, Makó A, Baska F, Bozó É, Domány-Kovács K, Kurkó D, Cselenyák A, Mohácsi R, Kordás KS, Bata I. New V1a receptor antagonist. Part 1. Synthesis and SAR development of urea derivatives. Bioorg Med Chem Lett 2020; 30:127416. [DOI: 10.1016/j.bmcl.2020.127416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 01/15/2023]
|
33
|
Zhao W, Zhang Z, Feng X, Yang J, Du H. Asymmetric Transfer Hydrogenation of N-Unprotected Indoles with Ammonia Borane. Org Lett 2020; 22:5850-5854. [PMID: 32663407 DOI: 10.1021/acs.orglett.0c01930] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A metal-free asymmetric transfer hydrogenation of unprotected indoles was successfully realized using a catalyst derived from HB(C6F5)2 and (S)-tert-butylsulfinamide with ammonia borane as a hydrogen source. A variety of indolines were achieved in 40-78% yields with up to 90% ee.
Collapse
Affiliation(s)
- Weiwei Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zijia Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yang
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Fang H, Oestreich M. Defunctionalisation catalysed by boron Lewis acids. Chem Sci 2020; 11:12604-12615. [PMID: 34094457 PMCID: PMC8163203 DOI: 10.1039/d0sc03712e] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022] Open
Abstract
Selective defunctionalisation of organic molecules to valuable intermediates is a fundamentally important transformation in organic synthesis. Despite the advances made in efficient and selective defunctionalisation using transition-metal catalysis, the cost, toxicity, and non-renewable properties limit its application in industrial manufacturing processes. In this regard, boron Lewis acid catalysis has emerged as a powerful tool for the cleavage of carbon-heteroatom bonds. The ground-breaking finding is that the strong boron Lewis acid B(C6F5)3 can activate Si-H bonds through η1 coordination, and this Lewis adduct is a key intermediate that enables various reduction processes. This system can be tuned by variation of the electronic and structural properties of the borane catalyst, and together with different hydride sources high chemoselectivity can be achieved. This Perspective provides a comprehensive summary of various defunctionalisation reactions such as deoxygenation, decarbonylation, desulfurisation, deamination, and dehalogenation, all of which catalysed by boron Lewis acids.
Collapse
Affiliation(s)
- Huaquan Fang
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
35
|
Faverio C, Boselli MF, Medici F, Benaglia M. Ammonia borane as a reducing agent in organic synthesis. Org Biomol Chem 2020; 18:7789-7813. [DOI: 10.1039/d0ob01351j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ammonia borane is gaining increasing attention as a sustainable and atom-economical winning reagent for the reduction of several substrates.
Collapse
Affiliation(s)
- Chiara Faverio
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | | | - Fabrizio Medici
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|
36
|
Chen XM, Wang J, Liu SC, Zhang J, Wei D, Chen X. Controllable syntheses of B/N anionic aminoborane chain complexes by the reaction of NH 3BH 3 with NaH and the mechanistic study. Dalton Trans 2019; 48:14984-14988. [PMID: 31591633 DOI: 10.1039/c9dt02289a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
B/N anionic aminoborane linear or branched chain complexes, [BH3(NH2BH2)nH]- (n = 1, 2, and 3) and [BH(NH2BH3)3]-, have been synthesized through the controlled reactions of ammonia borane (NH3BH3) with NaH by adjusting the reactant ratios and reaction temperatures. The possible reaction mechanisms were elucidated based on experimental and theoretical studies.
Collapse
Affiliation(s)
- Xi-Meng Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | | | | | | | |
Collapse
|
37
|
Qiu B, Wang W, Yang X. Computational Prediction of Ammonia-Borane Dehydrocoupling and Transfer Hydrogenation of Ketones and Imines Catalyzed by SCS Nickel Pincer Complexes. Front Chem 2019; 7:627. [PMID: 31572716 PMCID: PMC6753508 DOI: 10.3389/fchem.2019.00627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/30/2019] [Indexed: 11/22/2022] Open
Abstract
Inspired by the catalytic mechanism and active site structure of lactate racemase, three scorpion-like SCS nickel pincer complexes were proposed as potential catalysts for transfer hydrogenation of ketones and imines with ammonia-borane (AB) as the hydrogen source. Density functional theory calculations reveal a stepwise hydride and proton transfer mechanism for the dehydrocoupling of AB and hydrogenation of N-methylacetonimine, and a concerted proton-coupled hydride transfer process for hydrogenation of acetone, acetophenone, and 3-methyl-2-butanone. Among all proposed Ni complexes, the one with symmetric NH2 group on both arms of the SCS pincer ligand has the lowest free energy barrier of 15.0 kcal/mol for dehydrogenation of AB, as well as total free energy barriers of 17.8, 18.2, 18.0, and 18.6 kcal/mol for hydrogenation of acetone, N-methylacetonimine, acetophenone, and 3-methyl-2-butanone, respectively.
Collapse
Affiliation(s)
- Bing Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wan Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinzheng Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Zhong Y, Zhou T, Zhang Z, Chang R. Copper-Catalyzed Transfer Hydrogenation of N-Heteroaromatics with an Oxazaborolidine Complex. ACS OMEGA 2019; 4:8487-8494. [PMID: 31459938 PMCID: PMC6648510 DOI: 10.1021/acsomega.9b00930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/03/2019] [Indexed: 06/10/2023]
Abstract
The first-time use of the oxazaborolidine complex in transfer hydrogenation was accomplished. It was prepared without difficulty from cheap materials: ethanolamine and BH3·THF. A general and efficient method for copper-catalyzed transfer hydrogenation of a variety of N-heteroaromatics with an oxazaborolidine-BH3 complex under mild reaction conditions afforded the corresponding hydrogenated products in up to 96% yield. Mechanistic studies indicate that the hydrogen source originated from water and borane that coordinate with the nitrogen atom of oxazaborolidine. Accordingly, a plausible mechanism for this reaction was proposed. This method was successfully used in the key step synthesis of natural products (±)-angustureine and (±)-galipinine in three steps.
Collapse
Affiliation(s)
- Yuanhai Zhong
- College
of Chemistry and
Chemical Engineering and State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, China
| | - Taigang Zhou
- College
of Chemistry and
Chemical Engineering and State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, China
| | - Zhuohua Zhang
- College
of Chemistry and
Chemical Engineering and State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, China
| | - Ruiqing Chang
- College
of Chemistry and
Chemical Engineering and State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, China
| |
Collapse
|
39
|
Wang D, Wang Z, Liu Z, Huang M, Hu J, Yu P. Strategic C–C Bond-Forming Dearomatization of Pyridines and Quinolines. Org Lett 2019; 21:4459-4463. [DOI: 10.1021/acs.orglett.9b01247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dong Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhentao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenlin Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mindong Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jianyong Hu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
40
|
Muthukrishnan I, Sridharan V, Menéndez JC. Progress in the Chemistry of Tetrahydroquinolines. Chem Rev 2019; 119:5057-5191. [PMID: 30963764 DOI: 10.1021/acs.chemrev.8b00567] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahydroquinoline is one of the most important simple nitrogen heterocycles, being widespread in nature and present in a broad variety of pharmacologically active compounds. This Review summarizes the progress achieved in the chemistry of tetrahydroquinolines, with emphasis on their synthesis, during the period from mid-2010 to early 2018.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India.,Department of Chemistry and Chemical Sciences , Central University of Jammu , Rahya-Suchani (Bagla) , District-Samba, Jammu 181143 , Jammu and Kashmir , India
| | - J Carlos Menéndez
- Unidad de Química Orgańica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain
| |
Collapse
|
41
|
Hackel T, McGrath NA. Tris(pentafluorophenyl)borane-Catalyzed Reactions Using Silanes. Molecules 2019; 24:molecules24030432. [PMID: 30691072 PMCID: PMC6384582 DOI: 10.3390/molecules24030432] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/06/2023] Open
Abstract
The utility of an electron-deficient, air stable, and commercially available Lewis acid tris(pentafluorophenyl)borane has recently been comprehensively explored. While being as reactive as its distant cousin boron trichloride, it has been shown to be much more stable and capable of catalyzing a variety of powerful transformations, even in the presence of water. The focus of this review will be to highlight those catalytic reactions that utilize a silane as a stoichiometric reductant in conjunction with tris(pentafluorophenyl) borane in the reduction of alcohols, carbonyls, or carbonyl-like derivatives.
Collapse
Affiliation(s)
- Taylor Hackel
- Department of Chemistry and Biochemistry, University of Wisconsin⁻La Crosse, La Crosse, WI 54601, USA.
| | - Nicholas A McGrath
- Department of Chemistry and Biochemistry, University of Wisconsin⁻La Crosse, La Crosse, WI 54601, USA.
| |
Collapse
|
42
|
Pan Y, Luo Z, Han J, Xu X, Chen C, Zhao H, Xu L, Fan Q, Xiao J. B(C
6
F
5
)
3
‐Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801447] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yixiao Pan
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Zhenli Luo
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Jiahong Han
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Xin Xu
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Changjun Chen
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Haoqiang Zhao
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Lijin Xu
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Qinghua Fan
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Jianliang Xiao
- Department of ChemistryUniversity of Liverpool Liverpool L69 7ZD United Kingdom
| |
Collapse
|
43
|
Ling F, Xiao L, Fang L, Feng C, Xie Z, Lv Y, Zhong W. B(C 6F 5) 3-catalyzed Markovnikov addition of indoles to aryl alkynes: an approach toward bis(indolyl)alkanes. Org Biomol Chem 2018; 16:9274-9278. [PMID: 30483686 DOI: 10.1039/c8ob02805b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of the metal- and solvent-free B(C6F5)3-catalyzed Markovnikov addition of indoles to aryl alkynes was disclosed. Both N-H and N-protected indoles were tolerated, leading to a wide spectrum of versatile bis(indolyl)alkanes in moderate to good yields with high regioselectivities.
Collapse
Affiliation(s)
- Fei Ling
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Khan I, Reed‐Berendt BG, Melen RL, Morrill LC. FLP-Catalyzed Transfer Hydrogenation of Silyl Enol Ethers. Angew Chem Int Ed Engl 2018; 57:12356-12359. [PMID: 30106498 PMCID: PMC6207922 DOI: 10.1002/anie.201808800] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 01/08/2023]
Abstract
Herein we report the first catalytic transfer hydrogenation of silyl enol ethers. This metal free approach employs tris(pentafluorophenyl)borane and 2,2,6,6-tetramethylpiperidine (TMP) as a commercially available FLP catalyst system and naturally occurring γ-terpinene as a dihydrogen surrogate. A variety of silyl enol ethers undergo efficient hydrogenation, with the reduced products isolated in excellent yields (29 examples, 82 % average yield).
Collapse
Affiliation(s)
- Imtiaz Khan
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| | | | - Rebecca L. Melen
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| | - Louis C. Morrill
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| |
Collapse
|
45
|
Pan Z, Shen L, Song D, Xie Z, Ling F, Zhong W. B(C6F5)3-Catalyzed Asymmetric Reductive Amination of Ketones with Ammonia Borane. J Org Chem 2018; 83:11502-11509. [DOI: 10.1021/acs.joc.8b01362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhentao Pan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Leixin Shen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Dingguo Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Zhen Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Fei Ling
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Weihui Zhong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| |
Collapse
|
46
|
|
47
|
Zhao Q, Li J, Ma N, Wei C, Xu T, Li B, Zhang J, Chen X. Reactions of Amine–Boranes with Oxalic Acid: Substitution on the N or B Atom Leads to Different Spiroborate Compounds. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qianyi Zhao
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University 453007 Xinxiang Henan China
| | - Jiaxuan Li
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University 453007 Xinxiang Henan China
| | - Na‐Na Ma
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University 453007 Xinxiang Henan China
| | - Chang‐Geng Wei
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University 453007 Xinxiang Henan China
| | - Ting Xu
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University 453007 Xinxiang Henan China
| | - Bao Li
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University 453007 Xinxiang Henan China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University 453007 Xinxiang Henan China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University 453007 Xinxiang Henan China
| |
Collapse
|
48
|
Maurya RK, Patel OPS, Anand D, Yadav PP. Substrate selective synthesis of indole, tetrahydroquinoline and quinoline derivatives via intramolecular addition of hydrazones and imines. Org Chem Front 2018. [DOI: 10.1039/c7qo01115f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A transition-metal-free, substrate selective synthesis of 2,3-diaryl indoles, 4-hydrazono-tetrahydroquinolines and substituted quinolines has been developed.
Collapse
Affiliation(s)
- Rahul K. Maurya
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Om P. S. Patel
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Devireddy Anand
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Prem P. Yadav
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| |
Collapse
|
49
|
Saptal VB, Juneja G, Bhanage BM. B(C6F5)3: a robust catalyst for the activation of CO2 and dimethylamine borane for the N-formylation reactions. NEW J CHEM 2018. [DOI: 10.1039/c8nj02816h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, B(C6F5)3 is utilized as an organocatalyst for the transition-metal-free N-formylation of amines using carbon dioxide (CO2) as a C1 source and dimethylamine borane (Me2NH·BH3) as a green hydrogen transfer source at 80 °C.
Collapse
Affiliation(s)
- Vitthal B. Saptal
- Department of Chemistry
- Institute of Chemical Technology (Autonomous)
- Matunga
- Mumbai
- India
| | - Gaurav Juneja
- Department of Chemistry
- Institute of Chemical Technology (Autonomous)
- Matunga
- Mumbai
- India
| | | |
Collapse
|