1
|
Wang Q, Kweon J, Kim D, Chang S. Remote Catalytic C(sp 3)-H Alkylation via Relayed Carbenoid Transfer upon Olefin Chain Walking. J Am Chem Soc 2024; 146:31114-31123. [PMID: 39475225 DOI: 10.1021/jacs.4c11014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Transition metal carbenes have emerged as versatile intermediates for various types of alkylations. While reactions of metal carbene species with alkenes have been extensively studied, most examples focus on cyclopropanation and allylic C-H insertion. Herein, we present the first example of a catalytic strategy for the carbene-involved regioselective remote C-H alkylation of internal olefins by synergistically combining two iridium-mediated reactivities of olefin chain walking and carbenoid migratory insertion. The present method, utilizing sulfoxonium ylides as a bench-stable robust carbene precursor, was found to be effective for a series of olefins tethered with alkyl chains, heteroatom substituents, and complex biorelevant moieties. Combined experimental and computational studies revealed that reversible iridium hydride-mediated olefin chain walking proceeds to lead to a terminal alkyl-Ir intermediate, which then forms a carbenoid species for the final migratory insertion, resulting in regioselective terminal-alkylated products.
Collapse
Affiliation(s)
- Qing Wang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
2
|
Wang Z, Shen C, Dong K. Palladium-Catalyzed Enantioselective Migratory Hydroamidocarbonylation of Amide-Linked Alkenes to Access Chiral α-Alkyl Succinimides. Angew Chem Int Ed Engl 2024; 63:e202410967. [PMID: 39007709 DOI: 10.1002/anie.202410967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
A Pd-catalyzed asymmetric isomerization-hydroamidocarbonylation of amide-containing alkenes was developed, affording a variety of chiral α-alkyl succinimides in moderate to good yields with high enantioselectivities. The key to success was introducing bulky 1-adamentyl P-substitution and 2,3,5,6-tetramethoxyphenyl group into the rigid P-chirogenic bisphosphine ligand to create stronger steric hinderance and deeper catalytic pocket. By this approach, regio- or stereo-convergent synthesis of enantiomeric succinimides from the mixture of olefin isomers was achieved.
Collapse
Affiliation(s)
- Zhen Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
3
|
Blaha I, Weber S, Dülger R, Veiros LF, Kirchner K. Alkene Isomerization Catalyzed by a Mn(I) Bisphosphine Borohydride Complex. ACS Catal 2024; 14:13174-13180. [PMID: 39263541 PMCID: PMC11385370 DOI: 10.1021/acscatal.4c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
An additive-free manganese-catalyzed isomerization of terminal alkenes to internal alkenes is described. This reaction is implementing an inexpensive nonprecious metal catalyst. The most efficient catalyst is the borohydride complex cis-[Mn(dippe)(CO)2(κ2-BH4)]. This catalyst operates at room temperature, with a catalyst loading of 2.5 mol %. A variety of terminal alkenes is effectively and selectively transformed into the respective internal E-alkenes. Preliminary results show chain-walking isomerization at an elevated temperature. Mechanistic studies were carried out, including stoichiometric reactions and in situ NMR analysis. These experiments are flanked by computational studies. Based on these, the catalytic process is initiated by the liberation of "BH3" as a THF adduct. The catalytic process is initiated by double bond insertion into an M-H species, leading to an alkyl metal intermediate, followed by β-hydride elimination at the opposite position to afford the isomerization product.
Collapse
Affiliation(s)
- Ines Blaha
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Robin Dülger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| |
Collapse
|
4
|
Barman M, Mishra M, Mandal S, Punniyamurthy T. Palladium Catalysis Enabled Sequential C(sp 3)-H/C-C Activation: Access to Vinyl γ-Lactams. Org Lett 2024; 26:3722-3726. [PMID: 38678543 DOI: 10.1021/acs.orglett.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A Pd(II)-catalyzed tandem reaction of aliphatic amides with vinylcyclopropanes (VCPs) was accomplished by merging C(sp3)-H and C-C activation. The reaction of VCP revealed alkenylation/cyclization, followed by ring opening via C-C cleavage, delivering vinyl γ-lactams with (E)-selectivity. The role of ligands, site-selectivity, functional group diversity, mechanistic insight, and synthetic utilities are important practical features.
Collapse
Affiliation(s)
- Madhab Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | | |
Collapse
|
5
|
Guerrero R, Lemir ID, Carrasco S, Fernández-Ruiz C, Kavak S, Pizarro P, Serrano DP, Bals S, Horcajada P, Pérez Y. Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH 2 Catalysts for Selective Olefin Hydrogenation under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38669483 PMCID: PMC11082845 DOI: 10.1021/acsami.4c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal-organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m-3·day-1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m-3·day-1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
Collapse
Affiliation(s)
- Raúl
M. Guerrero
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Ignacio D. Lemir
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Sergio Carrasco
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Carlos Fernández-Ruiz
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Safiyye Kavak
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, Groenenborgerlaan
171, Antwerp 2020, Belgium
| | - Patricia Pizarro
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Chemical
and Environmental Engineering Group, Rey
Juan Carlos University, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| | - David P. Serrano
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Chemical
and Environmental Engineering Group, Rey
Juan Carlos University, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| | - Sara Bals
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, Groenenborgerlaan
171, Antwerp 2020, Belgium
| | - Patricia Horcajada
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Yolanda Pérez
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- COMET-NANO
Group, ESCET, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| |
Collapse
|
6
|
Raje S, Sheikh Mohammad T, de Ruiter G. A Neutral PC NHCP Co(I)-Me Pincer Complex as a Catalyst for N-Allylic Isomerization with a Broad Substrate Scope. J Org Chem 2024; 89:4319-4325. [PMID: 38520345 PMCID: PMC11002938 DOI: 10.1021/acs.joc.3c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Earth-abundant-metal catalyzed double bond transposition offers a sustainable and atom-economical route toward the synthesis of internal alkenes. With an emphasis specifically on internal olefins and ethers, the isomerization of allylic amines has been particularly under represented in the literature. Herein, we report an efficient methodology for the selective isomerization of N-allylic organic compounds, including amines, amides, and imines. The reaction is catalyzed by a neutral PCNHCP cobalt(I) pincer complex and proceeds via a π-allyl mechanism. The isomerization occurs readily at 80-90 °C, and it is compatible with a wide variety of functional groups. The in situ formed enamines could additionally be used for a one-pot inverse-electron-demand Diels-Alder reaction to furnish a series of diversely substituted heterobiaryls, which is further discussed in this report.
Collapse
Affiliation(s)
- Sakthi Raje
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Tofayel Sheikh Mohammad
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
7
|
Wang Q, Jung H, Kim D, Chang S. Iridium-Catalyzed Migratory Terminal C(sp 3)-H Amidation of Heteroatom-Substituted Internal Alkenes via Olefin Chain Walking. J Am Chem Soc 2023. [PMID: 37906814 DOI: 10.1021/jacs.3c09679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydroamination facilitated by metal hydride catalysis is an appealing synthetic approach to access valuable nitrogen-containing compounds from readily available unsaturated hydrocarbons. While high regioselectivity can be achieved usually for substrates bearing polar chelation groups, the reaction involving simple alkenes frequently provides nonselective outcomes. Herein, we report an iridium-catalyzed highly regioselective terminal C(sp3)-H amidation of internal alkenes utilizing dioxazolones as an amino source via olefin chain walking. Most notably, this mechanistic motif of double bond migration to the terminal position operates not only with dialkyl-substituted simple alkenes including styrenes but also with heteroatom-substituted olefins such as enol ethers, vinyl silanes, and vinyl borons, thus representing the first example of the terminal methyl amidation of the latter type of alkenes through a nondissociative chain walking process.
Collapse
Affiliation(s)
- Qing Wang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
8
|
Chen XX, Luo H, Chen YW, Liu Y, He ZT. Enantioselective Palladium-Catalyzed Directed Migratory Allylation of Remote Dienes. Angew Chem Int Ed Engl 2023; 62:e202307628. [PMID: 37387558 DOI: 10.1002/anie.202307628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
Chain walking has been an efficient route to realize the functionalization of inert C(sp3 )-H bonds, but this strategy is limited to mono-olefin migration and functionalization. Herein, we demonstrate the feasibility of tandem directed simultaneous migrations of remote olefins and stereoselective allylation for the first time. The adoption of palladium hydride catalysis and secondary amine morpholine as solvent is critical for achieving high substrate compatibility and stereochemical control with this method. The protocol is also applicable to the functionalization of three vicinal C(sp3 )-H bonds and thus construct three continuous stereocenters along a propylidene moiety via a short synthetic process. Preliminary mechanistic experiments corroborated the design of simultaneous walking of remote dienes.
Collapse
Affiliation(s)
- Xian-Xiao Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hao Luo
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye-Wei Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
9
|
Ge Q, Meng J, Liu H, Yang Z, Wu Z, Zhang W. Palladium‐catalyzed long‐range isomerization of aryl olefins. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology School of Pharmaceutical Science, Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Jingjie Meng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Huikang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology School of Pharmaceutical Science, Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
10
|
Chen HC, Wu Y, Yu Y, Wang P. Pd-Catalyzed Isomerization of Alkenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Hares K, Vogelsang D, Wernsdörfer CS, Panke D, Vogt D, Seidensticker T. Palladium-catalyzed synthesis of mixed anhydrides via carbonylative telomerization. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00486k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, palladium-catalyzed carbonylative telomerization enables the one-step synthesis of mixed carboxylic anhydrides directly from butadiene. These anhydrides are versatile intermediates and were used to form amides.
Collapse
Affiliation(s)
- Kevin Hares
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Dortmund, Germany
| | - Dennis Vogelsang
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Dortmund, Germany
| | - Charlotte S. Wernsdörfer
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Dortmund, Germany
| | - Dennis Panke
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Dortmund, Germany
| | - Dieter Vogt
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Dortmund, Germany
| | - Thomas Seidensticker
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Dortmund, Germany
| |
Collapse
|
12
|
Gong L, Zhang Q, Xie D, Zhang W, Xu SY, Zhang X, Niu D. Selective synthesis of enol ethers via nickel-catalyzed cross coupling of α-oxy-vinylsulfones with alkylzinc reagents. Chem Commun (Camb) 2021; 57:12273-12276. [PMID: 34734604 DOI: 10.1039/d1cc05347g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe here a Ni-catalyzed Negishi coupling reaction to prepare 1,2-dialkyl enol ethers in a stereoconvergent fashion. This method employs readily available and bench-stable α-oxy-vinylsulfones as electrophiles. The C-sulfone bond in the α-oxy-vinylsulfone motif is cleaved chemoselectively in these reactions. The mild conditions are tolerant of a variety of functional groups on both partners, thus representing a general strategy for enol ether synthesis. This unique reactivity of α-oxy-vinylsulfones indicates their further application as electrophilic partners in cross-coupling reactions.
Collapse
Affiliation(s)
- Liang Gong
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China. .,College of Pharmacy, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Qian Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| | - Demeng Xie
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| | - Wei Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| | - Shi-Yang Xu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| |
Collapse
|
13
|
Hu X, He J, Zhang Y, Zhou J, Yu J. Highly Stereoselective Positional Isomerization of Styrenes
via
Acid‐Catalyzed
Carbocation Mechanism. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao‐Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jun‐Xiong He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ying Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| |
Collapse
|
14
|
Scaringi S, Mazet C. Kinetically Controlled Stereoselective Access to Branched 1,3-Dienes by Ru-Catalyzed Remote Conjugative Isomerization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Simone Scaringi
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
15
|
Guven S, Kundu G, Weßels A, Ward JS, Rissanen K, Schoenebeck F. Selective Synthesis of Z-Silyl Enol Ethers via Ni-Catalyzed Remote Functionalization of Ketones. J Am Chem Soc 2021; 143:8375-8380. [PMID: 34033717 PMCID: PMC8193638 DOI: 10.1021/jacs.1c01797] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
We report a remote
functionalization strategy, which allows the Z-selective
synthesis of silyl enol ethers of (hetero)aromatic
and aliphatic ketones via Ni-catalyzed chain walking from a distant
olefin site. The positional selectivity is controlled by the directionality
of the chain walk and is independent of thermodynamic preferences
of the resulting silyl enol ether. Our mechanistic data indicate that
a Ni(I) dimer is formed under these conditions, which serves
as a catalyst resting state and, upon reaction with an alkyl bromide,
is converted to [Ni(II)-H] as an active chain-walking/functionalization
catalyst, ultimately generating a stabilized η3-bound
Ni(II) enolate as the key selectivity-controlling intermediate.
Collapse
Affiliation(s)
- Sinem Guven
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Gourab Kundu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Andrea Weßels
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40114 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40114 Jyväskylä, Finland
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
16
|
Pandya C, Panicker RR, Senjaliya P, Hareendran MH, Anju P, Sarkar S, Bhat H, Jha PC, Rao KP, Smith GS, Sivaramakrishna A. Designing and synthesis of phosphine derivatives of Ru3(CO)12 – Studies on catalytic isomerization of 1-alkenes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Jones GR, Basbug Alhan HE, Karas LJ, Wu JI, Harth E. Switching the Reactivity of Palladium Diimines with “Ancillary” Ligand to Select between Olefin Polymerization, Branching Regulation, or Olefin Isomerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Glen R. Jones
- Department of Chemistry, Center of Excellence in Polymer Chemistry University of Houston 3585 Cullen Blvd. Houston Texas 77004 USA
| | - Hatice E. Basbug Alhan
- Department of Chemistry, Center of Excellence in Polymer Chemistry University of Houston 3585 Cullen Blvd. Houston Texas 77004 USA
| | - Lucas J. Karas
- Department of Chemistry, Center of Excellence in Polymer Chemistry University of Houston 3585 Cullen Blvd. Houston Texas 77004 USA
| | - Judy I. Wu
- Department of Chemistry, Center of Excellence in Polymer Chemistry University of Houston 3585 Cullen Blvd. Houston Texas 77004 USA
| | - Eva Harth
- Department of Chemistry, Center of Excellence in Polymer Chemistry University of Houston 3585 Cullen Blvd. Houston Texas 77004 USA
| |
Collapse
|
18
|
Jones GR, Basbug Alhan HE, Karas LJ, Wu JI, Harth E. Switching the Reactivity of Palladium Diimines with “Ancillary” Ligand to Select between Olefin Polymerization, Branching Regulation, or Olefin Isomerization. Angew Chem Int Ed Engl 2020; 60:1635-1640. [DOI: 10.1002/anie.202012400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Glen R. Jones
- Department of Chemistry, Center of Excellence in Polymer Chemistry University of Houston 3585 Cullen Blvd. Houston Texas 77004 USA
| | - Hatice E. Basbug Alhan
- Department of Chemistry, Center of Excellence in Polymer Chemistry University of Houston 3585 Cullen Blvd. Houston Texas 77004 USA
| | - Lucas J. Karas
- Department of Chemistry, Center of Excellence in Polymer Chemistry University of Houston 3585 Cullen Blvd. Houston Texas 77004 USA
| | - Judy I. Wu
- Department of Chemistry, Center of Excellence in Polymer Chemistry University of Houston 3585 Cullen Blvd. Houston Texas 77004 USA
| | - Eva Harth
- Department of Chemistry, Center of Excellence in Polymer Chemistry University of Houston 3585 Cullen Blvd. Houston Texas 77004 USA
| |
Collapse
|
19
|
De‐Botton S, Filippov DOA, Shubina ES, Belkova NV, Gelman D. Regioselective Isomerization of Terminal Alkenes Catalyzed by a PC(sp
3
)Pincer Complex with a Hemilabile Pendant Arm. ChemCatChem 2020. [DOI: 10.1002/cctc.202001308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sophie De‐Botton
- Institute of Chemistry, Edmond J. Safra Campus The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - D.Sc. Oleg A. Filippov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Elena S. Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Natalia V. Belkova
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Dmitri Gelman
- Institute of Chemistry, Edmond J. Safra Campus The Hebrew University of Jerusalem Jerusalem 91904 Israel
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklay St., 6 117198 Moscow Russia
| |
Collapse
|
20
|
Han XW, Daugulis O, Brookhart M. Unsaturated Alcohols as Chain-Transfer Agents in Olefin Polymerization: Synthesis of Aldehyde End-Capped Oligomers and Polymers. J Am Chem Soc 2020; 142:15431-15437. [DOI: 10.1021/jacs.0c06644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xing-Wang Han
- Center for Polymer Chemistry, Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Olafs Daugulis
- Center for Polymer Chemistry, Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Maurice Brookhart
- Center for Polymer Chemistry, Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
21
|
Lamb JR, Hubbell AK, MacMillan SN, Coates GW. Carbonylative, Catalytic Deoxygenation of 2,3-Disubstituted Epoxides with Inversion of Stereochemistry: An Alternative Alkene Isomerization Method. J Am Chem Soc 2020; 142:8029-8035. [PMID: 32309937 DOI: 10.1021/jacs.0c02653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reactions facilitating inversion of alkene stereochemistry are rare, sought-after transformations in the field of modern organic synthesis. Although a number of isomerization reactions exist, most methods require specific, highly activated substrates to achieve appreciable conversion without side product formation. Motivated by stereoinvertive epoxide carbonylation reactions, we developed a two-step epoxidation/deoxygenation process that results in overall inversion of alkene stereochemistry. Unlike most deoxygenation systems, carbon monoxide was used as the terminal reductant, preventing difficult postreaction separations, given the gaseous nature of the resulting carbon dioxide byproduct. Various alkyl-substituted cis- and trans-epoxides can be reduced to trans- and cis-alkenes, respectively, in >99:1 stereospecificity and up to 95% yield, providing an alternative to traditional, direct isomerization approaches.
Collapse
Affiliation(s)
- Jessica R Lamb
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Aran K Hubbell
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
22
|
De S, Sivendran N, Maity B, Pirkl N, Koley D, Gooßen LJ. Dinuclear PdI Catalysts in Equilibrium Isomerizations: Mechanistic Understanding, in Silico Casting, and Catalyst Development. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sriman De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Nardana Sivendran
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Bholanath Maity
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Nico Pirkl
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Lukas J. Gooßen
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
23
|
Gao W, Zhang X, Xie X, Ding S. One simple Ir/hydrosilane catalytic system for chemoselective isomerization of 2-substituted allylic ethers. Chem Commun (Camb) 2020; 56:2012-2015. [PMID: 31961351 DOI: 10.1039/c9cc09055j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we describe one simple Ir/hydrosilane catalytic system for chemoselective isomerization of 2-substituted allylic ethers. This facile strategy shows high efficiency towards a variety of substrates, including derivatives from bioactive molecules. The substituent at the α position of the olefins is supposed to be critical in retarding the alkene hydrosilylation process and leading the reaction to go through the isomerization pathway.
Collapse
Affiliation(s)
- Weiwei Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | | | | | | |
Collapse
|
24
|
Ren W, Sun F, Chu J, Shi Y. A Pd-Catalyzed Site-Controlled Isomerization of Terminal Olefins. Org Lett 2020; 22:1868-1873. [DOI: 10.1021/acs.orglett.0c00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenlong Ren
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Fei Sun
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Jianxiao Chu
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
25
|
Li J, Qu S, Zhao W. Rhodium‐Catalyzed Remote C(sp
3
)−H Borylation of Silyl Enol Ethers. Angew Chem Int Ed Engl 2020; 59:2360-2364. [DOI: 10.1002/anie.201913281] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Shuanglin Qu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
26
|
Li J, Qu S, Zhao W. Rhodium‐Catalyzed Remote C(sp
3
)−H Borylation of Silyl Enol Ethers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Shuanglin Qu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
27
|
Costello JP, Ferreira EM. Regioselectivity Influences in Platinum-Catalyzed Intramolecular Alkyne O-H and N-H Additions. Org Lett 2019; 21:9934-9939. [PMID: 31815495 DOI: 10.1021/acs.orglett.9b03557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The steric and electronic drivers of regioselectivity in platinum-catalyzed intramolecular hydroalkoxylation are elucidated. A branch point is found that divides the process between 5-exo and 6-endo selective processes, and enol ethers can be accessed in good yields for both oxygen heterocycles. The main influence arises from an electronic effect, where the alkyne substituent induces a polarization of the alkyne that leads to preferential heteroatom attack at the more electron-deficient carbon. The electronic effects are studied in other contexts, including hydroacyloxylation and hydroamination, and similar trends in directionality are predominant although not uniformly observed.
Collapse
Affiliation(s)
- Jeff P Costello
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Eric M Ferreira
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
28
|
Goliszewska K, Rybicka-Jasińska K, Szurmak J, Gryko D. Visible-Light-Mediated Amination of π-Nucleophiles with N-Aminopyridinium Salts. J Org Chem 2019; 84:15834-15844. [DOI: 10.1021/acs.joc.9b02073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katarzyna Goliszewska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Jakub Szurmak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
29
|
Romano C, Fiorito D, Mazet C. Remote Functionalization of α,β-Unsaturated Carbonyls by Multimetallic Sequential Catalysis. J Am Chem Soc 2019; 141:16983-16990. [DOI: 10.1021/jacs.9b09373] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ciro Romano
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Daniele Fiorito
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
30
|
|
31
|
Azizollahi H, Mehta VP, García-López JA. Pd-catalyzed cascade reactions involving skipped dienes: from double carbopalladation to remote C-C cleavage. Chem Commun (Camb) 2019; 55:10281-10284. [PMID: 31396607 DOI: 10.1039/c9cc04817k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two ligand-controlled cascade reactions relying on the intramolecular carbopalladation of skipped dienes. The use of a bulky monodentate phosphine ligand affords [4,5]-spirocycles via sequential double carbopalladation, however bidentate phosphines promote a remote β-C-elimination process which does not rely on the use of strained or sterically hindered substrates.
Collapse
Affiliation(s)
- Hamid Azizollahi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran
| | | | | |
Collapse
|
32
|
Molloy JJ, Morack T, Gilmour R. Positional and Geometrical Isomerisation of Alkenes: The Pinnacle of Atom Economy. Angew Chem Int Ed Engl 2019; 58:13654-13664. [PMID: 31233259 DOI: 10.1002/anie.201906124] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 12/13/2022]
Abstract
Strategies to achieve spatiotemporal regulation of pre-existing alkenes via external stimuli are essential given the ubiquity of feedstock olefins in chemistry and their downstream applications. Mirroring the 1-0 switch that underpins mammalian vision through selective geometric isomerisation in retinal, strategies to manipulate 2D space by both geometric and positional isomerisation of alkenes via chemical, thermal and light-driven processes are being intensively pursued. This minireview highlights the current state of the art in activating and achieving directionality in these fundamental chemical transformations.
Collapse
Affiliation(s)
- John J Molloy
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Tobias Morack
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
33
|
Molloy JJ, Morack T, Gilmour R. Positionelle und geometrische Isomerisierung von Alkenen: der Gipfel der Atomökonomie. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906124] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- John J. Molloy
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tobias Morack
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
34
|
Yadav S, Hazra R, Singh A, Ramasastry SSV. Substituent-Guided Palladium-Ene Reaction for the Synthesis of Carbazoles and Cyclopenta[ b]indoles. Org Lett 2019; 21:2983-2987. [PMID: 30985137 DOI: 10.1021/acs.orglett.9b00410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient palladium-catalyzed intramolecular Trost-Oppolzer type Alder-ene strategy was developed for the synthesis of carbazoles and cyclopenta[ b]indoles from easily accessible(3-allyl-1 H-indol-2-yl)methyl acetates. This strategy was extended for the synthesis of naphthalenes and dibenzobenzofurans as well. In addition, a short synthesis of antibacterial and antifungal natural product glycozoline and its analogues was also achieved.
Collapse
Affiliation(s)
- Sonu Yadav
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Mohali , Sector 81, Manauli PO , S. A. S. Nagar , Punjab 140306 , India
| | - Raju Hazra
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Mohali , Sector 81, Manauli PO , S. A. S. Nagar , Punjab 140306 , India
| | - Animesh Singh
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Mohali , Sector 81, Manauli PO , S. A. S. Nagar , Punjab 140306 , India
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Mohali , Sector 81, Manauli PO , S. A. S. Nagar , Punjab 140306 , India
| |
Collapse
|
35
|
Murai M, Nishimura K, Takai K. Palladium-catalyzed double-bond migration of unsaturated hydrocarbons accelerated by tantalum chloride. Chem Commun (Camb) 2019; 55:2769-2772. [PMID: 30768079 DOI: 10.1039/c9cc00223e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The operationally simple palladium-catalyzed double-bond migration without heteroatom-containing coordinating functional groups is described. Addition of TaCl5 as a second catalyst greatly enhanced the migration efficiency to provide β-alkylstyrenes through migration of up to a five-carbon chain. Both catalysts were commercially available, and the reaction occurred without external ligands under neutral conditions. The reaction proceeded via generation of π-allyl palladium species, which enabled the chemoselective double-bond migration of hydrocarbons in the presence of allylethers. Remote functionalization through double-bond migration was also demonstrated using FeCl3 as a second catalyst.
Collapse
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, and Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | | | | |
Collapse
|
36
|
Dumont C, Belva F, Gauvin RM, Sauthier M. The Palladium-Catalyzed Carbonylative Telomerization Reaction with Phenols, Polyphenols and Kraft Lignin. CHEMSUSCHEM 2018; 11:3917-3922. [PMID: 30270516 DOI: 10.1002/cssc.201802017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/27/2018] [Indexed: 06/08/2023]
Abstract
An efficient carbonylative coupling reaction of two equivalents of 1,3-butadiene, yielding aryl nona-3,8-dienoate esters, is performed with phenols as nucleophile, and promoted by palladium-based catalysts. Optimization study reveals the key role of benzoic acid as a cocatalyst. The suggested catalyst combination enables the conversion of a wide scope of variously substituted phenols into corresponding esters with a high yield. Further tests were performed with diphenols, naturally-occurring phenols and an industrial grade Kraft lignin, thus, indicating the scope of this reaction for transforming industrially relevant polyphenolic structures.
Collapse
Affiliation(s)
- Clément Dumont
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
- ICAM site de Lille, 6 rue Auber, 59016, Lille Cedex, France
| | - Frederic Belva
- ICAM site de Lille, 6 rue Auber, 59016, Lille Cedex, France
| | - Regis M Gauvin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Mathieu Sauthier
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| |
Collapse
|
37
|
Weigel WK, Dennis TN, Kang AS, Perry JJP, Martin DBC. A Heck-Based Strategy To Generate Anacardic Acids and Related Phenolic Lipids for Isoform-Specific Bioactivity Profiling. Org Lett 2018; 20:6234-6238. [PMID: 30251866 DOI: 10.1021/acs.orglett.8b02705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A synthetic strategy for phenolic lipids such as anacardic acid and ginkgolic acid derivatives using an efficient and selective redox-relay Heck reaction followed by a stereoselective olefination is reported. This approach controls both the alkene position and stereochemistry, allowing the synthesis of natural and unnatural unsaturated lipids as single isomers. By this strategy, the activities of different anacardic acid and ginkgolic acid derivatives have been examined in a matrix metalloproteinase inhibition assay.
Collapse
|
38
|
Hu L, Wu Z, Huang G. Mechanism and Origins of Regio- and Stereoselectivities in Iridium-Catalyzed Isomerization of 1-Alkenes to trans-2-Alkenes. Org Lett 2018; 20:5410-5413. [DOI: 10.1021/acs.orglett.8b02319] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lingfei Hu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Zhenzhen Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
39
|
Yamasaki Y, Kumagai T, Kanno S, Kakiuchi F, Kochi T. Selective Long-Distance Isomerization of Terminal Alkenes via Nondissociative Chain Walking. J Org Chem 2018; 83:9322-9333. [DOI: 10.1021/acs.joc.8b01288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuya Yamasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takaaki Kumagai
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shota Kanno
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
40
|
Liu X, Zhang W, Wang Y, Zhang ZX, Jiao L, Liu Q. Cobalt-Catalyzed Regioselective Olefin Isomerization Under Kinetic Control. J Am Chem Soc 2018; 140:6873-6882. [DOI: 10.1021/jacs.8b01815] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xufang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ze-Xin Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Romano C, Mazet C. Multicatalytic Stereoselective Synthesis of Highly Substituted Alkenes by Sequential Isomerization/Cross-Coupling Reactions. J Am Chem Soc 2018; 140:4743-4750. [DOI: 10.1021/jacs.8b02134] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ciro Romano
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
42
|
Alkene-Zipper Catalyzed Selective and Remote Retro-ene Reaction of Alkenyl Cyclopropylcarbinol. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Frota C, Polo EC, Esteves H, Correia CRD. Regioselective and Stereoselective Heck-Matsuda Arylations of Trisubstituted Allylic Alkenols and Their Silyl and Methyl Ether Derivatives To Access Two Contiguous Stereogenic Centers: Expanding the Redox-Relay Process and Application in the Total Synthesis of meso-Hexestrol. J Org Chem 2018; 83:2198-2209. [PMID: 29364666 DOI: 10.1021/acs.joc.7b03098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel palladium-catalyzed redox-relay Heck arylation reactions of trisubstituted allylic alkenols were developed employing silyl and methyl ethers. The reactions proceeded under mild conditions in moderate to high yields in an excellent anti diastereoselectivity to form α,β-disubstituted methyl ketones containing two contiguous stereocenters. The new redox-relay arylations using silyl and methyl ethers of the starting alkenols demonstrate that the presence of a free hydroxyl group is not a sine qua non condition for an effective redox-relay process as previously thought. Deuterium-labeled alkenols 2-d-10a, 2-d-10b, and 2-d-10c permitted tracking the palladium-hydride reinsertion steps in the conversion of the starting free alcohols, silyl, and methyl ethers into the corresponding methyl ketone 3-d-11a, with >98% deuterium retention. Moreover, the synthetic potential of the method was demonstrated with a straightforward synthesis of the meso-hexestrol in 4 steps, in 41% overall yield from alkenol 10a.
Collapse
Affiliation(s)
- Carlise Frota
- Institute of Chemistry, University of Campinas , 13083-970, Campinas, São Paulo, Brazil
| | - Ellen Christine Polo
- Institute of Chemistry, University of Campinas , 13083-970, Campinas, São Paulo, Brazil
| | - Henrique Esteves
- Institute of Chemistry, University of Campinas , 13083-970, Campinas, São Paulo, Brazil
| | | |
Collapse
|
44
|
Zhang X, Jordan F, Szostak M. Transition-metal-catalyzed decarbonylation of carboxylic acids to olefins: exploiting acyl C–O activation for the production of high value products. Org Chem Front 2018. [DOI: 10.1039/c8qo00585k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this article, we review the recent developments in the transition-metal-catalyzed decarbonylation of carboxylic acids to produce olefins by the formal acyl C–O activation mechanism and discuss future challenges in this field.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemistry
- Rutgers University
- Newark
- USA
| | - Frank Jordan
- Department of Chemistry
- Rutgers University
- Newark
- USA
| | | |
Collapse
|