1
|
Peng R, Zhang T, Wang S, Liu Z, Pan P, Xu X, Song Y, Liu X, Yan S, Wang J. Self-Assembly of Strain-Adaptable Surface-Enhanced Raman Scattering Substrate on Polydimethylsiloxane Nanowrinkles. Anal Chem 2024; 96:10620-10629. [PMID: 38888085 PMCID: PMC11223597 DOI: 10.1021/acs.analchem.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Flexible surface-enhanced Raman scattering (SERS) substrates adaptable to strains enable effective sampling from irregular surfaces, but the preparation of highly stable and sensitive flexible SERS substrates is still challenging. This paper reports a method to fabricate a high-performance strain-adaptable SERS substrate by self-assembly of Au nanoparticles (AuNPs) on polydimethylsiloxane (PDMS) nanowrinkles. Nanowrinkles are created on prestrained PDMS slabs by plasma-induced oxidation followed by the release of the prestrain, and self-assembled AuNPs are transferred onto the nanowrinkles to construct the high-performance SERS substrate. The results show that the nanowrinkled structure can improve the surface roughness and enhance the SERS signals by ∼4 times compared to that of the SERS substrate prepared on flat PDMS substrates. The proposed SERS substrate also shows good adaptability to dynamic bending up to ∼|0.4| 1/cm with excellent testing reproducibility. Phenolic pollutants, including aniline and catechol, were quantitatively tested by the SERS substrate. The self-assembled flexible SERS substrate proposed here provides a powerful tool for chemical analysis in the fields of environmental monitoring and food safety inspection.
Collapse
Affiliation(s)
- Ran Peng
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Tingting Zhang
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Shiyao Wang
- Department
of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China
- Liaoning
Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| | - Zhijian Liu
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Peng Pan
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Xiaotong Xu
- Key
Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Linghe Road 42, Dalian 116023, China
| | - Yongxin Song
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Xinyu Liu
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Sheng Yan
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Junsheng Wang
- Department
of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China
- Liaoning
Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
2
|
Vinnacombe-Willson GA, García-Astrain C, Troncoso-Afonso L, Wagner M, Langer J, González-Callejo P, Silvio DD, Liz-Marzán LM. Growing Gold Nanostars on 3D Hydrogel Surfaces. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5192-5203. [PMID: 38828187 PMCID: PMC11137816 DOI: 10.1021/acs.chemmater.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Nanocomposites comprising hydrogels and plasmonic nanoparticles are attractive materials for tissue engineering, bioimaging, and biosensing. These materials are usually fabricated by adding colloidal nanoparticles to the uncured polymer mixture and thus require time-consuming presynthesis, purification, and ligand-exchange steps. Herein, we introduce approaches for rapid synthesis of gold nanostars (AuNSt) in situ on hydrogel substrates, including those with complex three-dimensional (3D) features. These methods enable selective AuNSt growth at the surface of the substrate, and the growth conditions can be tuned to tailor the nanoparticle size and density (coverage). We additionally demonstrate proof-of-concept applications of these nanocomposites for SERS sensing and imaging. High surface coverage with AuNSt enabled 1-2 orders of magnitude higher SERS signals compared to plasmonic hydrogels loaded with premade colloids. Importantly, AuNSt can be prepared without the addition of any potentially cytotoxic surfactants, thereby ensuring a high biocompatibility. Overall, in situ growth becomes a versatile and straightforward approach for the fabrication of plasmonic biomaterials.
Collapse
Affiliation(s)
| | - Clara García-Astrain
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Lara Troncoso-Afonso
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Department
of Applied Chemistry, University of the
Basque Country (UPV-EHU), Donostia-San
Sebastián 20018, Spain
| | - Marita Wagner
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Department
of Applied Chemistry, University of the
Basque Country (UPV-EHU), Donostia-San
Sebastián 20018, Spain
- CIC
nanoGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San Sebastián 20018, Spain
| | - Judith Langer
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
| | | | - Desirè Di Silvio
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology
Alliance (BRTA), Donostia-San
Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Ikerbasque
Basque Foundation for Science, Bilbao 48009, Spain
- Cinbio, Universidade de Vigo, Vigo 36310, Spain
| |
Collapse
|
3
|
Sun M, Zhang H, Li H, Hao X, Wang C, Li L, Yang Z, Tian C. Ag microlabyrinth/nanoparticles coated large-area thin PDMS films as flexible and transparent SERS substrates for in situ detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123153. [PMID: 37473663 DOI: 10.1016/j.saa.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Flexible and transparent surface-enhanced Raman scattering (SERS) substrates haveattractedmuchattention as a fast, sensitive and in situ detection platform for practical applications. However, the large-area fabrication of flexible and transparent SERS substrates with high performance is still challenging. Here, a flexible and transparent SERS substrate based on large-area thin PDMS film decorated with Ag microlabyrinth/nanoparticles hierarchical structures (denoted as ALNHS@PDMS) is fabricated by using the floating-on-water method and magnetron sputtering technology. By optimizing the sputtering time, the ALNHS with multiple hot spots are uniformly distributed on the PDMS surface. Based on characterizing the rhodamine 6G (R6G) with a portable Raman spectrometer, the optimal ALNHS@PDMS film exhibits a high enhancement factor (5.2 × 106), excellent uniformity and reproducibility, as well as superior mechanical stability. In addition, thanks to the good sticky feature and bi-directional activation property of the thin ALNHS@PDMS film, the prepared flexible and transparent SERS substrate can achieve in situ detection of malachite green residues (10-6 M) on apple and tomato skins. This large-area, thin, mechanically robust, flexible and transparent ALNHS@PDMS film, integrated with a portable Raman spectrometer, shows great potential for point-of-care testing (POCT)in practical applications.
Collapse
Affiliation(s)
- Meng Sun
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Houjia Zhang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Hefu Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Xuehui Hao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Changzheng Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Lijun Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Zhenshan Yang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Cunwei Tian
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
4
|
Peng R, Zhang T, Yan S, Song Y, Liu X, Wang J. Recent Development and Applications of Stretchable SERS Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2968. [PMID: 37999322 PMCID: PMC10675327 DOI: 10.3390/nano13222968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a cutting-edge technique for highly sensitive analysis of chemicals and molecules. Traditional SERS-active nanostructures are constructed on rigid substrates where the nanogaps providing hot-spots of Raman signals are fixed, and sample loading is unsatisfactory due to the unconformable attachment of substrates on irregular sample surfaces. A flexible SERS substrate enables conformable sample loading and, thus, highly sensitive Raman detection but still with limited detection capabilities. Stretchable SERS substrates with flexible sample loading structures and controllable hot-spot size provide a new strategy for improving the sample loading efficiency and SERS detection sensitivity. This review summarizes and discusses recent development and applications of the newly conceptual stretchable SERS substrates. A roadmap of the development of SERS substrates is reviewed, and fabrication techniques of stretchable SERS substrates are summarized, followed by an exhibition of the applications of these stretchable SERS substrates. Finally, challenges and perspectives of the stretchable SERS substrates are presented. This review provides an overview of the development of SERS substrates and sheds light on the design, fabrication, and application of stretchable SERS systems.
Collapse
Affiliation(s)
- Ran Peng
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Tingting Zhang
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Junsheng Wang
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
5
|
Liu X, Dang A, Li T, Sun Y, Lee TC, Deng W, Wu S, Zada A, Zhao T, Li H. Plasmonic Coupling of Au Nanoclusters on a Flexible MXene/Graphene Oxide Fiber for Ultrasensitive SERS Sensing. ACS Sens 2023; 8:1287-1298. [PMID: 36867056 DOI: 10.1021/acssensors.2c02808] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
High sensitivity, good signal repeatability, and facile fabrication of flexible surface enhanced Raman scattering (SERS) substrates are common pursuits of researchers for the detection of probe molecules in a complex environment. However, fragile adhesion between the noble-metal nanoparticles and substrate material, low selectivity, and complex fabrication process on a large scale limit SERS technology for wide-ranging applications. Herein, we propose a scalable and cost-effective strategy to a fabricate sensitive and mechanically stable flexible Ti3C2Tx MXene@graphene oxide/Au nanoclusters (MG/AuNCs) fiber SERS substrate from wet spinning and subsequent in situ reduction processes. The use of MG fiber provides good flexibility (114 MPa) and charge transfer enhancement (chemical mechanism, CM) for a SERS sensor and allows further in situ growth of AuNCs on its surface to build highly sensitive hot spots (electromagnetic mechanism, EM), promoting the durability and SERS performance of the substrate in complex environments. Therefore, the formed flexible MG/AuNCs-1 fiber exhibits a low detection limit of 1 × 10-11 M with a 2.01 × 109 enhancement factor (EFexp), signal repeatability (RSD = 9.80%), and time retention (remains 75% after 90 days of storage) for R6G molecules. Furthermore, the l-cysteine-modified MG/AuNCs-1 fiber realized the trace and selective detection of trinitrotoluene (TNT) molecules (0.1 μM) via Meisenheimer complex formation, even by sampling the TNT molecules at a fingerprint or sample bag. These findings fill the gap in the large-scale fabrication of high-performance 2D materials/precious-metal particle composite SERS substrates, with the expectation of pushing flexible SERS sensors toward wider applications.
Collapse
Affiliation(s)
- Xin Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Alei Dang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Yiting Sun
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Tung-Chun Lee
- Department of Chemistry, University College London (UCL), London WC1H 0AJ, U.K
- Institute for Materials Discovery, University College London (UCL), London WC1H 0AJ, U.K
| | - Weibin Deng
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Shaoheng Wu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Tingkai Zhao
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Hao Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
6
|
Facile synthesis of Ag/GO SERS composite with highly sensitive and stable performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food. Anal Bioanal Chem 2023; 415:203-210. [PMID: 36333614 DOI: 10.1007/s00216-022-04400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Developing simple, efficient, and inexpensive method for trace amount organophosphorus pesticides' (OPs) detection with high sensitivity and specificity is of significant importance for guaranteeing food safety. Herein, an Ag/Au bimetallic nanoparticle-based acetylcholinesterase (AChE) surface-enhanced Raman scattering (SERS) biosensor was constructed for in situ simple and sensitive detection of pesticide residues in food. The principle of this biosensor exploited 4-mercaptophenylboronic acid (4-MPBA)-modified Ag/Au bimetallic nanoprobes as SERS signal probe to improve sensitivity and stability. The combination of AChE and choline oxidase (CHO) can hydrolyze acetylcholine (ATCh) to generate H2O2. The product of H2O2 selectively oxidizes the boronate ester of 4-MPBA, decreasing the Raman intensity of the B-O symmetric stretching. In the presence of OPs, it could inhibit the production of H2O2 by destroying the AChE activity, so the reduction of the SERS signal was also alleviated. Based on the principle, an Ag/Au bimetallic nanoparticle-based AChE SERS sensor was established without any complicated pretreatments. Benefiting from the synergistic effects of Ag/Au bimetallic hybrids, a linear detection range from 5×10-9 to 5×10-4 M was achieved with a limit of detection down to 1.7×10-9 M using parathion-methyl (PM) as the representative model of OPs. Moreover, the SERS biosensor uses readily available reagents and is simple to implement. Importantly, the proposed SERS biosensor was used to quantitatively analyze OP residues in apple peels. The levels of OPs detected in real samples by this method were consistent with those obtained using gas chromatography-mass spectrometry (GC-MS), suggesting the proposed assay has great potential applications for OPs in situ detection in food safety fields.
Collapse
|
8
|
Yue W, Xia Z, Zeng Z, Chen Z, Qiao L, Li P, He Y, Luo X. In Situ Surface-Enhanced Raman Scattering Detection of a SARS-CoV-2 Biomarker Using Flexible and Transparent Polydimethylsiloxane Films with Embedded Au Nanoplates. ACS APPLIED NANO MATERIALS 2022; 5:12897-12906. [PMID: 37552747 PMCID: PMC9438477 DOI: 10.1021/acsanm.2c02750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2022] [Indexed: 05/02/2023]
Abstract
Coronavirus disease 2019 (COVID-19) remains an ongoing issue worldwide and continues to disrupt daily life. Transmission of infection primarily occurs through secretions when in contact with infected individuals, but more recent evidence has shown that fomites are also a source of virus transmission, especially in cold-chain logistics. Traditional nucleic acid testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contamination in cold-chain logistics is time-consuming and inaccurate because of the multiplex sampling sites. Surface-enhanced Raman spectroscopy (SERS) provides a rapid, sensitive, and label-free detection route for various molecules, including viruses, through the identification of the characteristic peaks of their outer membrane proteins. In this study, we embedded arbitrarily orientated gold nanoplates (Au NPLs) in polydimethylsiloxane (PDMS) elastomer and used it as biosensor for the ultrasensitive detection of the SARS-CoV-2 spike protein in cold-chain logistics. This transparent and flexible substrate can be wrapped onto arbitrary surfaces and permits light penetration into the underlying contact surface, enabling in situ and point-of-care SERS diagnostics. The developed assay displayed high reproducibility (8.7%) and a low detection limit of 6.8 × 10-9 g mL-1, indicating its potential to serve as a promising approach with increased accuracy and sensitivity for the detection of the S protein.
Collapse
Affiliation(s)
- Weiling Yue
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Zhichao Xia
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Zhiyou Zeng
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Zhinan Chen
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Ling Qiao
- Division of Chemistry and Biological Chemistry, School
of Physical & Mathematical Sciences, Nanyang Technological
University, Singapore637371, Singapore
| | - Panjie Li
- School of Chemistry and Chemical Engineering, School
of Environmental and Biological Engineering, Nanjing University of Science
and Technology, Nanjing210094, China
| | - Yi He
- School of Science, Xihua
University, Chengdu610039, P. R. China
| | - Xiaojun Luo
- School of Science, Xihua
University, Chengdu610039, P. R. China
| |
Collapse
|
9
|
Vinnacombe-Willson GA, Conti Y, Jonas SJ, Weiss PS, Mihi A, Scarabelli L. Surface Lattice Plasmon Resonances by Direct In Situ Substrate Growth of Gold Nanoparticles in Ordered Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205330. [PMID: 35903851 PMCID: PMC9549758 DOI: 10.1002/adma.202205330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Indexed: 05/24/2023]
Abstract
Precise arrangements of plasmonic nanoparticles on substrates are important for designing optoelectronics, sensors and metamaterials with rational electronic, optical and magnetic properties. Bottom-up synthesis offers unmatched control over morphology and optical response of individual plasmonic building blocks. Usually, the incorporation of nanoparticles made by bottom-up wet chemistry starts from batch synthesis of colloids, which requires time-consuming and hard-to-scale steps like ligand exchange and self-assembly. Herein, an unconventional bottom-up wet-chemical synthetic approach for producing gold nanoparticle ordered arrays is developed. Water-processable hydroxypropyl cellulose stencils facilitate the patterning of a reductant chemical ink on which nanoparticle growth selectively occurs. Arrays exhibiting lattice plasmon resonances in the visible region and near infrared (quality factors of >20) are produced following a rapid synthetic step (<10 min), all without cleanroom fabrication, specialized equipment, or self-assembly, constituting a major step forward in establishing in situ growth approaches. Further, the technical capabilities of this method through modulation of the particle size, shape, and array spacings directly on the substrate are demonstrated. Ultimately, establishing a fundamental understanding of in situ growth has the potential to inform the fabrication of plasmonic materials; opening the door for in situ growth fabrication of waveguides, lasing platforms, and plasmonic sensors.
Collapse
Affiliation(s)
- Gail A Vinnacombe-Willson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ylli Conti
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Steven J Jonas
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Agustín Mihi
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Leonardo Scarabelli
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| |
Collapse
|
10
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Mert S, Sancak S, Aydın H, Fersahoğlu AT, Somay A, Özkan F, Çulha M. Development of a SERS based cancer diagnosis approach employing cryosectioned thyroid tissue samples on PDMS. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102577. [PMID: 35716872 DOI: 10.1016/j.nano.2022.102577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
An efficient SERS based novel analytical approach named Cryosectioned-PDMS was developed systematically and evaluated applying on 64 thyroid biopsy samples. To utilize thyroid biopsy samples, a 20-μl volume of h-AgNPs suspension was dropped on a 5-μm thick cryosectioned biopsy specimen placed on the PDMS coated glass slide. The SERS spectra from a 10 × 10 points array acquired by mapping 22.5 μm × 22.5 μm sized area from suspended dried droplets placed on the tissue surface. The probability of correctly predicted performance for diagnosis of malignant, benign and healthy tissues was resulted in the accuracy of 100 % for the spectral bands at 667, 724, 920, 960, 1052, 1096, 1315 and 1457 cm-1 using PCA-fed LDA machine learning. The Cryosectioned-PDMS biophotonic approach with PCA-LDA predictive model demonstrated that the vibrational signatures can accurately recognize the fingerprint of cancer pathology from a healthy one with a simple and fast sample preparation methodology.
Collapse
Affiliation(s)
- Sevda Mert
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey; Department of Genetics and Bioengineering, Faculty of Engineering, Istanbul Okan University, Istanbul 34959, Turkey
| | - Seda Sancak
- Department of Internal Medicine, Endocrinology and Metabolism Disorders, Fatih Sultan Mehmet Education and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| | - Hasan Aydın
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Yeditepe University Hospital, Istanbul 34752, Turkey
| | - Ayşe Tuba Fersahoğlu
- General Surgery Clinic, Fatih Sultan Mehmet Education and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| | - Adnan Somay
- Department of Pathology, Fatih Sultan Mehmet Education and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| | - Ferda Özkan
- Department of Pathology, Yeditepe University Hospital, Istanbul 34752, Turkey
| | - Mustafa Çulha
- The Knight Cancer Institute, Cancer Early Detection Advanced Research Center (CEDAR), Oregon Health and Science University, Portland 97239, OR, USA; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
12
|
Fujiwara S, Kawasaki D, Sueyoshi K, Hisamoto H, Endo T. Gold Nanocone Array with Extensive Electromagnetic Fields for Highly Reproducible Surface-Enhanced Raman Scattering Measurements. MICROMACHINES 2022; 13:mi13081182. [PMID: 35893179 PMCID: PMC9332797 DOI: 10.3390/mi13081182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a technique used to distinguish the constitution of disease-related biomarkers in liquid biopsies, such as exosomes and circulating tumor cells, without any recognition elements. Previous studies using metal nanoparticle aggregates and angular nanostructures have achieved the detection of various biomarkers owing to strong hot spots and electromagnetic (EM) fields by localized surface plasmon resonance (LSPR). Although these SERS platforms enable significant enhancement of Raman signals, they still have some problems with the fabrication reproducibility of platforms in obtaining reproducible SERS signals. Therefore, highly reproducible fabrication of SERS platforms is required. Here, we propose the application of a polymer-based gold (Au) nanocone array (Au NCA), which extensively generates an enhanced EM field near the Au NCA surface by LSPR. This approach was experimentally demonstrated using a 785 nm laser, typically used for SERS measurements, and showed excellent substrate-to-substrate reproducibility (relative standard deviation (RSD) < 6%) using an extremely simple fabrication procedure and very low laser energy. These results proved that a Au NCA can be used as a highly reproducible SERS measurement to distinguish the constitution of biomarkers.
Collapse
Affiliation(s)
- Satoko Fujiwara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Daiki Kawasaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo 102-8666, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan; (S.F.); (D.K.); (K.S.); (H.H.)
- Correspondence: ; Tel.: +81-72-254-9284
| |
Collapse
|
13
|
Wen H, Inose T, Hirai K, Akashi T, Sugioka S, Li J, Peeters W, Fron E, Fortuni B, Nakata Y, Rocha S, Toyouchi S, Fujita Y, Uji-I H. Gold-coated silver nanowires for long lifetime AFM-TERS probes. NANOSCALE 2022; 14:5439-5446. [PMID: 35322821 DOI: 10.1039/d1nr07833j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tip-enhanced Raman scattering (TERS) microscopy is an advanced technique for investigation at the nanoscale because of its excellent properties, such as its label-free functionality, non-invasiveness, and ability to simultaneously provide topographic and chemical information. The probe plays a crucial role in TERS technique performance. Widely used AFM-TERS probes fabricated with metal deposition suffer from relatively low reproductivity as well as limited mapping and storage lifetime. To solve the reproducibility issue, silver nanowire (AgNW)-based TERS probes were developed, which, thanks to the high homogeneity of the liquid-phase synthesis of AgNW, can achieve high TERS performance with excellent probe reproductivity, but still present short lifetime due to probe oxidation. In this work, a simple Au coating method is proposed to overcome the limited lifetime and improve the performance of the AgNW-based TERS probe. For the Au-coating, different [Au]/[Ag] molar ratios were investigated. The TERS performance was evaluated in terms of changes in the enhancement factor (EF) and signal-to-noise ratio through multiple mappings and the storage lifetime in air. The Au-coated AgNWs exhibited higher EF than pristine AgNWs and galvanically replaced AgNWs with no remarkable difference between the two molar ratios tested. However, for longer scanning time and multiple mappings, the probes obtained with low Au concentration showed much longer-term stability and maintained a high EF. Furthermore, the Au-coated AgNW probes were found to possess a longer storage lifetime in air, allowing for long and multiple TERS mappings with one single probe.
Collapse
Affiliation(s)
- Han Wen
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
| | - Tomoko Inose
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenji Hirai
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
| | - Taiki Akashi
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
| | - Shoji Sugioka
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
| | - Jiangtao Li
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
| | - Wannes Peeters
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Eduard Fron
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Beatrice Fortuni
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yoshihiko Nakata
- Toray Research Center, Inc., Sonoyama 3-3-7, Otsu 520-8567, Shiga, Japan
| | - Susana Rocha
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Shuichi Toyouchi
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yasuhiko Fujita
- Toray Research Center, Inc., Sonoyama 3-3-7, Otsu 520-8567, Shiga, Japan
| | - Hiroshi Uji-I
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan.
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
14
|
Xing L, Wang C, Cao Y, Zhang J, Xia H. Macroscopical monolayer films of ordered arrays of gold nanoparticles as SERS substrates for in situ quantitative detection in aqueous solutions. NANOSCALE 2021; 13:14925-14934. [PMID: 34533157 DOI: 10.1039/d1nr03864h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, macroscopical monolayer films of ordered arrays of gold nanoparticles (MMF-OA-Au NPs) are successfully prepared at the interfaces of toluene-diethylene glycol (DEG) with a water volume fraction of 10% (no more than 25%), which can greatly reduce the electrostatic repulsion among NPs during the self-assembly due to the quick transfer of the remaining citrate ions into the DEG solutions containing water. Thanks to the uniformity in the intensity of SERS signals, the as-prepared MMF-OA-Au NPs transferred onto polydimethylsiloxane (PDMS) as SERS substrates (MMF-OA-Au NP@PDMS) can achieve in situ quantitative detection of the analytes (such as crystal violet and malachite green) in aqueous solutions. Moreover, MMF-OA-Au NP@PDMS as SERS-based pH sensors can directly determine the pH value of the aqueous solution in the range of 3 to 10 by means of the established well-defined linear relationship with the intensity of the peak of νCOO- without any calibration, instead of the intensity ratio of the Raman peaks of νCOO- to ν8a with further calculation. In addition, the as-prepared SERS-based pH sensors can still have excellent long-term durability.
Collapse
Affiliation(s)
- Lixiang Xing
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Cui Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Yi Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Jihui Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
15
|
Li M, Zhang X. Nanostructure-Based Surface-Enhanced Raman Spectroscopy Techniques for Pesticide and Veterinary Drug Residues Screening. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:194-205. [PMID: 32939593 DOI: 10.1007/s00128-020-02989-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Pesticide and veterinary drug residues in food and environment pose a threat to human health, and a rapid, super-sensitive, accurate and cost-effective analysis technique is therefore highly required to overcome the disadvantages of conventional techniques based on mass spectrometry. Recently, the surface-enhanced Raman spectroscopy (SERS) technique emerges as a potential promising analytical tool for rapid, sensitive and selective detections of environmental pollutants, mostly owing to its possible simplified sample pretreatment, gigantic detectable signal amplification and quick target analyte identification via finger-printing SERS spectra. So theoretically the SERS detection technology has inherent advantages over other competitors especially in complex environmental matrices. The progress in nanostructure SERS substrates and portable Raman appliances will promote this novel detection technology to play an important role in future rapid on-site assay. This paper reviews the advances in nanostructure-based SERS substrates, sensors and relevant portable integrated systems for environmental analysis, highlights the potential applications in the detections of synthetic chemicals such as pesticide and veterinary drug residues, and also discusses the challenges of SERS detection technique for actual environmental monitoring in the future.
Collapse
Affiliation(s)
- Mingtao Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xiang Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
16
|
Suarasan S, Liu J, Imanbekova M, Rojalin T, Hilt S, Voss JC, Wachsmann-Hogiu S. Superhydrophobic bowl-like SERS substrates patterned from CMOS sensors for extracellular vesicle characterization. J Mater Chem B 2021; 8:8845-8852. [PMID: 33026405 DOI: 10.1039/d0tb00889c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using a regular CMOS sensor as a template, we are able to fabricate a simple but highly effective superhydrophobic SERS substrate. Specifically, we decorated the microlens layer of the sensor with 7 μm polystyrene beads to obtain a PDMS patterned replica. The process resulted in a uniform pattern of voids in the PDMS (denoted nanobowls) that are intercalated with a few larger voids (denoted here microbowls). The voids act as superhydrophobic substrates with analyte concentration capabilities in bigger bowl-like structures. Silver nanoparticles were directly grown on the patterned PDMS substrate inside both the nano- and microbowls, and serve as strong electromagnetic field enhancers for the SERS substrate. After systematic characterization of the fabricated SERS substrate by atomic force microscopy and scanning electron microscopy, we demonstrated its SERS performance using 4-aminothiophenol as a reporter molecule. Finally, we employed this innovative substrate to concentrate and analyze extracellular vesicles (EVs) isolated from an MC65 neural cell line in an ultralow sample volume. This substrate can be further exploited for the investigation of various EV biomarkers for early diagnosis of different diseases using liquid biopsy.
Collapse
Affiliation(s)
- Sorina Suarasan
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| | - Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| | - Meruyert Imanbekova
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| | - Tatu Rojalin
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
17
|
Yadav S, Satija J. The current state of the art of plasmonic nanofibrous mats as SERS substrates: design, fabrication and sensor applications. J Mater Chem B 2021; 9:267-282. [PMID: 33241248 DOI: 10.1039/d0tb02137g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a widely used analytical tool that allows molecular fingerprint-based ultra-sensitive detection through an enhanced electromagnetic field generated by plasmonic metal nanoparticles (MNPs) by virtue of their localized surface plasmon resonance (LSPR). Although significant progress has been made in the design and fabrication of a variety of SERS substrates, MNP-decorated electrospun nanofibrous (NF) mats have attracted much attention due to their unique nanoscale structural and functional properties. This review focuses on the current state of the art in the fabrication of plasmonic NF mats with the main focus on the pre-mix, in situ, and ex situ approaches. The characteristic functional advantages and limitations of these strategies are also highlighted, which might be helpful for the research community when adopting a suitable approach. The potential of these plasmonic NF mats as a SERS-active optical sensor substrate, and their performance parameters such as the limit of detection, analytical range, and enhancement factor, and real-world applications are also discussed. The summary and futuristic discussion in this review might be of significant value in developing plasmonic NF mat-based SERS-active point-of-care diagnostic chips for a wide range of applications.
Collapse
Affiliation(s)
- Sangeeta Yadav
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Jitendra Satija
- Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
18
|
Zhu A, Ali S, Xu Y, Ouyang Q, Chen Q. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus. Biosens Bioelectron 2020; 172:112806. [PMID: 33190016 DOI: 10.1016/j.bios.2020.112806] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 01/19/2023]
Abstract
In this study, a sensitive biosensor was developed based on aptamer functionalized polydimethylsiloxane (PDMS) film for the detection of Staphylococcus aureus (S. aureus) using surface-enhanced Raman scattering (SERS) technology. Initially, the surface of PDMS film was chemically modified by piranha solution and 3-Aminopropyltriethoxysilane (APTES), and then AuNPs-PDMS film was prepared by coating gold nanoparticles (AuNPs) through electrostatic interaction. Next, the aptamers were immobilized on the AuNPs-PDMS membrane via gold-sulfur bond to form the capture substrate. Meanwhile, gold-silver core-shell nanoflowers (Au@Ag NFs) modified with mercaptobenzoic acid (4-MBA) and aptamers were applied as a signal probe. In the presence of the target, the signal molecular probe and the capturing substrate specifically combined with the target and resulted in a sandwich structure "capture substrate-target-signal molecular probe". Under the optimized experimental condition, the signal of 4-MBA at 1085 cm-1 was linearly related to the S. aureus concentration in the range of 4.3 × 10 cfu mL-1-4.3 × 107 cfu mL-1 (y = 326.91x-117.62, R2 = 0.9932) with a detection limit of 13 cfu mL-1. The method was successfully applied to spiked actual samples and a 92.5-110% recovery rate was achieved.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
19
|
Li L, Chin WS. Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37538-37548. [PMID: 32701289 DOI: 10.1021/acsami.0c07178] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Flexible and transparent surface-enhanced Raman scattering (SERS) substrates have long been sought-after for nondestructive detection of analytes on nonplanar surfaces, but there is still a lack of one convenient and robust way to fabricate such SERS substrates rapidly. Herein, we demonstrate the fabrication of a high-performance SERS substrate consisting of plasmonic Ag nanocube (Ag NC) arrays anchored onto a flexible transparent poly(dimethylsiloxane) (PDMS) membrane. Through a simple organic/water interfacial self-assembly method, arrays of presynthesized Ag NCs are obtained and directly retrieved onto the PDMS membrane without the aid of rigid substrates (e.g., Si wafers or glass slides). The plasmonic Ag NC arrays can produce strong electromagnetic enhancement, achieving high SERS enhancement factor (∼3.43 × 106) and ideal detection capability for methylene blue (MB) and Rhodamine 6G (R6G) at respective trace amounts of 10-10 and 10-9 M. Moreover, without the need to transfer from substrate to substrate, the regular Ag NC arrays are kept intact, thereby yielding a good reproducibility (RSD ∼12%). We demonstrate further that our as-fabricated SERS substrate displays ideal selectivity toward different kinds of analyte molecules (R6G, crystal violet (CV), and MB) based on principal component analysis. The PDMS membrane owns excellent transparency and flexibility; thus, the substrate enables the conformal contact with nonplanar surfaces and allows the penetration of a laser to reach the analytes from the reverse side of the substrate. This thus facilitates in situ SERS detection of trace residual crystal violet on fish skin, with limit of detection (LOD) reaching 0.6 ppm. This fabrication method reported here is economical and easily implemented. The robust Ag NCs@PDMS could be readily prepared and stored to meet diverse SERS sensing applications, especially for in situ detection of analytes on irregular nonplanar surfaces.
Collapse
Affiliation(s)
- Limin Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Wee Shong Chin
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
20
|
Lafuente M, Pellejero I, Clemente A, Urbiztondo MA, Mallada R, Reinoso S, Pina MP, Gandía LM. In Situ Synthesis of SERS-Active Au@POM Nanostructures in a Microfluidic Device for Real-Time Detection of Water Pollutants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36458-36467. [PMID: 32646210 DOI: 10.1021/acsami.0c06725] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a simple, versatile, and low-cost approach for the preparation of surface-enhanced Raman spectroscopy (SERS)-active regions within a microfluidic channel 50 cm in length. The approach involves the UV-light-driven formation of polyoxometalate-decorated gold nanostructures, Au@POM (POM: H3PW12O40 (PW) and H3PMo12O40 (PMo)), that self-assemble in situ on the surface of the polydimethylsiloxane (PDMS) microchannels without any extra functionalization procedure. The fabricated LoCs were characterized by scanning electron microscopy (SEM), UV-vis, Raman, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. The SERS activity of the resulting Au@POM-coated lab-on-a-chip (LoC) devices was evaluated in both static and flow conditions using rhodamine R6G. The SERS response of Au@PW-based LoCs was found to be superior to Au@PMo counterparts and outstanding when compared to reported data on metal@POM nanocomposites. We demonstrate the potentialities of both Au@POM-coated LoCs as analytical platforms for real-time detection of the organophosphorous pesticide paraoxon-methyl at 10-6 M concentration level.
Collapse
Affiliation(s)
- Marta Lafuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical & Environmental Engineering, University of Zaragoza, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
| | - Ismael Pellejero
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, 31006 Pamplona, Spain
| | - Alberto Clemente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical & Environmental Engineering, University of Zaragoza, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, 31006 Pamplona, Spain
| | - Miguel A Urbiztondo
- Centro Universitario de la Defensa de Zaragoza, Carretera Huesca s/n, 50090 Zaragoza, Spain
| | - Reyes Mallada
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical & Environmental Engineering, University of Zaragoza, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Santiago Reinoso
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, 31006 Pamplona, Spain
| | - María P Pina
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical & Environmental Engineering, University of Zaragoza, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Luis M Gandía
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, 31006 Pamplona, Spain
| |
Collapse
|
21
|
Gambucci M, Cambiotti E, Sassi P, Latterini L. Multilayer Gold-Silver Bimetallic Nanostructures to Enhance SERS Detection of Drugs. Molecules 2020; 25:molecules25153405. [PMID: 32731377 PMCID: PMC7436262 DOI: 10.3390/molecules25153405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/20/2023] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a widely used technique for drug detection due to high sensitivity and molecular specificity. The applicability and selectivity of SERS in the detection of specific drug molecules can be improved by gathering information on the specific interactions occurring between the molecule and the metal surface. In this work, multilayer gold-silver bimetallic nanorods (Au@Ag@AuNRs) have been prepared and used as platforms for SERS detection of specific drugs (namely promethazine, piroxicam, furosemide and diclofenac). The analysis of SERS spectra provided accurate information on the molecular location upon binding and gave some insight into molecule-surface interactions and selectivity in drug detection through SERS.
Collapse
|
22
|
Meng X, Dyer J, Huo Y, Jiang C. Greater SERS Activity of Ligand-Stabilized Gold Nanostars with Sharp Branches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3558-3564. [PMID: 32176502 DOI: 10.1021/acs.langmuir.0c00079] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sharp branches of gold nanostars are critical in tuning the plasmonic properties of these nanostars and maximizing the activities in surface-enhanced Raman scattering (SERS). The interaction between the capping ligands and nanostars plays an essential role in determining the morphology of the branches on the gold nanostars. In this Article, we show that 4-mercapto benzoic acid can effectively control the morphology of branched gold nanostars, and these gold nanostars can be used for the colloidal SERS detection of probe molecules at a nanomolar concentration. We also find that the sharp branches on gold nanostars will provide extra SERS activities as compared to the ones with a rough surface. Using the method of principal component analysis, we can easily distinguish the addition of 4-mercapto pyridine molecules at a concentration of 2 nM. Our work indicated the promising applications of these gold nanostars in colloidal SERS studies for various ultrasensitive chemical analyses.
Collapse
Affiliation(s)
- Xianghua Meng
- Department of Chemistry and Center for Fluorinated Functional Materials, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jacqueline Dyer
- Department of Chemistry and Center for Fluorinated Functional Materials, University of South Dakota, Vermillion, South Dakota 57069, United States
- Department of Chemistry, George Washington University, Washington, D.C. 20052, United States
| | - Yifeng Huo
- Department of Chemistry and Center for Fluorinated Functional Materials, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Chaoyang Jiang
- Department of Chemistry and Center for Fluorinated Functional Materials, University of South Dakota, Vermillion, South Dakota 57069, United States
| |
Collapse
|
23
|
Duan N, Shen M, Qi S, Wang W, Wu S, Wang Z. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118103. [PMID: 32000058 DOI: 10.1016/j.saa.2020.118103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 05/14/2023]
Abstract
An aptamer-based sensitive method was developed here for detection of multiple foodborne pathogens in food matrix by surface-enhanced Raman scattering (SERS) technology. Polydimethylsiloxane (PDMS) film was first prepared and then coated with gold nanoparticles (AuNP) to act as an active substrate for the enhancement of Raman scattering. The as-prepared Au-PDMS film was functionalized with specific pathogen aptamers (Apt) to capture the targets. In addition, aptamers functionalized AuNP integrated with Raman reporters (4-Mercaptobenzoic acid (4-MBA)/Nile blue A (NBA)) were fabricated as pathogen-specific SERS probes. In this scheme, pathogens were first captured by Apt-Au-PDMS film and then bind with SERS probes to allow the formation of a sandwich assay to complete the sensor module for the detection of multiple pathogens. With Vibrio parahaemolyticus and Salmonella typhimurium as model targets, this protocol can selectively detect 18 cfu/mL and 27 cfu/mL, respectively. Furthermore, this platform can be successfully applied to detect pathogens in seafood samples with recoveries ranging from 82.9% to 95.1%.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China
| | - Mofei Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenyue Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, China.
| |
Collapse
|
24
|
Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. Biosens Bioelectron 2020; 152:112013. [DOI: 10.1016/j.bios.2020.112013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
|
25
|
Jiao A, Zhang H, Xu L, Tian Y, Liu X, Chen M, Chen F. Core-shell Au@Ag nanodendrites supported on TiO 2 nanowires for blue laser beam-excited SERS-based pH sensing. OPTICS EXPRESS 2019; 27:23981-23995. [PMID: 31510294 DOI: 10.1364/oe.27.023981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The blue laser beam-excited surface-enhanced Raman scattering (SERS)-based pH sensing holds great promise for avoiding undesired thermal heating effect on some special temperature-vulnerable molecules, as compared to the vast majority studies by exciting in the red or near-infrared (NIR). Herein, we report an ingenious approach to support core-shell Au@Ag nanodendrites (NDs) on TiO2 nanowires, which can possess enhanced SERS activity under 473 nm laser excitation, owing to the improved charge-transfer effect on modified TiO2 support by inserting plasmonic Au@Ag. By using pH-indicating 4-mercaptobenzoic acid (4-MBA), the obtained TiO2/Au@Ag NDs can not only exhibit high sensitive linear-responses of pH changes ranging from pH 4.0 to 9.0 in different solutions (deionized water, NaCl, CaCl2, and MgCl2) but also provide excellent temperature stability under 4°C, 25°C and 37°C temperatures as well as good time stability after storage for 10 days. The established SERS-pH sensing by using shorter wavelength laser excitation is highly desirable for understanding physiological process in temperature-vulnerable microenvironment.
Collapse
|
26
|
Shen M, Duan N, Wu S, Zou Y, Wang Z. Polydimethylsiloxane Gold Nanoparticle Composite Film as Structure for Aptamer-Based Detection of Vibrio parahaemolyticus by Surface-Enhanced Raman Spectroscopy. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1389-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Guo Y, Yu J, Li C, Li Z, Pan J, Liu A, Man B, Wu T, Xiu X, Zhang C. SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles. OPTICS EXPRESS 2018; 26:21784-21796. [PMID: 30130880 DOI: 10.1364/oe.26.021784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Various flexible SERS sensors have attracted widespread concern in performing the direct identification of the analytes adsorbed on arbitrary surfaces. Here, a sample method was proposed to integrate plasmonic nanoparticles into polydimethylsiloxane (PDMS) to fabricate flexible substrate for the decoration of silver nanoparticles (AgNPs). The flexible SERS sensor based on AgNPs/AgNPs-PDMS offers highly sensitive Raman detection with enhancement factor up to 8.3 × 109, which can be attributed to the integrative effects from both the increase of the light absorption of the embedded AgNPs in PDMS substrate and the EM enhancement from the adjacent top-top, bottom-bottom and top-bottom AgNPs. After undergoing the cyclic mechanical deformation, the SERS substrate still maintains high mechanical stability and stable SERS signals. However, upon stretching the flexible substrate, there was an amusing phenomenon that SERS signals can be highly increased, which results from that the reduction of lateral nanogaps between top and bottom of the PDMS boundary strengthens the trigger of the plasmon coupling as demonstrated by the simulated result. This result reveals that the tuning and the coupling of the electromagnetic fields can be effectively controlled by the macroscopic mechanical solicitation. That will have an important significance for practical applications in strain-dependent sensors and detectors.
Collapse
|
28
|
Yao Y, Ji J, Zhang H, Zhang K, Liu B, Yang P. Three-Dimensional Plasmonic Trap Array for Ultrasensitive Surface-Enhanced Raman Scattering Analysis of Single Cells. Anal Chem 2018; 90:10394-10399. [PMID: 30075082 DOI: 10.1021/acs.analchem.8b02252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuanyuan Yao
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Ji Ji
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Hongding Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Kun Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Pengyuan Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
29
|
Yang C, Xu Y, Wang M, Li T, Huo Y, Yang C, Man B. Multifunctional paper strip based on GO-veiled Ag nanoparticles with highly SERS sensitive and deliverable properties for high-performance molecular detection. OPTICS EXPRESS 2018; 26:10023-10037. [PMID: 29715945 DOI: 10.1364/oe.26.010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of paper-based SERS substrates that can allow multi-component detection in real-word scenarios is of great value for applications in molecule detection under complex conditions. Here, a multifunctional SERS-based paper sensing substrate has been developed through the uniform patterning of high-density arrays of GO-isolated Ag nanoparticles on the hydrophilic porous cellulose paper strip (GO@AgNP@paper). Wet-chemical synthesis was used to provide the cover of SERS hot spots on any part of the paper, not just limited surface deposition. In virtue of the inherent ability of paper to deliver analytes by the capillary force, the detection ability of the GO@AgNP@paper substrate was greatly promoted, allowing as low as 10-19M R6G detection from microliter-volume (50 μL) samples. For the components with different polarity, the paper substrate can be used as an all-in-one machine to achieve the integration of separation and high-sensitive detection for ultralow mixture components, which improves the practical application value of SERS-based paper devices.
Collapse
|
30
|
Xi W, Shrestha BK, Haes AJ. Promoting Intra- and Intermolecular Interactions in Surface-Enhanced Raman Scattering. Anal Chem 2017; 90:128-143. [DOI: 10.1021/acs.analchem.7b04225] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjing Xi
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Binaya K. Shrestha
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| |
Collapse
|