1
|
Du W, Tian Y, Feng YA, Cong XW, Tan R, Wang YW, Peng Y. A highly sensitive and colorimetric fluorescent probe for visualizing hydroxylamine in immune cells. Anal Chim Acta 2024; 1318:342941. [PMID: 39067920 DOI: 10.1016/j.aca.2024.342941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Hydroxylamine (HA) is vital industrial raw material and pharmaceutical intermediate. In addition, HA is an important cellular metabolite, which is intermediate in the formation of nitric oxide and nitroxide. However, excessive amounts of HA are toxic to both animals and plants. Conventional methods for the detection of HA are cumbersome and complicated. The detection of HA with fluorescent probes is convenient and sensitive. There are few probes available for the detection of hydroxylamine. Therefore, a fluorescent probe for the sensitive and selective detection of HA was developed in this work. RESULTS A coumarin derivative SWJT-22 was synthesized as a colorimetric fluorescent probe to detect hydroxylamine (HA), with high sensitivity and selectivity. The detection limit of the probe to HA was 0.15 μM, which was lower than most probes of HA. Upon the addition of HA to aqueous solution containing SWJT-22, the color of the solution changed from orange to yellow, and the fluorescence color also changed from orange to green. The reaction mechanism of SWJT-22 to HA was confirmed by 1H NMR titrations, mass spectrometry and round bottom flask experiments. Moreover, SWJT-22 had been fabricated into portable test strips for the detection of HA. SWJT-22 had been successfully used in cellular imaging and could detect both endogenous and exogenous HA in HeLa cells and RAW 264.7 cells. SIGNIFICANCE Due to the physiological role of hydroxylamine in organisms, it is crucial to detect hydroxylamine selectively and sensitively. This work provided a convenient tool for the detection of hydroxylamine, not only to detect endogenous and exogenous HA in cells, but also made into portable test strips. The HA fluorescent probe SWJT-22 is expected to promote the study of HA in physiological processes.
Collapse
Affiliation(s)
- Wei Du
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Yang Tian
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Yu-An Feng
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Xiao-Wei Cong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rui Tan
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Ya-Wen Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Yu Peng
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| |
Collapse
|
2
|
Du M, Jiang H, Song M, Zhang Y, Lv H, Zhao S, Du H, Dong Z. A phenothiazine-based ratiometric fluorescence probe for the detection of hydroxylamine in real water and living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4843-4855. [PMID: 38967499 DOI: 10.1039/d4ay00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
In this study, a phenothiazine-based ratiometric fluorescent probe PCHO was developed for highly sensitive and specific detection of hydroxylamine (HA). In the presence of HA, the aldehyde group on the PCHO molecule underwent a specific nucleophilic addition with HA to form an oxime group, accompanied by significant changes in fluorescence from green to blue. This detection mechanism was well supported by 1H NMR titration, HRMS and DFT calculations. The probe PCHO exhibited high sensitivity for HA detection (LOD was 0.19 μM) with a rapid response time (1 min), high selectivity and strong anti-interference performance. Surprisingly, the probe PCHO could selectively distinguish HA from its similar competing agents such as hydrazine and amines. Moreover, paper strips loaded with PCHO were prepared and combined with a smartphone to achieve point-of-care and visual detection of HA. The probe PCHO was further applied for the detection of HA in real water samples, achieving a recovery rate of 98.90% to 104.86% and an RSD of 0.86% to 2.44%, confirming the accuracy and reliability of the method. Additionally, the probe PCHO was used for imaging analysis of HA in living cells, providing a powerful visualization tool for exploring the physiological functions of HA in vivo.
Collapse
Affiliation(s)
- Man Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Haohua Jiang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Meimei Song
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Yue Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Haijun Lv
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Shuchun Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Hongxia Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Zhipeng Dong
- Hebei Lansheng Bio-Tech Co., Ltd, Shijiazhuang, 052263, China.
| |
Collapse
|
3
|
Kumar V, Kim H, Pandey B, James TD, Yoon J, Anslyn EV. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem Soc Rev 2023; 52:663-704. [PMID: 36546880 DOI: 10.1039/d2cs00651k] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical warfare agents (CWAs) are among the most prominent threats to the human population, our peace, and social stability. Therefore, their detection and quantification are of utmost importance to ensure the security and protection of mankind. In recent years, significant developments have been made in supramolecular chemistry, analytical chemistry, and molecular sensors, which have improved our capability to detect CWAs. Fluorescent and colorimetric chemosensors are attractive tools that allow the selective, sensitive, cheap, portable, and real-time analysis of the potential presence of CWAs, where suitable combinations of selective recognition and transduction can be integrated. In this review, we provide a detailed discussion on recently reported molecular sensors with a specific focus on the sensing of each class of CWAs such as nerve agents, blister agents, blood agents, and other toxicants. We will also discuss the current technology used by military forces, and these discussions will include the type of instrumentation and established protocols. Finally, we will conclude this review with our outlook on the limitations and challenges in the area and summarize the potential of promising avenues for this field.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Bipin Pandey
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| |
Collapse
|
4
|
Wen L, Ma X, Yang J, Jiang M, Peng C, Ma Z, Yu H, Li Y. A New Ratiometric Design Strategy Based on Modulation of π-Conjugation Unit for Developing Fluorescent Probe and Imaging of Cellular Peroxynitrite. Anal Chem 2022; 94:4763-4769. [PMID: 35271267 DOI: 10.1021/acs.analchem.1c05447] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ratiometric fluorescent probes could effectively offset the changes of the autofluorescence and compartmental localization. FRET, ICT, etc. are the common strategies to design probes for biosensing, but these strategies have some deficiencies. Here, we proposed a new design strategy based on π-conjugation modulation, giving two different emission bands in the absence and presence of the target. The new fluorescence probe named Rhod-DCM-B was rationally designed and synthesized, which displayed a fluorescence emission peak at 670 nm because the electron cloud focuses on the conjugated DCM unit. With the addition of ONOO-, the fluorescence emission at 570 nm increased, accompanied by the decrease of fluorescence emission at 670 nm, showing a ratiometric signal change attributed to the opened spirane structure making the electron cloud concentrated on the xanthene core. The mechanism is well confirmed by MS and DFT calculations. Rhod-DCM-B exhibited outstanding sensitivity and excellent selectivity toward ONOO-. Moreover, Rhod-DCM-B was effectively employed to determine endogenous and exogenous ONOO- in living cells. As a marker for inflammation and drug-induced liver injury (DILI) process, ONOO- in vivo was successfully monitored by Rhod-DCM-B and presented a dramatic ratiometric response.
Collapse
Affiliation(s)
- Lei Wen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xinyu Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jing Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Minmin Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Chao Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhongyun Ma
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Huan Yu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yinhui Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| |
Collapse
|
5
|
Shao C, Wang Y, Jin G. Design, synthesis and biological activity of bis-sulfonyl-BODIPY probes for tumor cell imaging. Bioorg Med Chem Lett 2021; 49:128292. [PMID: 34332038 DOI: 10.1016/j.bmcl.2021.128292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
In recent years, BODIPY derivatives have become one of the research hotspots in the field of bioprobes, but most of them have the problems of poor hydrophilicity, low biocompatibility and no targeting. In this paper, novel ethylenediamine bridging bis-sulfonyl-BODIPY fluorescent probes were successfully designed and synthesized to solve these problems; What's more, the cytotoxicity analysis, cell imaging, in vivo imaging and apoptosis experiments were carried out. Ethylenediamine bridges and oxygen-rich sulfonyl groups made such probes had certain hydrophilicity, so they could be dissolved in dimethylsulfoxide and methanol. The IC50 value of compound 9 in HCT-116 cells was 93.12 ± 6.33 µM, and in HeLa cells was 89.09 ± 11.84 µM, which indicating that the probe had certain inhibitory effect on cancer cells. The excellent biocompatibility and potential tumor targeting properties of the compound were clearly observed in cell and mice imaging. This study is of great significance for the rational design of novel targeted BODIPY probes with good hydrophilicity and biocompatibility.
Collapse
Affiliation(s)
- Chen Shao
- Affiliated Hospital of Jiangsu University, Zhenjiang 212013, PR China
| | - Yuling Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
6
|
|
7
|
Ayaz S, Dilgin Y, Apak R. Flow injection amperometric sensing of hydroxylamine at a Cu( ii)–neocuproine-functionalized multiwalled carbon nanotube/screen printed carbon electrode. NEW J CHEM 2021. [DOI: 10.1039/d1nj00824b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the electrocatalytic oxidation mechanism of NH2OH at modified electrode, firstly NH2OH reacted with [Cu(Ncp)2]2+ and oxidized to N2O. The formed [Cu(Ncp)2]+ was reoxidized by giving electrons to electrode resulting in enhancement of anodic current.
Collapse
Affiliation(s)
- Selen Ayaz
- Çanakkale Onsekiz Mart University
- Faculty of Science and Arts
- Department of Chemistry
- Turkey
| | - Yusuf Dilgin
- Çanakkale Onsekiz Mart University
- Faculty of Science and Arts
- Department of Chemistry
- Turkey
| | - Reşat Apak
- Istanbul University-Cerrahpasa
- Faculty of Engineering
- Department of Chemistry
- 34320 Istanbul
- Turkey
| |
Collapse
|
8
|
Weber M, Han HH, Li BH, Odyniec ML, Jarman CEF, Zang Y, Bull SD, Mackenzie AB, Sedgwick AC, Li J, He XP, James TD. Pinkment: a synthetic platform for the development of fluorescent probes for diagnostic and theranostic applications. Chem Sci 2020; 11:8567-8571. [PMID: 34123116 PMCID: PMC8163375 DOI: 10.1039/d0sc02438d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reaction-based fluorescent-probes have proven successful for the visualisation of biological species in various cellular processes. Unfortunately, in order to tailor the design of a fluorescent probe to a specific application (i.e. organelle targeting, material and theranostic applications) often requires extensive synthetic efforts and the synthetic screening of a range of fluorophores to match the required synthetic needs. In this work, we have identified Pinkment-OH as a unique “plug-and-play” synthetic platform that can be used to develop a range of ONOO− responsive fluorescent probes for a variety of applications. These include theranostic-based applications and potential material-based/bioconjugation applications. The as prepared probes displayed an excellent sensitivity and selectivity for ONOO− over other ROS. In vitro studies using HeLa cells and RAW 264.7 macrophages demonstrated their ability to detect exogenously and endogenously produced ONOO−. Evaluation in an LPS-induced inflammation mouse model illustrated the ability to monitor ONOO− production in acute inflammation. Lastly, theranostic-based probes enabled the simultaneous evaluation of indomethacin-based therapeutic effects combined with the visualisation of an inflammation biomarker in RAW 264.7 cells. Pinkment, a resorufin based ONOO− selective and sensitive ‘plug and play’ fluorescence-based platform for in vitro and in vivo use, enables facile functionalisation for various imaging and theranostic applications.![]()
Collapse
Affiliation(s)
- Maria Weber
- Department of Chemistry, University of Bath Bath BA2 7AY UK .,Centre for Doctoral Training, Centre for Sustainable & Circular Technologies, University of Bath Bath BA2 7AY UK
| | - Hai-Hao Han
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China .,Key Laboratory for Advanced Materials & Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 PR China
| | - Bo-Han Li
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China .,University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 PR China
| | | | | | - Yi Zang
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China
| | - Steven D Bull
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Amanda B Mackenzie
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK.,Centre for Therapeutic Innovation, University of Bath Bath BA2 7AY UK
| | - Adam C Sedgwick
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Jia Li
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China .,University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 PR China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 PR China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| |
Collapse
|
9
|
Rana P, Panda L, Murmu N, Bag BP, Sahu SN. Fluorometric sensing of hydroxylamine in an aqueous medium utilizing a diphenyl imidazole-based probe. Org Biomol Chem 2020; 18:5963-5971. [PMID: 32697244 DOI: 10.1039/d0ob00608d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The detection of hydroxylamine in an aqueous medium is challenging due to its very similar chemical reactivity to its nearest competitors such as hydrazine hydrate and primary amines. Moreover, the detection of hydroxylamine at neutral pH adds further complexity to the sensing phenomenon due to its poor reactivity in a neutral aqueous medium. In this work, we have presented a diphenyl imidazole benzaldehyde (DIB) probe which demonstrates the detection of hydroxylamine (HA) in micromolar concentrations with high selectivity in 5% DMSO phosphate buffer solution at pH 7.4 via a fluorescence "turn-on" signal. The interaction of hydroxylamine with the probe has been comprehensively studied by using fluorescence spectroscopy, proton NMR, FTIR, ESI-mass spectrometry and DLS measurements. The experimental results were further corroborated with the DFT studies. These results could pave the way toward the development of molecular indicators for hydroxylamine in chemical and biological platforms.
Collapse
Affiliation(s)
- Punam Rana
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla-768 019, Odisha, India.
| | - Lipsarani Panda
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla-768 019, Odisha, India.
| | - Narayan Murmu
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla-768 019, Odisha, India.
| | - Bhawani Prasad Bag
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla-768 019, Odisha, India
| | - Satya Narayan Sahu
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla-768 019, Odisha, India.
| |
Collapse
|
10
|
Liu H, Ning J, Song G, Sun X, Su F, Li P, Tian Y. Tricolor dual sensor for ratiometrically analyzing potassium ions and dissolved oxygen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118155. [PMID: 32088531 DOI: 10.1016/j.saa.2020.118155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
A potassium ion‑oxygen (K+-O2) dual fluorescent sensing film was developed. The film contains three probes, which are K+ probe (KS), O2 probe (OS), and reference probe (RP) in a polymer film composed of poly(ethylene glycol) methyl ether methacrylate (PEGMA), poly(ethylene glycol) dimethacrylate (PEGDMA) and methacrylic acid (MAA). The RP showed blue emission, the KS exhibited green emission, and the OS showed red emission. The emission peaks of three probes do not interfere with each other, which enable the sensing film to be used for ratiometrically and quantitatively detecting the concentrations of K+ and dissolved oxygen (DO). The sensing films showed high sensitivity and selectivity to potassium ions over other metal ions and also good sensitivity for DO from deoxygenated to oxygenated conditions. The sensing film was demonstrated to be capable of analyzing K+ and DO concentrations with experimental errors smaller than ±8.5% in aqueous solutions, showing the potential applications of the sensing films.
Collapse
Affiliation(s)
- Hongtian Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin 150001, China
| | - Juewei Ning
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin 150001, China
| | - Guangjie Song
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China
| | - Xiangzhong Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| | - Pengfei Li
- Department of Chemistry, College of Science, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
11
|
Multifunctional properties of bio-supramolecular gel with their structural transformation and its applications. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Wu L, Sedgwick AC, Sun X, Bull SD, He XP, James TD. Reaction-Based Fluorescent Probes for the Detection and Imaging of Reactive Oxygen, Nitrogen, and Sulfur Species. Acc Chem Res 2019; 52:2582-2597. [PMID: 31460742 PMCID: PMC7007013 DOI: 10.1021/acs.accounts.9b00302] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 12/26/2022]
Abstract
This Account describes a range of strategies for the development of fluorescent probes for detecting reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive (redox-active) sulfur species (RSS). Many ROS/RNS have been implicated in pathological processes such as Alzheimer's disease, cancer, diabetes mellitus, cardiovascular disease, and aging, while many RSS play important roles in maintaining redox homeostasis, serving as antioxidants and acting as free radical scavengers. Fluorescence-based systems have emerged as one of the best ways to monitor the concentrations and locations of these often very short lived species. Because of the high levels of sensitivity and in particular their ability to be used for temporal and spatial sampling for in vivo imaging applications. As a direct result, there has been a huge surge in the development of fluorescent probes for sensitive and selective detection of ROS, RNS, and RSS within cellular environments. However, cellular environments are extremely complex, often with more than one species involved in a given biochemical process. As a result, there has been a rise in the development of dual-responsive fluorescent probes (AND-logic probes) that can monitor the presence of more than one species in a biological environment. Our aim with this Account is to introduce the fluorescent probes that we have developed for in vitro and in vivo measurement of ROS, RNS, and RSS. Fluorescence-based sensing mechanisms used in the construction of the probes include photoinduced electron transfer, intramolecular charge transfer, excited-state intramolecular proton transfer (ESIPT), and fluorescence resonance energy transfer. In particular, probes for hydrogen peroxide, hypochlorous acid, superoxide, peroxynitrite, glutathione, cysteine, homocysteine, and hydrogen sulfide are discussed. In addition, we describe the development of AND-logic-based systems capable of detecting two species, such as peroxynitrite and glutathione. One of the most interesting advances contained in this Account is our extension of indicator displacement assays (IDAs) to reaction-based indicator displacement assays (RIAs). In an IDA system, an indicator is allowed to bind reversibly to a receptor. Then a competitive analyte is introduced into the system, resulting in displacement of the indicator from the host, which in turn modulates the optical signal. With an RIA-based system, the indicator is cleaved from a preformed receptor-indicator complex rather than being displaced by the analyte. Nevertheless, without a doubt the most significant result contained in this Account is the use of an ESIPT-based probe for the simultaneous sensing of fibrous proteins/peptides AND environmental ROS/RNS.
Collapse
Affiliation(s)
- Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Adam C. Sedgwick
- University
of Texas at Austin, 105 East 24th Street A5300, Austin, Texas 78712-1224, United States
| | - Xiaolong Sun
- Key
Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Steven D. Bull
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
13
|
Cetinkaya Y, Yurt MNZ, Avni Oktem H, Yilmaz MD. A Monostyryl Boradiazaindacene (BODIPY)-based lanthanide-free colorimetric and fluorogenic probe for sequential sensing of copper (II) ions and dipicolinic acid as a biomarker of bacterial endospores. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:299-304. [PMID: 31173979 DOI: 10.1016/j.jhazmat.2019.05.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/18/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
A new catechol-substituted monostyryl boradiazaindacene (BODIPY)-based lanthanide-free colorimetric and fluorogenic probe was developed for the sequential detection of Cu2+ ions and dipicolinic acid (DPA), a distinctive biomarker of bacterial endospores, with high sensitivity and selectivity. In the presence of Cu2+ ions, the blue solution of the probe changes to cyan and the fluorescence is quenched, however, the cyan color changes to blue immediately and the fluorescence is restored on contact with DPA, resulting from competitive binding of DPA that interact with Cu2+ ions. A practical application by using Geobacillus stearothermophilus spores was further studied and as low as 1.0 x 105 spores were detected.
Collapse
Affiliation(s)
- Yagmur Cetinkaya
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Mediha Nur Zafer Yurt
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, 42080 Konya, Turkey; Institute of Science, Biotechnology Graduate Program, Konya Food and Agriculture University, Konya, 42080, Turkey
| | - Huseyin Avni Oktem
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey; Nanobiz R&D Ltd., Gallium Bld. No.18, METU Science Park, Ankara, Turkey
| | - M Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Turkey; Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, 42080 Konya, Turkey; Institute of Science, Biotechnology Graduate Program, Konya Food and Agriculture University, Konya, 42080, Turkey.
| |
Collapse
|
14
|
Dong B, Tian M, Kong X, Song W, Lu Y, Lin W. Förster Resonance Energy Transfer-Based Fluorescent Probe for the Selective Imaging of Hydroxylamine in Living Cells. Anal Chem 2019; 91:11397-11402. [PMID: 31402659 DOI: 10.1021/acs.analchem.9b02737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydroxylamine (HA) is an important product of cell metabolism and plays a significant role in many biological processes, and therefore, real-time imaging of HA is of great importance for the in-depth study of its physiological and pathological functions. However, a HA-specific fluorescent probe is currently lacking primarily because the highly selective HA-responsive site is undeveloped. To address this critical issue, we present a HA-specific FRET-based fluorescent probe (RhChr) for the selective detection of HA in living systems. Inspired by aza-Michael addition, the unsaturated system appended with an iminium ion was employed as the new HA-specific response site. In response to HA, RhChr provided a ratiometric signal output with excellent selectivity toward HA over biothiols and ammonia. We have demonstrated that RhChr could be applied for the ratiometric imaging of endogenous HA in living cells and the evaluation of xanthine oxidase (XOD) activity in living organs.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Minggang Tian
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Wenhui Song
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Yaru Lu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| |
Collapse
|
15
|
Song Q, Chen C, Yu W, Yang L, Zhang K, Zheng J, Du X, Chen H. In situ formation of DNA-templated copper nanoparticles as fluorescent indicator for hydroxylamine detection. RSC Adv 2019; 9:25976-25980. [PMID: 35531001 PMCID: PMC9070379 DOI: 10.1039/c9ra04476k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, we develop a facile method for selective and sensitive detection of hydroxylamine (HA) based on the in situ formation of DNA templated copper nanoparticles (DNA-CuNPs) as fluorescent probes. It is firstly found that HA as a reducing agent can play a key role in the in situ formation of fluorescent DNA-CuNPs. This special optical property of DNA-CuNPs with (λ ex = 340 nm, λ em = 588 nm) with a mega-Stokes shifting (248 nm) makes it applicable for the turn-on detection of HA. In addition, this fluorescent method has several advantages such as being simple, rapid, and environmentally friendly, because it avoids the traditional organic dye molecules and complex procedures. Under optimized conditions, this platform achieves a fluorescent response for HA with a detection limit of 0.022 mM. Especially, successful detection capability in tap waters and ground waters exhibits its potential to be general method.
Collapse
Affiliation(s)
- Quanwei Song
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Changzhao Chen
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Wenhe Yu
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Lixia Yang
- Beijing Key Laboratory of Metal Material Characterization, Central Iron and Steel Research Institute Beijing 100081 China
| | - Kunfeng Zhang
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Jin Zheng
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Xianyuan Du
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| | - Hongkun Chen
- State Key Laboratory of Petroleum Pollution Control Beijing 102206 China +86-10-80169547
- CNPC Research Institute of Safety and Environment Technology Beijing 102206 China
| |
Collapse
|
16
|
|
17
|
Ge H, Cortezon-Tamarit F, Wang HC, Sedgwick AC, Arrowsmith RL, Mirabello V, Botchway SW, James TD, Pascu SI. Multiphoton fluorescence lifetime imaging microscopy (FLIM) and super-resolution fluorescence imaging with a supramolecular biopolymer for the controlled tagging of polysaccharides. NANOSCALE 2019; 11:9498-9507. [PMID: 31046042 DOI: 10.1039/c8nr10344e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new supramolecular polysaccharide complex, comprising a functionalised coumarin tag featuring a boronic acid and β-d-glucan (a natural product extract from barley, Hordeum Vulgare) was assembled based on the ability of the boronate motif to specifically recognise and bind to 1,2- or 1,3-diols in water. The complexation ratio of the fluorophore : biopolymer strand was determined from fluorescence titration experiments in aqueous environments and binding isotherms best described this interaction using a 2 : 1 model with estimated association constants of K2:1a1 = 5.0 × 104 M-1 and K2:1a2 = 3.3 × 1011 M-1. The resulting hybrid (denoted 5@β-d-glucan) was evaluated for its cellular uptake as an intact functional biopolymer and its distribution compared to that of the pinacol-protected coumarin boronic acid derivative using two-photon fluorescence lifetime imaging microscopy (FLIM) in living cells. The new fluorescent β-d-glucan conjugate has a high kinetic stability in aqueous environments with respect to the formation of the free boronic acid derivative compound 5 and retains fluorescence emissive properties both in solution and in living cells, as shown by two-photon fluorescence spectroscopy coupled with time-correlated single photon counting (TCSPC). Super-resolution fluorescence imaging using Airyscan detection as well as TM AFM and Raman spectroscopy investigations confirmed the formation of fluorescent and nano-dimensional aggregates of up to 20 nm dimensions which self-assemble on several different inert surfaces, such as borosilicate glass and mica surfaces, and these aggregates can also be observed within living cells with optical imaging techniques. The cytoplasmic distribution of the 5@β-d-glucan complex was demonstrated in several different cancer cell lines (HeLa and PC-3) as well as in healthy cells (J774.2 macrophages and FEK-4). Both new compounds (pinacol protected boronated coumarin) 5-P and its complex hybrid 5@β-d-glucan successfully penetrate cellular membranes with the minimum morphological alterations to cells and distribute evenly in the cytoplasm. The glucan biopolymer retains its activity towards macrophages in the presence of the coumarin tag functionality, demonstrating the potential of this natural β-d-glucan to act as a functional self-assembled theranostic scaffold capable of mediating the delivery of anchored small organic molecules with imaging and drug delivery applications.
Collapse
Affiliation(s)
- Haobo Ge
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | - Hui-Chen Wang
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, University of Texas at Austin, 105E, 24th Street, Austin, TX 78712-1224, USA
| | - Rory L Arrowsmith
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Vincenzo Mirabello
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Stanley W Botchway
- Central Laser Facility, STFC Rutherford Appleton Laboratory, and Research Complex at Harwell, Harwell Campus, Didcot, OX11 0QX, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
18
|
Gwynne L, Sedgwick AC, Gardiner JE, Williams GT, Kim G, Lowe JP, Maillard JY, Jenkins ATA, Bull SD, Sessler JL, Yoon J, James TD. Long Wavelength TCF-Based Fluorescent Probe for the Detection of Alkaline Phosphatase in Live Cells. Front Chem 2019; 7:255. [PMID: 31119120 PMCID: PMC6508040 DOI: 10.3389/fchem.2019.00255] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
A long wavelength TCF-based fluorescent probe (TCF-ALP) was developed for the detection of alkaline phosphatase (ALP). ALP-mediated hydrolysis of the phosphate group of TCF-ALP resulted in a significant fluorescence "turn on" (58-fold), which was accompanied by a colorimetric response from yellow to purple. TCF-ALP was cell-permeable, which allowed it to be used to image ALP in HeLa cells. Upon addition of bone morphogenic protein 2, TCF-ALP proved capable of imaging endogenously stimulated ALP in myogenic murine C2C12 cells. Overall, TCF-ALP offers promise as an effective fluorescent/colorimetric probe for evaluating phosphatase activity in clinical assays or live cell systems.
Collapse
Affiliation(s)
- Lauren Gwynne
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Adam C. Sedgwick
- Department of Chemistry, University of Texas at Austin, Austin, TX, United States
| | | | | | - Gyoungmi Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, South Korea
| | - John P. Lowe
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Steven D. Bull
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Jonathan L. Sessler
- Department of Chemistry, University of Texas at Austin, Austin, TX, United States
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, South Korea
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
19
|
Cappello D, Therien DAB, Staroverov VN, Lagugné-Labarthet F, Gilroy JB. Optoelectronic, Aggregation, and Redox Properties of Double-Rotor Boron Difluoride Hydrazone Dyes. Chemistry 2019; 25:5994-6006. [PMID: 30821860 DOI: 10.1002/chem.201900383] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Indexed: 01/11/2023]
Abstract
We develop the chemistry of boron difluoride hydrazone dyes (BODIHYs) bearing two aryl substituents and explore their properties. The low-energy absorption bands (λmax =427-464 nm) of these dyes depend on the nature of the N-aryl groups appended to the BODIHY framework. Electron-donating and extended π-conjugated groups cause a redshift, whereas electron-withdrawing groups result in a blueshift. The title compounds were weakly photoluminescent in solution and strongly photoluminescent as thin films (λPL =525-578 nm) with quantum yields of up to 18 % and lifetimes of 1.1-1.7 ns, consistent with the dominant radiative decay through fluorescence. Addition of water to THF solutions of the BODIHYs studied causes molecular aggregation which restricts intramolecular motion and thereby enhances photoluminescence. The observed photoluminescence of BODIHY thin films is likely facilitated by a similar molecular packing effect. Finally, cyclic voltammetry studies confirmed that BODIHY derivatives bearing para-substituted N-aryl groups could be reversibly oxidized (Eox1 =0.62-1.02 V vs. Fc/Fc+ ) to their radical cation forms. Chemical oxidation studies confirmed that para-substituents at the N-aryl groups are required to circumvent radical decomposition pathways. Our findings provide new opportunities and guiding principles for the design of sought-after multifunctional boron difluoride complexes that are photoluminescent in the solid state.
Collapse
Affiliation(s)
- Daniela Cappello
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Denis A B Therien
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Viktor N Staroverov
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
20
|
Bi J, Ji X, Guo M, Guo H, Yang F. A fluorescent sensor for thymine based on bis-BODIPY containing butanediamido bridges. NEW J CHEM 2019. [DOI: 10.1039/c9nj00406h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent sensor for thymine based on bis-BODIPY containing butanediamido bridges was prepared and applied in the sensitive detection of thymine in living cell imaging.
Collapse
Affiliation(s)
- Jiahui Bi
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Xiaoyu Ji
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Meiyan Guo
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Hongyu Guo
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| | - Fafu Yang
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| |
Collapse
|
21
|
Lin M, Huang J, Zeng F, Wu S. A Fluorescent Probe with Aggregation‐Induced Emission for Detecting Alkaline Phosphatase and Cell Imaging. Chem Asian J 2018; 14:802-808. [DOI: 10.1002/asia.201801540] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/13/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Mingang Lin
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Jing Huang
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
22
|
Sedgwick AC, Dou WT, Jiao JB, Wu L, Williams GT, Jenkins ATA, Bull SD, Sessler JL, He XP, James TD. An ESIPT Probe for the Ratiometric Imaging of Peroxynitrite Facilitated by Binding to Aβ-Aggregates. J Am Chem Soc 2018; 140:14267-14271. [PMID: 30277762 DOI: 10.1021/jacs.8b08457] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of 3-hydroxyflavone (3-HF) ESIPT (excited-state intramolecular proton transfer) boronate-based fluorescent probes have been developed for the detection of peroxynitrite (ONOO-). The dyes are environmentally sensitive, and each probe exhibited a ratiometric response toward ONOO- in a micellar environment. The probes were used to image different aggregation states of amyloid-β (Aβ) in the presence of ONOO-. The 3-HF-OMe probe was found to produce a ratiometric response toward ONOO- when bound to Aβ aggregates, resulting in a novel host-guest ensemble, which adds insight into the development of other ESIPT-based probes for the simultaneous sensing of fibrous proteins/peptides and environmental ROS/RNS.
Collapse
Affiliation(s)
- Adam C Sedgwick
- Department of Chemistry , University of Bath , Bath BA2 7AY , U.K.,Department of Chemistry . University of Texas at Austin , 105 East 24th Street A5300 , Austin , Texas 78712-1224 , United States
| | - Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , China
| | - Jin-Biao Jiao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , China
| | - Luling Wu
- Department of Chemistry , University of Bath , Bath BA2 7AY , U.K
| | | | - A Toby A Jenkins
- Department of Chemistry , University of Bath , Bath BA2 7AY , U.K
| | - Steven D Bull
- Department of Chemistry , University of Bath , Bath BA2 7AY , U.K
| | - Jonathan L Sessler
- Department of Chemistry . University of Texas at Austin , 105 East 24th Street A5300 , Austin , Texas 78712-1224 , United States
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , China
| | - Tony D James
- Department of Chemistry , University of Bath , Bath BA2 7AY , U.K.,Department of Materials and Life Sciences, Faculty of Science and Technology , Sophia University , 7-1 Kioi-cho , Chiyoda-ku, Tokyo 102-8554 , Japan
| |
Collapse
|
23
|
Xu L, Tian H, Yao H, Shi T. New kinetic and mechanistic findings in the oxidation of hydroxylamine by Cerium(IV) in perchloric acid media. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Liyao Xu
- College of Chemistry and Environmental Science; and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics; Hebei University; Baoding People's Republic of China
| | - Hongwu Tian
- College of Chemistry and Environmental Science; and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics; Hebei University; Baoding People's Republic of China
| | - Haiping Yao
- College of Chemistry and Environmental Science; and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics; Hebei University; Baoding People's Republic of China
| | - Tiesheng Shi
- College of Chemistry and Environmental Science; and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics; Hebei University; Baoding People's Republic of China
| |
Collapse
|
24
|
Sedgwick AC, Gardiner JE, Kim G, Yevglevskis M, Lloyd MD, Jenkins ATA, Bull SD, Yoon J, James TD. Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols. Chem Commun (Camb) 2018; 54:4786-4789. [PMID: 29683468 PMCID: PMC5944426 DOI: 10.1039/c8cc01661e] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two ‘turn on’ TCF-based fluorescence probes were developed for the detection of biological thiols (TCF-GSH and TCFCl-GSH).
Two ‘turn on’ TCF-based fluorescence probes were developed for the detection of biological thiols (TCF-GSH and TCFCl-GSH). TCF-GSH was shown to have a high sensitivity towards glutathione (GSH) with a 0.28 μM limit of detection. Unfortunately, at higher GSH concentrations the fluorescence intensity of TCF-GSH decreased and toxicity was observed for TCF-GSH in live cells. However, TCFCl-GSH was shown to be able to detect GSH at biologically relevant concentrations with a 0.45 μM limit of detection. No toxicity was found for TCFCl-GSH and a clear ‘turn on’ with good photostability was observed for the exogenous addition of GSH, Cys and HCys. Furthermore, TCFCl-GSH was used to evaluate the effects of drug treatment on the levels of GSH in live cells.
Collapse
Affiliation(s)
- Adam C Sedgwick
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Odyniec ML, Sedgwick AC, Swan AH, Weber M, Tang TMS, Gardiner JE, Zhang M, Jiang YB, Kociok-Kohn G, Elmes RBP, Bull SD, He XP, James TD. 'AND'-based fluorescence scaffold for the detection of ROS/RNS and a second analyte. Chem Commun (Camb) 2018; 54:8466-8469. [PMID: 29999509 DOI: 10.1039/c8cc04316g] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Traditionally, fluorescence probes have focused on the detection of a single biomarker for a specific process. In this work, we set out to develop a number of fluorescence probes that enable the detection of a chosen analyte in the presence of reactive oxygen/nitrogen species (ROS/RNS). These fluorescence probes when activated result in the formation of the highly fluorescent pink dye, resorufin. Therefore, we have labelled these fluorescent probes as 'Pinkments'. Our first 'Pinkment' was shown to detect biologically relevant concentrations of ONOO- and have an excellent selectivity against other ROS/RNS. Pinkment-OH was developed to provide a core unit which could be easily functionalised to produce a range of 'AND' based fluorescence probes for the detection of ROS/RNS and a second analyte. For proof of concept, we synthesised Pinkment-OTBS and Pinkment-OAc. These 'AND'-based probes were successfully shown to detect ROS/RNS and F- or esterase, respectively.
Collapse
Affiliation(s)
- Maria L Odyniec
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lampard EV, Sedgwick AC, Sun X, Filer KL, Hewins SC, Kim G, Yoon J, Bull SD, James TD. Boronate-Based Fluorescence Probes for the Detection of Hydrogen Peroxide. ChemistryOpen 2018; 7:262-265. [PMID: 29531890 PMCID: PMC5838387 DOI: 10.1002/open.201700189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 11/09/2022] Open
Abstract
In this work, we synthesized a series of boronate ester fluorescence probes (E)-4,4,5,5-tetramethyl-2-(4-styrylphenyl)-1,3,2-dioxaborolane (STBPin), (E)-N,N-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)aniline (DSTBPin), (E)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)benzonitrile (CSTBPin), (E)-2-(4-(4-methoxystyryl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (MSTBPin), (E)-N,N-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)naphthalen-1-amine (NDSTBPin), and N,N-dimethyl-4-(2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)oxazol-5-yl)aniline (DAPOX-BPin) for the detection of hydrogen peroxide (H2O2). DSTBPin and MSTBPin displayed an "Off-On" fluorescence response towards H2O2, owing to the loss of the intramolecular charge transfer (ICT) excited state. Whereas, CSTBPin displayed a decrease in fluorescence intensity in the presence of H2O2 owing to the introduction of an ICT excited state. STBPin, on the other hand, produced a small fluorescence decrease, indicating the importance of an electron-withdrawing or electron-donating group in these systems. Unfortunately, the longer wavelength probe, NDSTBPin, displayed a decrease in fluorescence intensity. Oxazole-based probe DAPOX-BPin produced a "turn-on" response. Regrettably, DAPOX-BPin required large concentrations of H2O2 (>3 mm) to produce noticeable changes in fluorescence intensity and, therefore, no change in fluorescence was observed in the cell imaging experiments.
Collapse
Affiliation(s)
| | | | - Xiaolong Sun
- Department of ChemistryThe University of Texas at AustinAustin78712TXUSA
| | | | | | - Gyoungmi Kim
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul120–750Korea
| | - Juyoung Yoon
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul120–750Korea
| | | | - Tony D. James
- Department of ChemistryUniversity of BathBA2 7AYBathUK
| |
Collapse
|
27
|
|
28
|
Wu L, Yang Q, Liu L, Sedgwick AC, Cresswell AJ, Bull SD, Huang C, James TD. ESIPT-based fluorescence probe for the rapid detection of hypochlorite (HOCl/ClO−). Chem Commun (Camb) 2018; 54:8522-8525. [DOI: 10.1039/c8cc03717e] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ESIPT-based fluorescence probes are emerging as an attractive tool for the detection of biologically relevant analytes owing to their unique photophysical properties.
Collapse
Affiliation(s)
- Luling Wu
- Department of Chemistry
- University of Bath
- Bath
- UK
| | - Qingye Yang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Liyuan Liu
- Department of Chemistry
- University of Bath
- Bath
- UK
| | | | | | | | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Tony D. James
- Department of Chemistry
- University of Bath
- Bath
- UK
- Department of Materials and Life Sciences
| |
Collapse
|
29
|
Wu L, Wang Y, Weber M, Liu L, Sedgwick AC, Bull SD, Huang C, James TD. ESIPT-based ratiometric fluorescence probe for the intracellular imaging of peroxynitrite. Chem Commun (Camb) 2018; 54:9953-9956. [DOI: 10.1039/c8cc04919j] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we set out to develop an ER directed ESIPT-based ONOO− ratiometric fluorescent probe (ABAH-LW).
Collapse
Affiliation(s)
- Luling Wu
- Department of Chemistry
- University of Bath
- Bath
- UK
| | - Yang Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Maria Weber
- Department of Chemistry
- University of Bath
- Bath
- UK
| | - Liyuan Liu
- Department of Chemistry
- University of Bath
- Bath
- UK
| | | | | | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Tony D. James
- Department of Chemistry
- University of Bath
- Bath
- UK
- Department of Materials and Life Sciences
| |
Collapse
|