1
|
Xu K, Gao H, Li Y, Jin Y, Zhao R, Huang Y. Synthetic Peptides with Genetic-Codon-Tailored Affinity for Assembling Tetraspanin CD81 at Cell Interfaces and Inhibiting Cancer Metastasis. Angew Chem Int Ed Engl 2024; 63:e202400129. [PMID: 38409630 DOI: 10.1002/anie.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Probing biomolecular interactions at cellular interfaces is crucial for understanding and interfering with life processes. Although affinity binders with site specificity for membrane proteins are unparalleled molecular tools, a high demand remains for novel multi-functional ligands. In this study, a synthetic peptide (APQQ) with tight and specific binding to the untargeted extracellular loop of CD81 evolved from a genetically encoded peptide pool. With tailored affinity, APQQ flexibly accesses, site-specifically binds, and forms a complex with CD81, enabling in-situ tracking of the dynamics and activity of this protein in living cells, which has rarely been explored because of the lack of ligands. Furthermore, APQQ triggers the relocalization of CD81 from diffuse to densely clustered at cell junctions and modulates the interplay of membrane proteins at cellular interfaces. Motivated by these, efficient suppression of cancer cell migration, and inhibition of breast cancer metastasis were achieved in vivo.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Creeden JF, Sevier J, Zhang JT, Lapitsky Y, Brunicardi FC, Jin G, Nemunaitis J, Liu JY, Kalinoski A, Rao D, Liu SH. Smart exosomes enhance PDAC targeted therapy. J Control Release 2024; 368:413-429. [PMID: 38431093 DOI: 10.1016/j.jconrel.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Exosomes continue to attract interest as a promising nanocarrier drug delivery technology. They are naturally derived nanoscale extracellular vesicles with innate properties well suited to shuttle proteins, lipids, and nucleic acids between cells. Nonetheless, their clinical utility is currently limited by several major challenges, such as their inability to target tumor cells and a high proportion of clearance by the mononuclear phagocyte system (MPS) of the liver and spleen. To overcome these limitations, we developed "Smart Exosomes" that co-display RGD and CD47p110-130 through CD9 engineering (ExoSmart). The resultant ExoSmart demonstrates enhanced binding capacity to αvβ3 on pancreatic ductal adenocarcinoma (PDAC) cells, resulting in amplified cellular uptake in in vitro and in vivo models and increased chemotherapeutic efficacies. Simultaneously, ExoSmart significantly reduced liver and spleen clearance of exosomes by inhibiting macrophage phagocytosis via CD47p110-130 interaction with signal regulatory proteins (SIRPα) on macrophages. These studies demonstrate that an engineered exosome drug delivery system increases PDAC therapeutic efficacy by enhancing active PDAC targeting and prolonging circulation times, and their findings hold tremendous translational potential for cancer therapy while providing a concrete foundation for future work utilizing novel peptide-engineered exosome strategies.
Collapse
Affiliation(s)
- Justin F Creeden
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Jonathan Sevier
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Yakov Lapitsky
- Department of Chemical Engineering, University of Toledo, Toledo, OH, USA
| | - F Charles Brunicardi
- Department of Surgery, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ge Jin
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Jing-Yuan Liu
- Department of Medicine, University of Toledo, Toledo, OH, USA
| | | | | | - Shi-He Liu
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
3
|
Gao H, Chen J, Huang Y, Zhao R. Advances in targeted tracking and detection of soluble amyloid-β aggregates as a biomarker of Alzheimer's disease. Talanta 2024; 268:125311. [PMID: 37857110 DOI: 10.1016/j.talanta.2023.125311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Misfolding and aggregation of amyloid-β (Aβ) peptides are key hallmarks of Alzheimer's disease (AD). With accumulating evidence suggesting that different Aβ species have varied neurotoxicity and implications in AD development, the discovery of affinity ligands and analytical approaches to selective distinguish, detect, and monitor Aβ becomes an active research area. Remarkable advances have been achieved, which not only promote our understanding of the biophysical chemistry of the protein aggregation during neurodegeneration, but also provide promising tools for early detection of the disease. In view of this, we summarize the recent progress in selective and sensitive approaches for tracking and detection of Aβ species. Specific attentions are given to soluble Aβ oligomers, due to their crucial roles in AD development and occurrence at early stages. The design principle, performance of targeting units, and their cooperative effects with signal reporters for Aβ analysis are discussed. The applications of the novel targeting probes and sensing systems for dynamic monitoring oligomerization, measuring Aβ in biosamples and in vivo imaging in brain are summarized. Finally, the perspective and challenges are discussed regarding the future development of Aβ-targeting analytical tools to explore the unknown field to contribute to the early diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
AIEgen-Peptide Bioprobes for the Imaging of Organelles. BIOSENSORS 2022; 12:bios12080667. [PMID: 36005064 PMCID: PMC9406086 DOI: 10.3390/bios12080667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 01/03/2023]
Abstract
Organelles are important subsystems of cells. The damage and inactivation of organelles are closely related to the occurrence of diseases. Organelles’ functional activity can be observed by fluorescence molecular tools. Nowadays, a series of aggregation-induced emission (AIE) bioprobes with organelles-targeting ability have emerged, showing great potential in visualizing the interactions between probes and different organelles. Among them, AIE luminogen (AIEgen)-based peptide bioprobes have attracted more and more attention from researchers due to their good biocompatibility and photostability and abundant diversity. In this review, we summarize the progress of AIEgen-peptide bioprobes in targeting organelles, including the cell membrane, nucleus, mitochondria, lysosomes and endoplasmic reticulum, in recent years. The structural characteristics and biological applications of these bioprobes are discussed, and the development prospect of this field is forecasted. It is hoped that this review will provide guidance for the development of AIEgen-peptide bioprobes at the organelles level and provide a reference for related biomedical research.
Collapse
|
5
|
Xie F, Li R, Shu W, Zhao L, Wan J. Self-assembly of Peptide dendrimers and their bio-applications in theranostics. Mater Today Bio 2022; 14:100239. [PMID: 35295319 PMCID: PMC8919296 DOI: 10.1016/j.mtbio.2022.100239] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology has brought revolutionized advances in disease diagnosis and therapy. Self-assembled peptide dendrimers own novel physicochemical properties through the synergistic effects of the polypeptide chain, dendrimer and nano-structure, exhibiting great potential in theranostic. This review provides comprehensive insights into various peptide dendrimers for self-assembly. Their nanosize, morphology and composition are presented to understand self-assembly behaviors precisely. We further introduce the emerging theranostic applications based on specific imaging and efficient delivery recently.
Collapse
Affiliation(s)
- Fengjuan Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Liang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| |
Collapse
|
6
|
Xu K, Jin Y, Li Y, Huang Y, Zhao R. Recent Progress of Exosome Isolation and Peptide Recognition-Guided Strategies for Exosome Research. Front Chem 2022; 10:844124. [PMID: 35281563 PMCID: PMC8908031 DOI: 10.3389/fchem.2022.844124] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membrane extracellular vesicles secreted by almost all kinds of cells, which are rich in proteins, lipids, and nucleic acids. As a medium of intercellular communication, exosomes play important roles in biological processes and are closely related to the occurrence, and development of many diseases. The isolation of exosomes and downstream analyses can provide important information to the accurate diagnosis and treatment of diseases. However, exosomes are various in a size range from 30 to 200 nm and exist in complex bio-systems, which provide significant challenges for the isolation and enrichment of exosomes. Different methods have been developed to isolate exosomes, such as the “gold-standard” ultracentrifugation, size-exclusion chromatography, and polymer precipitation. In order to improve the selectivity of isolation, affinity capture strategies based on molecular recognition are becoming attractive. In this review, we introduced the main strategies for exosome isolation and enrichment, and compared their strengths and limitations. Furthermore, combined with the excellent performance of targeted peptides, we summarized the application of peptide recognition in exosome isolation and engineering modification.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yulong Jin, ; Rui Zhao,
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yulong Jin, ; Rui Zhao,
| |
Collapse
|
7
|
Duan C, Hu J, Liu R, Dai J, Duan M, Yuan L, Xia F, Lou X. Spatial Order of Functional Modules Enabling Diverse Intracellular Performance of Fluorescent Probes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Jing‐Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Jun Dai
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| |
Collapse
|
8
|
Zhong H, Yuan C, He J, Yu Y, Jin Y, Huang Y, Zhao R. Engineering Peptide-Functionalized Biomimetic Nanointerfaces for Synergetic Capture of Circulating Tumor Cells in an EpCAM-Independent Manner. Anal Chem 2021; 93:9778-9787. [PMID: 34228920 DOI: 10.1021/acs.analchem.1c01254] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Broad-spectrum detection and long-term monitoring of circulating tumor cells (CTCs) remain challenging due to the extreme rarity, heterogeneity, and dynamic nature of CTCs. Herein, a dual-affinity nanostructured platform was developed for capturing different subpopulations of CTCs and monitoring CTCs during treatment. Stepwise assembly of fibrous scaffolds, a ligand-exchangeable spacer, and a lysosomal protein transmembrane 4 β (LAPTM4B)-targeting peptide creates biomimetic, stimuli-responsive, and multivalent-binding nanointerfaces, which enable harvest of CTCs directly from whole blood with high yield, purity, and viability. The stable overexpression of the target LAPTM4B protein in CTCs and the enhanced peptide-protein binding facilitate the capture of rare CTCs in patients at an early stage, detection of both epithelial-positive and nonepithelial CTCs, and tracking of therapeutic responses. The reversible release of CTCs allows downstream molecular analysis and identification of specific liver cancer genes. The consistency of the information with clinical diagnosis presents the prospect of this platform for early diagnosis, metastasis prediction, and prognosis assessment.
Collapse
Affiliation(s)
- Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwang Yuan
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiayuan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Duan C, Hu JJ, Liu R, Dai J, Duan M, Yuan L, Xia F, Lou X. Spatial Order of Functional Modules Enabling Diverse Intracellular Performance of Fluorescent Probes. Angew Chem Int Ed Engl 2021; 60:18280-18288. [PMID: 34081387 DOI: 10.1002/anie.202106195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 12/15/2022]
Abstract
To overcome a series of challenges in tumor therapy, modular-agent probes (MAPs) comprised of various functional modules have been proposed. Researchers have tried to optimize the MAPs by exploiting the new modules or increasing the numbers of module, while neglecting the configuration of various modules. Here, we focus on the different spatial arrangements of existing modules. By utilizing a tetraphenylethylene (TPE) derivative with stereochemical structure and dual modifiable end-group sites as small molecule scaffold, two MAPs with same modular agents (module T for enhancing the internalization of MAPs by tumor cells and module M for causing mitochondrial dysfunction) but different spatial arrangements (on the one side, TM-AIE, and two sides, T-AIE-M, of the molecule scaffold) are designed. T-AIE-M with larger RGD binding angle performed higher specificity, while TM-AIE characterizing longer α-helix structure displayed superior toxicity.
Collapse
Affiliation(s)
- Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
10
|
Mao X, Hu S, Shang K, Yang G, Yan J, Ma C, Yin J. Construction of biodegradable core cross-linked nanoparticles from near infrared dyes encoded in polyprodrug amphiphiles and investigation of their synergistic anticancer activity. Polym Chem 2021. [DOI: 10.1039/d1py00128k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amphiphilic polyprodrugs with reduction-responsive camptothecin prodrug and photothermal converted IR780 dyes was performed via core cross-linking protocol. The nanoparticles could be served as a nanocarrier and presented severe cytotoxicity to HeLa cells.
Collapse
Affiliation(s)
- Xiaoxu Mao
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Shoukui Hu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Ke Shang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Guangwei Yang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jinhao Yan
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Chao Ma
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| |
Collapse
|
11
|
Mondal A, Hazra A, Chakrabarty J, Bose K JC, Banerjee P. Tandem Detection of Sub-Nano Molar Level CN - and Hg 2+ in Aqueous Medium by a Suitable Molecular Sensor: A Viable Solution for Detection of CN - and Development of the RGB-Based Sensory Device. ACS OMEGA 2020; 5:6576-6587. [PMID: 32258893 PMCID: PMC7114731 DOI: 10.1021/acsomega.9b04311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/09/2020] [Indexed: 05/04/2023]
Abstract
An inimitable urea-based multichannel chemosensor, DTPH [1,5-bis-(2,6-dichloro-4-(trifluoromethyl)phenyl)carbonohydrazide], was examined to be highly proficient to recognize CN- based on the H-bonding interaction between sensor -NH moiety and CN- in aqueous medium with explicit selectivity. In the absorption spectral titration of DTPH, a new peak at higher wavelength was emerged in titrimetric analytical studies of CN- with the zero-order reaction kinetics affirming the substantial sensor-analyte interaction. The isothermal titration calorimetry (ITC) experiment further affirmed that the sensing process was highly spontaneous with the Gibbs free energy of -26 × 104 cal/mol. The binding approach between DTPH and CN- was also validated by more than a few experimental studies by means of several spectroscopic tools along with the theoretical calculations. A very low detection limit of the chemosensor toward CN- (0.15 ppm) further instigated to design an RGB-based sensory device based on the colorimetric upshots of the chemosensor in order to develop a distinct perception regarding the presence of innocuous or precarious level of the CN- in a contaminated solution. Moreover, the reversibility of the sensor in the presence of CN- and Hg2+ originated a logic gate mimic ensemble. Additionally, the real-field along with the in vitro CN- detection efficiency of the photostable DTPH was also accomplished by using various biological specimens.
Collapse
Affiliation(s)
- Amita Mondal
- CSIR-Central
Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Department
of Chemistry, National Institute of Technology, M. G. Avenue, Durgapur 713209, West
Bengal, India
| | - Abhijit Hazra
- CSIR-Central
Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Jitamanyu Chakrabarty
- Department
of Chemistry, National Institute of Technology, M. G. Avenue, Durgapur 713209, West
Bengal, India
| | - Jagadeesh C. Bose K
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
| | - Priyabrata Banerjee
- CSIR-Central
Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| |
Collapse
|
12
|
Zhu L, Li Y, Zhang L, Wen Y, Ju H, Lei J. Controlled assembly of AIEgens based on a super-quadruplex scaffold for detection of plasma membrane proteins. Anal Chim Acta 2019; 1094:130-135. [PMID: 31761039 DOI: 10.1016/j.aca.2019.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
Quantification of plasma membrane proteins (PMPs) is crucial for understanding the fundamentals of cellular signaling systems and their related diseases. In this work, a super-quadruplex scaffold was designed to regulate assembly of oligonucleotide-grafted AIEgens for detection of PMPs. The nonfluorescence oligonucleotide-grafted AIEgen (Oligo-AIEgen) was firstly synthesized by attaching the AIEgen to 3'-terminus of the oligonucleotide through click chemistry. Meanwhile, the tetramolecular hairpin-conjugated super-quadruplex (THP-G4) as cleavage element and signal enhancement scaffold composited of three elements: a substrate sequence of DNAzyme in the loop region, partial hybridization region in the stem, and six guanine nucleotides to form G-quadruplex. Once the DNAzyme was anchored on the specific PMPs through aptamer-protein recognition, the substrate sequence on the loop of THP-G4 was cleaved by DNAzyme with the aid of cofactor MnII, resulting in the conformation switch of THP-G4 to the activated G-quadruplex scaffold. The latter could assemble Oligo-AIEgens to generate aggregation-induced emission (AIE) enhancement, resulting in a simple and sensitive strategy for detection of membrane proteins. Moreover, the DNAzyme continuously cut the next THP-G4 to achieve recycling amplification. Under the optimized conditions, this AIE-based strategy exhibited good linear relationship with the logarithm of MUC1 concentration from 0.01 to 10 μg mL-1 with the limit of detection down to 4.3 ng mL-1. The G4-assembled AIEgens provides a universal platform for detecting various biomolecules and a proof-of concept for AIE biosensing.
Collapse
Affiliation(s)
- Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yunjie Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
13
|
Wu F, Wu X, Duan Z, Huang Y, Lou X, Xia F. Biomacromolecule-Functionalized AIEgens for Advanced Biomedical Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804839. [PMID: 30740889 DOI: 10.1002/smll.201804839] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The advances in bioinformatics and biomedicine have promoted the development of biomedical imaging and theranostic systems to respectively extend the endogenous biomarker imaging with high contrast and enhance the therapeutic effect with high efficiency. The emergence of biomacromolecule-functionalized aggregation-induced emitters (AIEgens), utilizing AIEgens, and biomacromolecules (nucleic acids, peptides, glycans, and lipids), displays specific targeting ability to cancer cell, improved biocompatibility, reduced toxicity, enhanced therapeutic effect, and so forth. This review summarizes the rational design of biomacromolecule-functionalized AIEgens and their biomedical applications in recent ten years, including high-resolution optical imaging of cell, tissue, and small animal model with low background; the biomarker detection for early diagnosis and prognosis; the delivery and monitoring of prodrugs; image-guide photodynamic therapy and its combination with chemotherapy. Through illustrating their functional mechanisms and application, it is hoped that this review would open up a completely new train of research thought for attracted researchers in various fields.
Collapse
Affiliation(s)
- Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhijuan Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
14
|
Gui S, Huang Y, Zhu Y, Jin Y, Zhao R. Biomimetic Sensing System for Tracing Pb 2+ Distribution in Living Cells Based on the Metal-Peptide Supramolecular Assembly. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5804-5811. [PMID: 30663882 DOI: 10.1021/acsami.8b19076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-peptide interactions provide plentiful resource and design principles for developing functional biomaterials and smart sensors. Pb2+, as a borderline metal ion, has versatile coordination modes. The interference from competing metal ions and endogenous chelating species greatly challenges Pb2+ analysis, especially in complicated living biosystems. Herein, a biomimetic peptide-based fluorescent sensor GSSH-2TPE was developed, starting from the structure of a naturally occurring peptide glutathione. Lewis acid-base theory was employed to guide the molecular design and tune the affinity and selectivity of the targeting performance. The integration of peptide recognition and aggregation-induced emission effect provides desirable sensing features, including specific turn-on response to Pb2+ over 18 different metal ions, rapid binding, and signal output, as well as high sensitivity with a detection limit of 1.5 nM. Mechanism investigation demonstrated the balance between the chelating groups, and the molecular configuration of the sensor contributes to the high selectivity toward Pb2+ complexation. The ion-induced supramolecular assembly lights up the bright fluorescence. The ability to image Pb2+ in living cells was exhibited with minimal interference from endogenous biothiols, no background fluorescence, and good biocompatibility. With good cell permeability, GSSH-2TPE can monitor changes in Pb2+ levels and biodistribution and thus predict possible damage pathways. Such metal-peptide interaction-based sensing systems offer tailorable platforms for designing bioanalytical tools and show great potential for studying the cell biology of metal ions in living biosystems.
Collapse
Affiliation(s)
- Shilang Gui
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuanyuan Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
15
|
Xie S, Wong AYH, Chen S, Tang BZ. Fluorogenic Detection and Characterization of Proteins by Aggregation‐Induced Emission Methods. Chemistry 2019; 25:5824-5847. [DOI: 10.1002/chem.201805297] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Sheng Xie
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Alex Y. H. Wong
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science, HKUST-Shenzhen Research InstituteThe Hong Kong University of Science and Technology, Kowloon Hong Kong S.A.R. China
- NSFC Center for Luminescence from Molecular AggregatesSCUT-HKUST Joint Research InstituteState Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 P.R. China
| |
Collapse
|
16
|
Hu F, Xu S, Liu B. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801350. [PMID: 30066341 DOI: 10.1002/adma.201801350] [Citation(s) in RCA: 486] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy is arising as a noninvasive treatment modality for cancer and other diseases. One of the key factors to determine the therapeutic function is the efficiency of photosensitizers (PSs). Opposed to traditional PSs, which show quenched fluorescence and reduced singlet oxygen production in the aggregate state, PSs with aggregation-induced emission (AIE) exhibit enhanced fluorescence and strong photosensitization ability in nanoparticles. Here, the design principles of AIE PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIE PSs to highlight the various design strategies and unique features of the latter. Subsequently, the applications of AIE PSs in photodynamic cancer cell ablation, bacteria killing, and image-guided therapy are discussed using charged AIE PSs, AIE PS molecular probes, and AIE PS nanoparticles as examples. These studies have demonstrated the great potential of AIE PSs as effective theranostic agents to treat tumor or bacterial infection. This review hopefully will spur more research interest in AIE PSs for future translational research.
Collapse
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
17
|
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS APPLIED BIO MATERIALS 2018; 1:1768-1786. [DOI: 10.1021/acsabm.8b00600] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlei Zhu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ryan T. K. Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|