1
|
Yu H, Xu F. Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp 3)-H to construct C-C bonds. Beilstein J Org Chem 2023; 19:1259-1288. [PMID: 37701303 PMCID: PMC10494247 DOI: 10.3762/bjoc.19.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Ether derivatives are widespread as essential building blocks in various drugs, natural products, agrochemicals, and materials. Modern economy requires developing green strategies with improved efficiency and reduction of waste. Due to its atom and step-economy, the cross-dehydrogenative coupling (CDC) reaction has become a major strategy for ether functionalization. This review covers C-H/C-H cross-coupling reactions of ether derivatives with various C-H bond substrates via non-noble metal catalysts (Fe, Cu, Co, Mn, Ni, Zn, Y, Sc, In, Ag). We discuss advances achieved in these CDC reactions and hope to attract interest in developing novel methodologies in this field of organic chemistry.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pharmacy, Shi zhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550200, P. R. China
| | - Feng Xu
- School of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou 550005, P. R. China
| |
Collapse
|
2
|
Ikemoto Y, Chiba S, Li Z, Chen Q, Mori H, Nishihara Y. Carboazidation of Terminal Alkenes with Trimethylsilyl Azide and Cyclic Ethers Catalyzed by Copper Powder under Oxidative Conditions. J Org Chem 2023; 88:4472-4480. [PMID: 36947875 DOI: 10.1021/acs.joc.2c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Copper-catalyzed carboazidation of alkenes with trimethylsilyl azide and cyclic ethers has been achieved. The employment of naturally abundant copper catalysts allowed cyclic ethers to be used as alkylating reagents under oxidative conditions. The use of styrene derivatives and 1,1-diaryl alkenes afforded carboazidation products. In addition, application of five- and six-membered cyclic ethers to the present reaction gave target organic molecules bearing azide and cyclic ether groups with perfect regioselectivity. Radical trapping and clock experiments revealed that the present reaction proceeded via the radical pathway. To further demonstrate the utility of this carboazidation reaction, transformations from the azide group to the related nitrogen-containing compounds were also performed.
Collapse
Affiliation(s)
- Yuichi Ikemoto
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Sho Chiba
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Zhenyao Li
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mori
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Zheng S, Zhang T, Maekawa H. Magnesium-Promoted Reductive Carboxylation of Aryl Vinyl Ketones: Synthesis of γ-Keto Carboxylic Acids. J Org Chem 2022; 87:7342-7349. [PMID: 35608163 DOI: 10.1021/acs.joc.2c00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct reductive carboxylation of easily prepared aryl vinyl ketones under the atmosphere of carbon dioxide led to the selective formation of γ-keto carboxylic acids in 38-86% yields. The reaction is characterized by the carbon-carbon bond formation of carbon dioxide at the β-position of enone, with the use of magnesium turnings that can be easily handled as the reducing agent and the eco-friendly reaction conditions such as no pressuring, no lower or higher reaction temperature, and short reaction time. This protocol showed a wide substrate scope and provided a useful and convenient alternative to access biologically important γ-keto carboxylic acids.
Collapse
Affiliation(s)
- Suhua Zheng
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1, Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| | - Tianyuan Zhang
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1, Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| | - Hirofumi Maekawa
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1, Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
4
|
Liao Y, Yan Y, Qi H, Zhang W, Xie Y, Tao Q, Deng J, Yi B. Ammonium iodide-catalyzed radical-mediated tandem cyclization of aromatic aldehydes, arylamines and 1,4-dioxane. NEW J CHEM 2022. [DOI: 10.1039/d1nj05082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a novel approach for the construction of 2-((2-arylquinolin-4-yl)oxy)ethan-1-ol derivatives involving a radical-mediated tandem cyclization reaction.
Collapse
Affiliation(s)
- Yunfeng Liao
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Yiyan Yan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hongrui Qi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Yanjun Xie
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Qiang Tao
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Jiyong Deng
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Bing Yi
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| |
Collapse
|
5
|
Zhang MZ, Li WT, Li YY, Wang Q, Li C, Liu YH, Yin JX, Yang X, Huang H, Chen T. Discovery of an Oxidative System for Radical Generation from Csp 3-H Bonds: A Synthesis of Functionalized Oxindoles. J Org Chem 2021; 86:15544-15557. [PMID: 34570502 DOI: 10.1021/acs.joc.1c02032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile and versatile method for generating radicals from Csp3-H bonds under metal-free and organic-peroxide-free conditions was developed. By combining safe persulfate and low-toxic quaternary ammonium salt, a wide variety of Csp3-H compounds including ethers, (hetero)aromatic/aliphatic ketones, alkylbenzenes, alkylheterocycles, cycloalkanes, and haloalkanes were selectively activated to generate the corresponding C-centered radicals, which could be further captured by N-arylacrylamides to deliver the valuable functionalized oxindoles. Good functional group tolerance was demonstrated. The useful polycarbonyl compound and esters were also modified with the strategy. Moreover, the combination can also be applied to the practical coupling between simple haloalkanes and N-hydroxyphthalimide (NHPI).
Collapse
Affiliation(s)
- Ming-Zhong Zhang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Wan-Ting Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yuan-Yuan Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Qi Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Chong Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Yan-Hao Liu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Jin-Xing Yin
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Xin Yang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Huisheng Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Kurogi T, Irifune K, Takai K. Chromium carbides and cyclopropenylidenes. Chem Sci 2021; 12:14281-14287. [PMID: 34760214 PMCID: PMC8565369 DOI: 10.1039/d1sc04910k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Carbon tetrabromide can be reduced with CrBr2 in THF to form a dinuclear carbido complex, [CrBr2(thf)2)][CrBr2(thf)3](μ-C), along with formation of [CrBr3(thf)3]. An X-ray diffraction (XRD) study of the pyridine adduct displayed a dinuclear structure bridged by a carbido ligand between 5- and 6-coordinate chromium centers. The carbido complex reacted with two equivalents of aldehydes to form α,β-unsaturated ketones. Treatment of the carbido complex with alkenes resulted in a formal double-cyclopropanation of alkenes by the carbido moiety to afford spiropentanes. Isotope labeling studies using a 13C-enriched carbido complex, [CrBr2(thf)2)][CrBr2(thf)3](μ-13C), identified that the quaternary carbon in the spiropentane framework was delivered by carbide transfer from the carbido complex. Terminal and internal alkynes also reacted with the carbido complex to form cyclopropenylidene complexes. A solid-state structure of the diethylcyclopropenylidene complex, prepared from 3-hexyne, showed a mononuclear cyclopropenylidene chromium(iii) structure.
Collapse
Affiliation(s)
- Takashi Kurogi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Keiichi Irifune
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
7
|
Hayakawa M, Shirota H, Hirayama S, Yamada R, Aoyama T, Ouchi A. Sunlight-induced C C bond formation reaction: Radical addition of alcohols/ethers/acetals to olefins. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Alkyl halides as both hydride and alkyl sources in catalytic regioselective reductive olefin hydroalkylation. Nat Commun 2020; 11:5857. [PMID: 33203895 PMCID: PMC7673021 DOI: 10.1038/s41467-020-19717-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Among the plethora of catalytic methods developed for hydrocarbofunctionalization of olefins to date, reactions that regioselectively install a functionalized alkyl unit at the 2-position of a terminal unactivated C=C bond to afford branched products are scarce. Here, we show that a Ni-based catalyst in conjunction with a stoichiometric reducing agent promote Markovnikov-selective hydroalkylation of unactivated alkenes tethered to a recyclable 8-aminoquinaldine directing auxiliary. These mild reductive processes employ readily available primary and secondary haloalkanes as both the hydride and alkyl donor. Reactions of alkenyl amides with ≥ five-carbon chain length regioselectively afforded β-alkylated products through remote hydroalkylation, underscoring the fidelity of the catalytic process and the directing group’s capability in stabilizing five-membered nickelacycle intermediates. The operationally simple protocol exhibits exceptional functional group tolerance and is amenable to the synthesis of bioactive molecules as well as regioconvergent transformations. Methods that regioselectively install a functionalized alkyl unit at the 2-position of a terminal unactivated C=C bond are scarce. Here, the authors report a Markovnikov-selective hydroalkylation of unactivated amide-tethered alkenes catalyzed by nickel in conjunction with a stoichiometric reductant.
Collapse
|
9
|
Hayakawa M, Shimizu R, Omori H, Shirota H, Uchida K, Mashimo H, Xu H, Yamada R, Niino S, Wakame Y, Liu C, Aoyama T, Ouchi A. Photochemical addition of cyclic ethers/acetals to olefins using BuOO Bu: Synthesis of masked ketones/aldehydes and diols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Han W, Cheng L, Zhao H. Iron-Catalyzed Direct Cross-Coupling of Ethers and Thioether with Alcohols for the Synthesis of Mixed Acetals. Synlett 2020. [DOI: 10.1055/s-0040-1707162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An iron-catalyzed direct O-alkylation of alcohols via α-C(sp3)–H activation of ethers and a thioether has been established that tolerates cyclic and acyclic ethers and alcohols containing aromatic N-heterocyclic moieties, providing an efficient and green method for the synthesis of mixed acetals with good to excellent yields. The robustness of this protocol is demonstrated by the late-stage oxidation of a structurally complex natural product.
Collapse
Affiliation(s)
- Wei Han
- Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
| | - Lu Cheng
- Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University
| | - Hongyuan Zhao
- Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University
| |
Collapse
|
11
|
Zhang M, Yang L, Yang H, An G, Li G. Visible Light Mediated C(sp3)‐H Alkenylation of Cyclic Ethers Enabled by Aryl Ketone. ChemCatChem 2019. [DOI: 10.1002/cctc.201802079] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mengmeng Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE) School of Chemistry and Materials ScienceHeilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 P.R. China
| | - Liming Yang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE) School of Chemistry and Materials ScienceHeilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 P.R. China
| | - Hui Yang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE) School of Chemistry and Materials ScienceHeilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 P.R. China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE) School of Chemistry and Materials ScienceHeilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 P.R. China
- College of Materials Science and Chemical EngineeringHarbin Engineering University Harbin 150001 P.R. China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE) School of Chemistry and Materials ScienceHeilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 P.R. China
| |
Collapse
|
12
|
San Segundo M, Correa A. Site-Selective Cu-Catalyzed Alkylation of α-Amino Acids and Peptides toward the Assembly of Quaternary Centers. CHEMSUSCHEM 2018; 11:3893-3898. [PMID: 30320455 DOI: 10.1002/cssc.201802216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Indexed: 06/08/2023]
Abstract
The CuI -catalyzed selective α-alkylation of α-amino acid and peptide derivatives with 2-alkyl-1,3-dioxolanes is reported. This oxidative coupling is distinguished by its site-specificity, high diastereoselectivity, and chirality preservation and exhibits absolute chemoselectivity for N-aryl glycine motifs over other amino acid units. Collectively, the method allows for the assembly of challenging quaternary centers, as well as compounds derived from natural products of high structural complexity, which may provide ample opportunities for late-stage functionalization of peptides.
Collapse
Affiliation(s)
- Marcos San Segundo
- University of the Basque Country (UPV/EHU), Department of Organic Chemistry I, Joxe Mari Korta R&D Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Arkaitz Correa
- University of the Basque Country (UPV/EHU), Department of Organic Chemistry I, Joxe Mari Korta R&D Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| |
Collapse
|
13
|
Mutra MR, Dhandabani GK, Wang JJ. Mild Access to N-Formylation of Primary Amines using Ethers as C1 Synthons under Metal-Free Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800783] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; No. 100, Shih-Chuan 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| | - Ganesh Kumar Dhandabani
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; No. 100, Shih-Chuan 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; No. 100, Shih-Chuan 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
- Department of Medical Research; Kaohsiung Medical University Hospital; No. 100, Tzyou 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
14
|
Faisca Phillips AM, Pombeiro AJL. Recent Developments in Transition Metal-Catalyzed Cross-Dehydrogenative Coupling Reactions of Ethers and Thioethers. ChemCatChem 2018. [DOI: 10.1002/cctc.201800582] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Maria Faisca Phillips
- Centro de Química Estrutural; Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural; Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| |
Collapse
|
15
|
Zeng H, Yang S, Li H, Lu D, Gong Y, Zhu JT. Site-Specific Functionalization of 1,3-Dioxolane with Imines: A Radical Chain Approach to Masked α-Amino Aldehydes. J Org Chem 2018; 83:5256-5266. [PMID: 29644853 DOI: 10.1021/acs.joc.8b00715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A thiol-promoted site-specific addition of 1,3-dioxolane to imines through a radical chain process is described. This process represents a metal-free and redox-neutral way to convert inexpensive materials to a broad range of protected α-amino aldehydes in good to excellent yields using only a catalytic amount of radical precursor. Control experiments revealed that both the thiol and a small amount of oxygen from air are indispensable to the success of this reaction.
Collapse
Affiliation(s)
- Haipeng Zeng
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Sen Yang
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Haotian Li
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Dengfu Lu
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| | - Jin-Tao Zhu
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , Hubei 430074 , China
| |
Collapse
|
16
|
Yuan J, Fu J, Yin J, Dong Z, Xiao Y, Mao P, Qu L. Transition-metal-free direct C-3 alkylation of quinoxalin-2(1H)-ones with ethers. Org Chem Front 2018. [DOI: 10.1039/c8qo00731d] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient protocol for the synthesis of 3-alkyl quinoxalin-2(1H)-ones has been developed via the transition-metal-free cross-coupling reaction of quinoxalin-2(1H)-ones with ethers with moderate to good yields under relatively mild conditions.
Collapse
Affiliation(s)
- Jinwei Yuan
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Junhao Fu
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Jihong Yin
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Zhenhua Dong
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Pu Mao
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Lingbo Qu
- School of Chemistry & Chemical Engineering
- Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
- College of Chemistry and Molecular Engineering
| |
Collapse
|
17
|
Satheesh V, Vivek Kumar S, Punniyamurthy T. Expedient stereospecific Co-catalyzed tandem C–N and C–O bond formation of N-methylanilines with styrene oxides. Chem Commun (Camb) 2018; 54:11813-11816. [DOI: 10.1039/c8cc06223d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Co(ii)-catalyzed stereospecific sequential C–N and C–O bond formation of styrene oxides with N-methylanilines has been developed. Optically active epoxides can be coupled with high enantiomeric purity.
Collapse
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | | | | |
Collapse
|