1
|
Duan Z, Kong C, Fan S, Wu C. Triscysteine disulfide-directing motifs enabling design and discovery of multicyclic peptide binders. Nat Commun 2024; 15:7799. [PMID: 39242578 PMCID: PMC11379947 DOI: 10.1038/s41467-024-51723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Peptides are valuable for therapeutic development, with multicyclic peptides showing promise in mimicking antigen-binding potency of antibodies. However, our capability to engineer multicyclic peptide scaffolds, particularly for the construction of large combinatorial libraries, is still limited. Here, we study the interplay of disulfide pairing between three biscysteine motifs, and designed a range of triscysteine motifs with unique disulfide-directing capability for regulating the oxidative folding of multicyclic peptides. We demonstrate that incorporating these motifs into random sequences allows the design of disulfide-directed multicyclic peptide (DDMP) libraries with up to four disulfide bonds, which have been applied for the successful discovery of peptide binders with nanomolar affinity to several challenging targets. This study encourages the use of more diverse disulfide-directing motifs for creating multicyclic peptide libraries and opens an avenue for discovering functional peptides in sequence and structural space beyond existing peptide scaffolds, potentially advancing the field of peptide drug discovery.
Collapse
Affiliation(s)
- Zengping Duan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Chuilian Kong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China.
| |
Collapse
|
2
|
Li F, Liu J, Liu C, Liu Z, Peng X, Huang Y, Chen X, Sun X, Wang S, Chen W, Xiong D, Diao X, Wang S, Zhuang J, Wu C, Wu D. Cyclic peptides discriminate BCL-2 and its clinical mutants from BCL-X L by engaging a single-residue discrepancy. Nat Commun 2024; 15:1476. [PMID: 38368459 PMCID: PMC10874388 DOI: 10.1038/s41467-024-45848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Fengwei Li
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Junjie Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Liu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ziyan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Yinyue Huang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoyu Chen
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiangnan Sun
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sen Wang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Chen
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China
| | - Dan Xiong
- Xiamen Lifeint Technology Company Ltd., Xiamen, 361005, China
| | - Xiaotong Diao
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Jingjing Zhuang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Marine College, Shandong University, Weihai, 264209, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Wang L, Li H, Wang X, Yang X, Tian C, Sun D, Liu L, Li J. Modification of Low-Energy Surfaces Using Bicyclic Peptides Discovered by Phage Display. J Am Chem Soc 2023; 145:17613-17620. [PMID: 37531461 DOI: 10.1021/jacs.3c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Solid-binding peptides are a simple and versatile tool for the non-covalent modification of solid material surfaces, and a variety of peptides have been developed by reference to natural proteins or de novo design. Here, for the first time, we report the discovery of a bicyclic peptide targeting the heterogeneous material polypropylene by combining phage display technology and next-generation sequencing. We find that the enrichment properties of bicyclic peptides capable of binding to polypropylene are distinct from linear peptides, as reflected in amino acid abundance and a trend toward negative net charges and high hydrophobicity. The selected bicyclic peptide has a higher binding affinity for polypropylene compared with a previously reported linear peptide, enabling the hydrophilic and adhesive properties of the polypropylene to be more effectively enhanced. Our work paves the way for the exploration and utilization of conformational-restricted cyclic peptides as a new family of functionally evolvable agents for material surface modification.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Haodong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xinyan Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xichu Yang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Changlin Tian
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Demeng Sun
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
| |
Collapse
|
4
|
Meng X, Xu C, Fan S, Dong M, Zhuang J, Duan Z, Zhao Y, Wu C. Selection and evolution of disulfide-rich peptides via cellular protein quality control. Chem Sci 2023; 14:3668-3675. [PMID: 37006698 PMCID: PMC10055976 DOI: 10.1039/d2sc05343h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
A selection system leveraging cellular protein quality control (termed PQC-select) has been designed to select DRPs with robust foldability from random sequences, providing valuable scaffolds for developing peptide-based probes or therapeutics.
Collapse
Affiliation(s)
- Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Chaoying Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Meng Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Zengping Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
5
|
Huang Z, Wu Y, Dong H, Zhao Y, Wu C. Design and Synthesis of Disulfide-Rich Peptides with Orthogonal Disulfide Pairing Motifs. J Org Chem 2020; 85:11475-11481. [PMID: 32786636 DOI: 10.1021/acs.joc.0c01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disulfide-rich peptides (DRPs) are a class of peptides that are constrained through two or more disulfide bonds. Though natural DRPs have been extensively exploited for developing protein binders or potential therapeutics, their synthesis and re-engineering to bind new targets are not straightforward due to difficulties in handling the disulfide pairing problem. Rationally designed DRPs with an intrinsically orthogonal disulfide pairing propensity provide an alternative to the natural scaffolds for developing functional DRPs. Herein we report the use of tandem CXPen/PenXC motifs ((C) cysteine; (Pen) penicillamine; (X) any residue) for directing the oxidative folding of peptides. Diverse tricyclic peptides were designed and synthesized by varying the pattern of C/Pen residues and incorporating a tandem CXPen/PenXC motif into peptides. The folding of these peptides was determined primarily by C/Pen patterns and tolerated to sequence manipulations. The applicability of the designed C/Pen-DRPs was demonstrated by designing protein binders using an epitope grafting strategy. This study thus demonstrates the potential of using orthogonal disulfide pairing to design DRP scaffolds with new structures and functions, which would greatly benefit the development of multicyclic peptide ligands and therapeutics.
Collapse
Affiliation(s)
- Zirong Huang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Huilei Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
6
|
Zheng X, Liu W, Liu Z, Zhao Y, Wu C. Biocompatible and Rapid Cyclization of Peptides with 2,4-Difluoro-6-hydroxy-1,3,5-benzenetricarbonitrile for the Development of Cyclic Peptide Libraries. Bioconjug Chem 2020; 31:2085-2091. [DOI: 10.1021/acs.bioconjchem.0c00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xuejun Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Weidong Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Ziyan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
7
|
Ayo A, Figueras E, Schachtsiek T, Budak M, Sewald N, Laakkonen P. Tumor-Targeting Peptides: The Functional Screen of Glioblastoma Homing Peptides to the Target Protein FABP3 (MDGI). Cancers (Basel) 2020; 12:E1836. [PMID: 32650473 PMCID: PMC7409020 DOI: 10.3390/cancers12071836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
We recently identified the glioblastoma homing peptide CooP (CGLSGLGVA) using in vivo phage display screen. The mammary-derived growth inhibitor (MDGI/FABP3) was identified as its interacting partner. Here, we present an alanine scan of A-CooP to investigate the contribution of each amino acid residue to the binding to FABP3 by microscale thermophoresis (MST) and surface plasmon resonance (SPR). We also tested the binding affinity of the A-CooP-K, KA-CooP, and retro-inverso A-CooP analogues to the recombinant FABP3. According to the MST analysis, A-CooP showed micromolar (KD = 2.18 µM) affinity to FABP3. Alanine replacement of most of the amino acids did not affect peptide affinity to FABP3. The A-CooP-K variant showed superior binding affinity, while A-[Ala5]CooP and A-[Ala7]CooP, both replacing a glycine residue with alanine, showed negligible binding to FABP3. These results were corroborated in vitro and in vivo using glioblastoma models. Both A-CooP-K and A-CooP showed excellent binding in vitro and homing in vivo, while A-[Ala5]CooP and control peptides failed to bind the cells or home to the intracranial glioblastoma xenografts. These results provide insight into the FABP3-A-CooP interaction that may be important for future applications of drug conjugate design and development.
Collapse
Affiliation(s)
- Abiodun Ayo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Eduard Figueras
- Organic and Bioorganic Chemistry OC III, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany; (E.F.); (T.S.); (M.B.); (N.S.)
| | - Thomas Schachtsiek
- Organic and Bioorganic Chemistry OC III, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany; (E.F.); (T.S.); (M.B.); (N.S.)
| | - Mazlum Budak
- Organic and Bioorganic Chemistry OC III, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany; (E.F.); (T.S.); (M.B.); (N.S.)
| | - Norbert Sewald
- Organic and Bioorganic Chemistry OC III, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany; (E.F.); (T.S.); (M.B.); (N.S.)
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Laboratory Animal Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Zheng X, Li Z, Gao W, Meng X, Li X, Luk LYP, Zhao Y, Tsai YH, Wu C. Condensation of 2-((Alkylthio)(aryl)methylene)malononitrile with 1,2-Aminothiol as a Novel Bioorthogonal Reaction for Site-Specific Protein Modification and Peptide Cyclization. J Am Chem Soc 2020; 142:5097-5103. [DOI: 10.1021/jacs.9b11875] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoli Zheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhuoru Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Gao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoting Meng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Xuefei Li
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Louis Y. P. Luk
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
9
|
Lin P, Yao H, Zha J, Zhao Y, Wu C. Ordered and Isomerically Stable Bicyclic Peptide Scaffolds Constrained through Cystine Bridges and Proline Turns. Chembiochem 2019; 20:1514-1518. [PMID: 30770638 DOI: 10.1002/cbic.201800788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Indexed: 12/21/2022]
Abstract
Bicyclic peptides are attractive scaffolds for the design of potent protein binders and new therapeutics. However, peptide bicycles constrained through disulfide bonds are rarely stable or tolerant to sequence manipulation owing to disulfide isomerization, especially for peptides lacking a regular secondary structure. Herein, we report the discovery and identification of a class of bicyclic peptide scaffolds with ordered but irregular secondary structures. These peptides have a conserved cysteine/proline framework for directing the oxidative folding into a fused bicyclic structure that consists of four irregular turns and a 310 helix (characterized by NMR spectroscopy). This work shows that bicyclic peptides can be stabilized into ordered structures by manipulating both the disulfide bonds and proline-stabilized turns. In turn, this could inspire the design and engineering of multicyclic peptides with new structures and benefit the development of novel protein binders and therapeutics.
Collapse
Affiliation(s)
- Ping Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, 361005, P. R. China
| | - Hongwei Yao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Zha
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, 361005, P. R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, 361005, P. R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
10
|
Ahangarzadeh S, Kanafi MM, Hosseinzadeh S, Mokhtarzadeh A, Barati M, Ranjbari J, Tayebi L. Bicyclic peptides: types, synthesis and applications. Drug Discov Today 2019; 24:1311-1319. [PMID: 31102732 DOI: 10.1016/j.drudis.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
Bicyclic peptides form one of the most promising platforms for drug development owing to their biocompatibility, similarity and chemical diversity to proteins, and they are considered as a possible practical tool in various therapeutic and diagnostic applications. Bicyclic peptides are known to have the capability of being employed as an effective alternative to complex molecules, such as antibodies, or small molecules. This review provides a summary of the recent progress on the types, synthesis and applications of bicyclic peptides. More specifically, natural and synthetic bicyclic peptides are introduced with their different production methods and relevant applications, including drug targeting, imaging and diagnosis. Their uses as antimicrobial agents, as well as the therapeutic functions of different bicyclic peptides, are also discussed.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad M Kanafi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
11
|
Dong H, Meng X, Zheng X, Cheng X, Zheng Y, Zhao Y, Wu C. Design and Synthesis of Cross-Link-Dense Peptides by Manipulating Regioselective Bisthioether Cross-Linking and Orthogonal Disulfide Pairing. J Org Chem 2019; 84:5187-5194. [PMID: 30895794 DOI: 10.1021/acs.joc.9b00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Existing disulfide-rich peptides, both naturally occurring and de novo designed, only represent a tiny amount of the possible sequence space because natural evolution and de novo design only keep sequences that are structurally approachable by correct disulfide pairings. To bypass this limitation for designing new peptide scaffolds beyond the natural sequence space, we dedicate to developing novel disulfide-rich peptides with predefined disulfide pairing patterns irrelevant to primary sequences. However, most of these designed peptides still suffer from disulfide rearrangements to at least one to three possible isomers. Here, we report a general and reliable strategy for the design and synthesis of a range of structurally diverse cross-link-dense peptide (CDP) scaffolds with two orthogonal disulfide bonds and a bisthioether bridge that are not subject to disulfide isomerizations. Altering the pattern of cysteine and penicillamine generates hundreds of different CDP scaffolds tolerant to extensive sequence manipulations. This work thus provides many useful scaffolds for the design of functional molecules such as protein binders with improved proteolytic stability (e.g., designed by epitope grafting).
Collapse
Affiliation(s)
- Huilei Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Xiaoli Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Xueting Cheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Yiwu Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| |
Collapse
|
12
|
Jiang Y, Long H, Zhu Y, Zeng Y. Macrocyclic peptides as regulators of protein-protein interactions. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|