1
|
Li Z, Deng J, Ma P, Bai H, Jin Y, Zhang Y, Dong A, Burenjargal M. Stimuli-Responsive Molecularly Imprinted Polymers: Mechanism and Applications. J Sep Sci 2024; 47:e202400441. [PMID: 39385447 DOI: 10.1002/jssc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are very suitable for extraction, drug delivery systems, and sensors due to their good selective adsorption ability, but the difficulty of eluting templates during synthesis and the limitation of application scenarios put higher demands on MIPs. Stimuli-responsive MIPs (SR-MIPs) can actively respond to changes in external conditions to realize various functions, which provides new ideas for the further development of MIPs. This paper reviews the multiple response modes of MIPs, including the common temperature, pH, photo, magnetic, redox-responsive and rare gas, biomolecule, ion, and solvent-responsive MIPs, and explains the mechanism, composition, and applications of such SR-MIPs. These SR-MIPs and the resulting dual/multiple-responsive MIPs have good selectivity, and controllability, and are very promising for isolation and extraction, targeted drug delivery, and electro-sensor.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Jiaming Deng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yuting Jin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | | |
Collapse
|
2
|
Ding T, Liu R, Yan X, Zhang Z, Xiong F, Li X, Wu Z. An electrochemically mediated ATRP synthesis of lignin-g-PDMAPS UCST-thermoresponsive polymer. Int J Biol Macromol 2023; 241:124458. [PMID: 37076067 DOI: 10.1016/j.ijbiomac.2023.124458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
It is a promising idea to graft zwitterionic polymers onto lignin and prepare lignin-grafted-poly [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (Lignin-g-PDMAPS) thermosensitive polymer with the upper critical solution temperature (UCST). In this paper, an electrochemically mediated atom transfer radical polymerization (eATRP) method was used to prepare Lignin-g-PDMAPS. The structure and property of the Lignin-g-PDMAPS polymer were characterized by the fourier transform infrared spectrum (FT-IR), nuclear magnetic resonance (NMR), X-ray electron spectroscopy (XPS), dynamic light scattering (DLS), differential scanning calorimeter (DSC). Furthermore, the effect of catalyst structure, applied potential, amount of Lignin-Br, Lignin-g-PDMAPS concentration, NaCl concentration on UCST of Lignin-g-PDMAPS were investigated. It was worth noting that polymerization was well controlled when the ligand was tris (2-aminoethyl) amine (Me6TREN), applied potential was -0.38 V and the amount of Lignin-Br was 100 mg. And the UCST of the Lignin-g-PDMAPS aqueous solution (1 mg/ml) was 51.47 °C, the molecular weight was 8987 g/mol, and the particle size was 318 nm. It was also found that the UCST increased and the particle size decreased with the Lignin-g-PDMAPS polymer concentration increased, and the UCST decreased and the particle size increased with the NaCl concentration increases. This work investigated UCST-thermoresponsive polymer which possessed lignin main chain combining the zwitterionic side chain, and provided a new way for development of lignin based UCST-thermoresponsive materials and medical carrier materials, in addition to expand the scope of eATRP.
Collapse
Affiliation(s)
- Tingting Ding
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ruixia Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaofan Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zuoyu Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fuquan Xiong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
3
|
Zhang Y, Wang Q, Zhao X, Ma Y, Zhang H, Pan G. Molecularly Imprinted Nanomaterials with Stimuli Responsiveness for Applications in Biomedicine. Molecules 2023; 28:molecules28030918. [PMID: 36770595 PMCID: PMC9919331 DOI: 10.3390/molecules28030918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The review aims to summarize recent reports of stimuli-responsive nanomaterials based on molecularly imprinted polymers (MIPs) and discuss their applications in biomedicine. In the past few decades, MIPs have been proven to show widespread applications as new molecular recognition materials. The development of stimuli-responsive nanomaterials has successfully endowed MIPs with not only affinity properties comparable to those of natural antibodies but also the ability to respond to external stimuli (stimuli-responsive MIPs). In this review, we will discuss the synthesis of MIPs, the classification of stimuli-responsive MIP nanomaterials (MIP-NMs), their dynamic mechanisms, and their applications in biomedicine, including bioanalysis and diagnosis, biological imaging, drug delivery, disease intervention, and others. This review mainly focuses on studies of smart MIP-NMs with biomedical perspectives after 2015. We believe that this review will be helpful for the further exploration of stimuli-responsive MIP-NMs and contribute to expanding their practical applications especially in biomedicine in the near future.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qinghe Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiao Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou 730071, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Correspondence: (Y.M.); (G.P.)
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: (Y.M.); (G.P.)
| |
Collapse
|
4
|
Cowen T, Cheffena M. Template Imprinting Versus Porogen Imprinting of Small Molecules: A Review of Molecularly Imprinted Polymers in Gas Sensing. Int J Mol Sci 2022; 23:ijms23179642. [PMID: 36077047 PMCID: PMC9455763 DOI: 10.3390/ijms23179642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The selective sensing of gaseous target molecules is a challenge to analytical chemistry. Selectivity may be achieved in liquids by several different methods, but many of these are not suitable for gas-phase analysis. In this review, we will focus on molecular imprinting and its application in selective binding of volatile organic compounds and atmospheric pollutants in the gas phase. The vast majority of indexed publications describing molecularly imprinted polymers for gas sensors and vapour monitors have been analysed and categorised. Specific attention was then given to sensitivity, selectivity, and the challenges of imprinting these small volatile compounds. A distinction was made between porogen (solvent) imprinting and template imprinting for the discussion of different synthetic techniques, and the suitability of each to different applications. We conclude that porogen imprinting, synthesis in an excess of template, has great potential in gas capture technology and possibly in tandem with more typical template imprinting, but that the latter generally remains preferable for selective and sensitive detection of gaseous molecules. More generally, it is concluded that gas-phase applications of MIPs are an established science, capable of great selectivity and parts-per-trillion sensitivity. Improvements in the fields are likely to emerge by deviating from standards developed for MIP in liquids, but original methodologies generating exceptional results are already present in the literature.
Collapse
|
5
|
Yang Z, Wang T, Wang Y, Zhang Q, Zhang B. Anti‐nonspecific adsorption segments‐assisted self‐driven surface imprinted fibers for efficient protein separation. AIChE J 2022. [DOI: 10.1002/aic.17802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zuoting Yang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
- Xi'an Key Laboratory of Functional Organic Porous Materials Northwestern Polytechnical University Xi'an People's Republic of China
| | - Ting Wang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| | - Yabin Wang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering Yan'an University Yan'an People's Republic of China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
- Xi'an Key Laboratory of Functional Organic Porous Materials Northwestern Polytechnical University Xi'an People's Republic of China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation Sunresins New Materials Co. Ltd Xi'an People's Republic of China
| |
Collapse
|
6
|
Zhang Y, Wu Z, Shi H, Xie Y, Wu MY, Zhang C, Feng S. Copper Mediated Molecularly Imprinted Polymers for Fast Recognizing Tylosin. J Pharm Biomed Anal 2022; 213:114674. [DOI: 10.1016/j.jpba.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
7
|
Point-of-care detection assay based on biomarker-imprinted polymer for different cancers: a state-of-the-art review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Wang M, Zhou J, Zhang G, Liu Q, Zhang Q. Pyrrolidinyl ligand motif-assisted bovine serum albumin molecularly imprinted polymers with high specificity. J Colloid Interface Sci 2021; 609:102-113. [PMID: 34894545 DOI: 10.1016/j.jcis.2021.11.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022]
Abstract
Ideal binding ligands for anchoring proteins are essential for the design and assembly of desirable molecularly imprinted polymers (MIPs). In this study, bovine serum albumin-MIPs (BSA-MIPs) were successfully prepared by orchestrating the involvement of orientation-controllable binding ligands via sequential thiol-ene click and thiol-ene-amine conjugation. We showed that the optimal thiol-ene-amine conjugates and binding ligands were decisive in determining the rebinding capacity and selectivity. The pyrrolidinyl MIPs exhibited the best adsorption capacity of 352 ± 22 mg/g and a superior imprinting factor of 4.72 among MIPs with various binding ligands. These favourable results were further studied by computational simulation and isothermal titration calorimetry (ITC). Molecular docking revealed the preferential binding free energy and H-bonds between BSA residues and the thiol-ene-amine conjugates. Meanwhile, the pyrrolidinyl ligand motif enabled entropy-favourable affinity to be achieved via hydrophobic effects with the BSA template by ITC thermodynamics. Because of these favourable bindings, the MIPs exhibited excellent adsorption specificity to BSA over competing proteins. The proof-of-concept of MIPs with orientation-controllable conjugates and proven binding ligands for target proteins demonstrates that this material is promising for use with a real biological sample.
Collapse
Affiliation(s)
- Mingqi Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jingjing Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Guoxian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Qing Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
9
|
Wang L, Liang K, Tang L, Gong H, Chen C, Cai C. Photonic and Magnetic Dual-Responsive Molecularly Imprinted Sensor for Highly Specific Recognition of Enterovirus 71. ACS Sens 2021; 6:3715-3723. [PMID: 34641672 DOI: 10.1021/acssensors.1c01487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specific identification and detection of a virus are the critical factors to identify and control an epidemic situation. In this study, a novel photonic-magnetic responsive virus-molecularly imprinted photochemical sensor was constructed for recognition of enterovirus 71. As designed, the double-bond-modified magnetic metal organic framework and 4-(4'-acryloyloxyazo) benzoic acid were used as a magnetic carrier and light-responsive functional monomer, respectively. The structure of the recognition site of the virus-molecularly imprinted nanospheres can be photo-switched between two different structures to achieve rapid release and specific binding to the target virus. Additionally, the introduction of a magnetic core enables a rapid separation and recycling of imprinted particles. The device achieves a performance with high-specificity recognition (imprinting factor = 5.1) and an ultrahigh sensitivity with a detection limit of 9.5 × 10-3 U/mL (3.9 fM). Moreover, it has good reproducibility and can be stored for as long as 6 months. Thus, the approach used in this work opens a new avenue for the construction of multiresponsive virus sensors.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Kunsong Liang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Li Tang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hang Gong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chunyan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
10
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
11
|
Preparation of hemoglobin (Hb) imprinted polymers with CO2 response and its biosensing application. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04934-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Smart materials for point-of-care testing: From sample extraction to analyte sensing and readout signal generator. Biosens Bioelectron 2020; 170:112682. [PMID: 33035898 DOI: 10.1016/j.bios.2020.112682] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
The last decade has seen a surge of technical developments in the field on point-of-care testing (POCT). While these developments are extremely diverse, the common aim is to implement improved methods for quick, reliable and inexpensive diagnosis of patients within the clinical setting. While examples of successful introduction and use of POCT techniques are growing, further developments are still necessary to create POCT devices with better portability, usability and performance. Advances in smart materials emerge as potentially valuable know-hows to provide a competitive edge to the development of next generation POCT devices. This review describes the key advantages of adopting smart material-based technologies at different analytical stages of a POCT platform. Under these analytical stages which involves sample pre-treatment, analyte sensing and readout signal generator, several concepts and approaches from contemporary research work in using smart material-based technologies will be the major focus in this review. Lastly, challenges and potential outlook in implementing materials technologies from the application point of view for POCT will be discussed.
Collapse
|
13
|
Kitayama Y, Isomura M. Molecularly imprinted polymer particles with gas-stimuli responsive affinity toward target proteins prepared using switchable functional monomer. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Wei Y, Zeng Q, Huang J, Guo X, Wang L, Wang L. Preparation of Gas-Responsive Imprinting Hydrogel and Their Gas-Driven Switchable Affinity for Target Protein Recognition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24363-24369. [PMID: 32366087 DOI: 10.1021/acsami.0c05561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel gas-responsive imprinting hydrogels were fabricated by combining N,N'-dimethylaminoethyl methacrylate gas-sensitive monomers, N,N'-methylenebis(acrylamide) cross-linkers, and human serum albumin (HSA) template proteins via a free radical polymerization. The hydrogel exhibited a reversible gas-responsive property upon N2/CO2 exchange. This result was supported by the evidences from hydrogen nuclear magnetic resonance spectroscopy and scanning electron microscopy. By applying this property to sensing application, a CO2-responsive imprinted biosensor was originally designed on the surface of a glassy carbon electrode. The biosensor exhibited unique self-clean and self-recognition properties toward HSA proteins based on reversible conformational changes driven by N2/CO2 stimuli. Moreover, the proposed imprinted biosensor favored HSA proteins by showing satisfactory sensitivity and selectivity and a wider detection range with a low detection limit. As a rare example in imprint sensing, the biosensor was successfully applied to the HSA extraction from complex serum samples. With gas stimuli, the whole process was efficient, controllable, and harmless to the proteins. Thus, the developed biosensor may provide a new prospect in molecularly imprinted sensing applications.
Collapse
Affiliation(s)
- Yubo Wei
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, People's Republic of China
| | - Qiang Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Jianzhi Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Xinrong Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Lulu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Lishi Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
15
|
Wang Y, Ma Y, Zhou J, Su K, Zhang B, Zhang Q. Thermo‐sensitive surface molecularly imprinted magnetic microspheres based on bio‐macromolecules and their specific recognition of bovine serum albumin. J Sep Sci 2020; 43:996-1002. [DOI: 10.1002/jssc.201901024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Yufei Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Natural and Applied ScienceNorthwestern Polytechnical University Xi'an P. R. China
| | - Yong Ma
- School of Material Science and EngineeringShandong University of Science and Technology Qingdao P. R. China
| | - Jingjing Zhou
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Natural and Applied ScienceNorthwestern Polytechnical University Xi'an P. R. China
| | - Kehe Su
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Natural and Applied ScienceNorthwestern Polytechnical University Xi'an P. R. China
| | - Baoliang Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Natural and Applied ScienceNorthwestern Polytechnical University Xi'an P. R. China
| | - Qiuyu Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Natural and Applied ScienceNorthwestern Polytechnical University Xi'an P. R. China
| |
Collapse
|
16
|
Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1279. [PMID: 30871280 PMCID: PMC6472044 DOI: 10.3390/s19061279] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Sensors have been extensively used owing to multiple advantages, including exceptional sensing performance, user-friendly operation, fast response, high sensitivity and specificity, portability, and real-time analysis. In recent years, efforts in sensor realm have expanded promptly, and it has already presented a broad range of applications in the fields of medical, pharmaceutical and environmental applications, food safety, and homeland security. In particular, molecularly imprinted polymer based sensors have created a fascinating horizon for surface modification techniques by forming specific recognition cavities for template molecules in the polymeric matrix. This method ensures a broad range of versatility to imprint a variety of biomolecules with different size, three dimensional structure, physical and chemical features. In contrast to complex and time-consuming laboratory surface modification methods, molecular imprinting offers a rapid, sensitive, inexpensive, easy-to-use, and highly selective approaches for sensing, and especially for the applications of diagnosis, screening, and theranostics. Due to its physical and chemical robustness, high stability, low-cost, and reusability features, molecularly imprinted polymer based sensors have become very attractive modalities for such applications with a sensitivity of minute structural changes in the structure of biomolecules. This review aims at discussing the principle of molecular imprinting method, the integration of molecularly imprinted polymers with sensing tools, the recent advances and strategies in molecular imprinting methodologies, their applications in medical, and future outlook on this concept.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
17
|
Shieh YT, Zeng ZH, Cheng CC. Waterborne Polyurethane Colloids with Sensitive CO2
-Switchable Hydrophilic/Hydrophobic Properties. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yeong-Tarng Shieh
- Department of Chemical and Materials Engineering; National University of Kaohsiung; Kaohsiung 81148 Taiwan
| | - Zi-Hau Zeng
- Department of Chemical and Materials Engineering; National University of Kaohsiung; Kaohsiung 81148 Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology; National Taiwan University of Science and Technology; Taipei 10607 Taiwan
| |
Collapse
|
18
|
Zhao H, Sun D, Tang Y, Yao J, Yuan X, Zhang M. Thermo/pH dual-responsive core–shell particles for apatinib/doxorubicin controlled release: preparation, characterization and biodistribution. J Mater Chem B 2018; 6:7621-7633. [PMID: 32254884 DOI: 10.1039/c8tb02334d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of the structure and functioning mechanism of DD particles.
Collapse
Affiliation(s)
- He Zhao
- Alan G. MacDiarmid Laboratory
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Dahui Sun
- Norman Bethune First Hospital
- Jilin University
- Changchun 130021
- China
| | - Yajun Tang
- Alan G. MacDiarmid Laboratory
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jihang Yao
- Norman Bethune First Hospital
- Jilin University
- Changchun 130021
- China
| | - Xiaowei Yuan
- Norman Bethune First Hospital
- Jilin University
- Changchun 130021
- China
| | - Mei Zhang
- Alan G. MacDiarmid Laboratory
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
19
|
Wei Y, Zeng Q, Huang J, Hu Q, Guo X, Wang L. An electro-responsive imprinted biosensor with switchable affinity toward proteins. Chem Commun (Camb) 2018; 54:9163-9166. [DOI: 10.1039/c8cc05482g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We combined electro-responsive materials with molecular imprinted polymers (MIPs) to develop an electro-responsive imprinted biosensor for the first time.
Collapse
Affiliation(s)
- Yubo Wei
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Jianzhi Huang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Qiong Hu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Xinrong Guo
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|