1
|
Szabó P, Liu Z, Müller JF, Harvey JN, Peeters J. Reaction pathways leading to HPALD intermediates in the OH-initiated oxidation of isoprene. Phys Chem Chem Phys 2024; 26:26129-26137. [PMID: 39378045 DOI: 10.1039/d4cp02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
In this study, we revisited the mechanism of isoprene oxidation by OH radicals, focusing on the formation of hydroperoxyaldehydes (HPALDs) in the reactions following O2-addition at the α-position to Z,Z'-OH-allyl radical products of the 1,6-H shift of the 1st-generation Z-δ-OH-isoprenylperoxy radicals. Utilizing high-level ab initio quantum chemical calculations and a master equation approach, we provide theoretical confirmation that the formation of δ-HPALDs dominates by far and show that production of β-HPALDs by the mechanism proposed by Wennberg et al. (Chem. Rev., 2018, 118, 3337-3390) is negligible. Besides the dominance of the δ-HPALD formation channel, our investigation also reveals a novel though minor reaction channel resulting in the formation of an allylic δ-hydroperoxy acid and OH radical. Of primary importance for the assessment of the respective channels is the identification of a chemically activated mechanism driving the δ-HPALD formation process under atmospheric conditions. Different from traditional thermally activated pathways, we found that the rovibrationally hot peroxy radicals resulting from O2 addition to Z,Z'-OH-allyl radicals undergo prompt rearrangement and decomposition at a rate faster than their collisional relaxation, predominantly yielding δ-HPALDs in a chemically activated manner with high efficiency under atmospheric conditions.
Collapse
Affiliation(s)
- Péter Szabó
- Department of Chemistry, KU Leuven, Celestijnenlaan, 200F, Leuven 3001, Belgium.
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, Brussels 1180, Belgium
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jean-François Müller
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, Brussels 1180, Belgium
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan, 200F, Leuven 3001, Belgium.
| | - Jozef Peeters
- Department of Chemistry, KU Leuven, Celestijnenlaan, 200F, Leuven 3001, Belgium.
| |
Collapse
|
2
|
Yang X, Li Y, Ma X, Tan Z, Lu K, Zhang Y. Unclassical Radical Generation Mechanisms in the Troposphere: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15888-15909. [PMID: 39206567 DOI: 10.1021/acs.est.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively known as HOx radicals, are crucial in removing primary pollutants, controlling atmospheric oxidation capacity, and regulating global air quality and climate. An imbalance between radical observations and simulations has been identified based on radical closure experiments, a valuable tool for accessing the state-of-the-art chemical mechanisms, demonstrating a deviation between the existing and actual tropospheric mechanisms. In the past decades, researchers have attempted to explain this deviation and proposed numerous radical generation mechanisms. However, these newly proposed unclassical radical generation mechanisms have not been systematically reviewed, and previous radical-related reviews dominantly focus on radical measurement instruments and radical observations in extensive field campaigns. Herein, we overview the unclassical generation mechanisms of radicals, mainly focusing on outlining the methodology and results of radical closure experiments worldwide and systematically introducing the mainstream mechanisms of unclassical radical generation, involving the bimolecular reaction of HO2 and organic peroxy radicals (RO2), RO2 isomerization, halogen chemistry, the reaction of H2O with O2 over soot, epoxide formation mechanism, mechanism of electronically excited NO2 and water, and prompt HO2 formation in aromatic oxidation. Finally, we highlight the existing gaps in the current studies and suggest possible directions for future research. This review of unclassical radical generation mechanisms will help promote a comprehensive understanding of the latest radical mechanisms and the development of additional new mechanisms to further explain deviations between the existing and actual mechanisms.
Collapse
Affiliation(s)
- Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
| |
Collapse
|
3
|
Zhu Q, Schwantes RH, Coggon M, Harkins C, Schnell J, He J, Pye HOT, Li M, Baker B, Moon Z, Ahmadov R, Pfannerstill EY, Place B, Wooldridge P, Schulze BC, Arata C, Bucholtz A, Seinfeld JH, Warneke C, Stockwell CE, Xu L, Zuraski K, Robinson MA, Neuman A, Veres PR, Peischl J, Brown SS, Goldstein AH, Cohen RC, McDonald BC. A better representation of VOC chemistry in WRF-Chem and its impact on ozone over Los Angeles. ATMOSPHERIC CHEMISTRY AND PHYSICS 2024; 24:5265-5286. [PMID: 39318851 PMCID: PMC11417973 DOI: 10.5194/acp-24-5265-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The declining trend in vehicle emissions has underscored the growing significance of Volatile Organic Compound (VOC) emissions from Volatile Chemical Products (VCP). However, accurately representing VOC chemistry in simplified chemical mechanisms remains challenging due to its chemical complexity including speciation and reactivity. Previous studies have predominantly focused on VOCs from fossil fuel sources, leading to an underrepresentation of VOC chemistry from VCP sources. We developed an integrated chemical mechanism, RACM2B-VCP, that is compatible with WRF-Chem and is aimed to enhance the representation of VOC chemistry, particularly from VCP sources, within the present urban environment. Evaluation against the Air Quality System (AQS) network data demonstrates that our model configured with RACM2B-VCP reproduces both the magnitude and spatial variability of O3 as well as PM2.5 in Los Angeles. Furthermore, evaluation against comprehensive measurements of O3 and PM2.5 precursors from the Reevaluating the Chemistry of Air Pollutants in California (RECAP-CA) airborne campaign and the Southwest Urban NO x and VOC Experiment (SUNVEx) ground site and mobile laboratory campaign, confirm the model's accuracy in representing NOx and many VOCs and highlight remaining biases. Although there exists an underprediction in the total VOC reactivity of observed VOC species, our model with RACM2B-VCP exhibits good agreement for VOC markers emitted from different sectors, including biogenic, fossil fuel, and VCP sources. Through sensitivity analyses, we probe the contributions of VCP and fossil fuel emissions to total VOC reactivity and O3. Our results reveal that 52% of the VOC reactivity and 35% of the local enhancement of MDA8 O3 arise from anthropogenic VOC emissions in Los Angeles. Significantly, over 50% of this anthropogenic fraction of either VOC reactivity or O3 is attributed to VCP emissions. The RACM2B-VCP mechanism created, described, and evaluated in this work is ideally suited for accurately representing ozone for the right reasons in the present urban environment where mobile, biogenic, and VCP VOCs are all important contributors to ozone formation.
Collapse
Affiliation(s)
- Qindan Zhu
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Cooperative Institute for Research in Environmental Sciences - University of Colorado Boulder, United States
| | | | - Matthew Coggon
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
| | - Colin Harkins
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Cooperative Institute for Research in Environmental Sciences - University of Colorado Boulder, United States
| | - Jordan Schnell
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Cooperative Institute for Research in Environmental Sciences - University of Colorado Boulder, United States
| | - Jian He
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Cooperative Institute for Research in Environmental Sciences - University of Colorado Boulder, United States
| | - Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Meng Li
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Cooperative Institute for Research in Environmental Sciences - University of Colorado Boulder, United States
| | - Barry Baker
- NOAA Air Resources Laboratory, College Park, MD 20740, USA
| | - Zachary Moon
- NOAA Air Resources Laboratory, College Park, MD 20740, USA
- Earth Resources Technology (ERT), Inc., Laurel, MD 20707, USA
| | - Ravan Ahmadov
- NOAA Global Systems Laboratory, Boulder, CO, United States
| | - Eva Y. Pfannerstill
- Department of Environmental Science and Policy Management, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Bryan Place
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Paul Wooldridge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Benjamin C. Schulze
- Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Caleb Arata
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Anthony Bucholtz
- Department of Meteorology, Naval Postgraduate School, Monterey, CA 93943, United States
| | - John H. Seinfeld
- Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Carsten Warneke
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
| | - Chelsea E. Stockwell
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Cooperative Institute for Research in Environmental Sciences - University of Colorado Boulder, United States
| | - Lu Xu
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Cooperative Institute for Research in Environmental Sciences - University of Colorado Boulder, United States
| | - Kristen Zuraski
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Cooperative Institute for Research in Environmental Sciences - University of Colorado Boulder, United States
| | - Michael A. Robinson
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Cooperative Institute for Research in Environmental Sciences - University of Colorado Boulder, United States
| | - Andy Neuman
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
| | | | - Jeff Peischl
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Cooperative Institute for Research in Environmental Sciences - University of Colorado Boulder, United States
| | - Steven S. Brown
- NOAA Chemical Sciences Laboratory, Boulder, CO, United States
- Department of Chemistry, Univesity of Colorado, Boulder, Boulder, CO 80309, United States
| | - Allen H. Goldstein
- Department of Environmental Science and Policy Management, University of California, Berkeley, Berkeley, CA 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Ronald C. Cohen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720, United States
| | | |
Collapse
|
4
|
Maranzana A, Tonachini G. Tropospheric Photochemistry of 2-Butenedial: Role of the Triplet States, CO and Acrolein Formation, and the Experimentally Unidentified Carbonyl Compound-Theoretical Study. Molecules 2024; 29:575. [PMID: 38338321 PMCID: PMC10856046 DOI: 10.3390/molecules29030575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Solar irradiation of 2-butenedial in the lower troposphere mainly produces isomeric ketene-enol (a key intermediate product), furanones, and maleic anhydride, the formation pathways of which were investigated in a previous study. The other main products were carbon monoxide and an experimentally unidentified carbonyl compound. This was the subject of the present study. The oxidative reaction mechanisms were studied using DFT calculations. Water intervention is found essential. Its addition and subsequent water-assisted isomerizations (an ene-gem-diol/enol and a carboxylic acid/enol form), followed by cyclization, lead to an interesting cyclic carbonyl compound, but this pathway appears to be rather energy demanding. An alternative implies water cooperation in a ketene-enol + carboxylic acid/enol addition that gives the relevant anhydride. The anhydride is proposed as a candidate for the experimentally unidentified carbonyl product. Regarding CO and acrolein formation, the role of the triplet states, as defined by the probability of intersystem crossing from the excited singlet state S1 to T2 and T1, is discussed. The T1 photolysis pathway connecting butenedial to propenal + CO was then defined.
Collapse
Affiliation(s)
- Andrea Maranzana
- Dipartimento di Chimica, Università di Torino, Corso Massimo D’Azeglio, 48, I-10125 Torino, Italy
| | | |
Collapse
|
5
|
Li Y, Zhang RM, Xu X. Theoretical Kinetics studies of isoprene peroxy radical chemistry: The fate of Z-δ-(4-OH, 1-OO)-ISOPOO radical. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115553. [PMID: 37839188 DOI: 10.1016/j.ecoenv.2023.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
The OH radical recycling mechanism in isoprene oxidation is one of the most exciting topics in atmospheric chemistry, and the corresponding studies expand our understanding of oxidation mechanisms of volatile organic compounds in the troposphere and provide reliable evidence to improve and develop conventional atmospheric models. In this work, we performed a detailed theoretical kinetics study on the Z-δ-(4-OH, 1-OO)-ISOPOO radical chemistry, which is proposed as the heart of OH recycling in isoprene oxidation. With the full consideration of its accumulation and consumption channels, we studied and discussed the fate of Z-δ-(4-OH, 1-OO)-ISOPOO radical by solving the energy-resolved master equation over a broad range of conditions, including not only room temperatures but also high temperatures of a forest fire or low temperatures and pressures of the upper troposphere. We found non-negligible pressure dependence of its fate at combustion temperatures (up to two orders of magnitude) and demonstrated the significance of both the multi-structural torsional anharmonicity and tunneling for accurately calculating kinetics of the studied system. More interestingly, the tunneling effect on the phenomenological rate constants of the H-shift reaction channel is also found to be pressure-dependent due to the competition with the O2 loss reaction. In addition, our time evolution calculations revealed a two-stage behavior of critical species in this reaction system and estimated the shortest half-lives for the Z-δ-(4-OH, 1-OO)-ISOPOO radical at various temperatures, pressures and altitudes. This detailed kinetics study of Z-δ-(4-OH, 1-OO)-ISOPOO radical chemistry offers a typical example to deeply understand the core mechanism of OH recycling pathways in isoprene oxidation, and provides valuable insights for promoting the development of relevant atmospheric models.
Collapse
Affiliation(s)
- Yan Li
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Rui Ming Zhang
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Li Y, Wang Y, Zhang RM, He X, Xu X. Comprehensive Theoretical Study on Four Typical Intramolecular Hydrogen Shift Reactions of Peroxy Radicals: Multireference Character, Recommended Model Chemistry, and Kinetics. J Chem Theory Comput 2023. [PMID: 37164004 DOI: 10.1021/acs.jctc.3c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Intramolecular hydrogen shift reactions in peroxy radicals (RO2• → •QOOH) play key roles in the low-temperature combustion and in the atmospheric chemistry. In the present study, we found that a mild-to-moderate multireference character of a potential energy surface (PES) is widely present in four typical hydrogen shift reactions of peroxy radicals (RO2•, R = ethyl, vinyl, formyl methyl, and acetyl) by a systematic assessment based on the T1 diagnostic, %TAE diagnostic, M diagnostic, and contribution of the dominant configuration of the reference CASSCF wavefunction (C02). To assess the effects of these inherent multireference characters on electronic structure calculations, we compared the PESs of the four reactions calculated by the multireference method CASPT2 in the complete basis set (CBS) limit, single-reference method CCSD(T)-F12, and single-reference-based composite method WMS. The results showed that ignoring the multireference character will introduce a mean unsigned deviation (MUD) of 0.46-1.72 kcal/mol from CASPT2/CBS results by using the CCSD(T)-F12 method or a MUD of 0.49-1.37 kcal/mol by WMS for three RO2• reactions (R = vinyl, formyl methyl, and acetyl) with a stronger multireference character. Further tests by single-reference Kohn-Sham (KS) density functional theory methods showed even larger deviations. Therefore, we specifically developed a new hybrid meta-generalized gradient approximation (GGA) functional M06-HS for the four typical H-shift reactions of peroxy radicals based on the WMS results for the ethyl peroxy radical reaction and on the CASPT2/CBS results for the others. The M06-HS method has an averaged MUD of 0.34 kcal/mol over five tested basis sets against the benchmark PESs, performing best in the tested 38 KS functionals. Last, in a temperature range of 200-3000 K, with the new functional, we calculated the high-pressure-limit rate coefficients of these H-shift reactions by the multi-structural variational transition-state theory with the small-curvature tunneling approximation (MS-CVT/SCT) and the thermochemical properties of all of the involved key radicals by the multi-structural torsional (MS-T) anharmonicity approximation method.
Collapse
Affiliation(s)
- Yan Li
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Rui Ming Zhang
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Probing isoprene photochemistry at atmospherically relevant nitric oxide levels. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Marsili E, Prlj A, Curchod BFE. A Theoretical Perspective on the Actinic Photochemistry of 2-Hydroperoxypropanal. J Phys Chem A 2022; 126:5420-5433. [PMID: 35900368 PMCID: PMC9393889 DOI: 10.1021/acs.jpca.2c03783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The photochemical reactions triggered by the sunlight
absorption
of transient volatile organic compounds in the troposphere are notoriously
difficult to characterize experimentally due to the unstable and short-lived
nature of these organic molecules. Some members of this family of
compounds are likely to exhibit a rich photochemistry given the diversity
of functional groups they can bear. Even more interesting is the photochemical
fate of volatile organic compounds bearing more than one functional
group that can absorb light—this is the case, for example,
of α-hydroperoxycarbonyls, which are formed during the oxidation
of isoprene. Experimental observables characterizing the photochemistry
of these molecules like photoabsorption cross-sections or photolysis
quantum yields are currently missing, and we propose here to leverage
a recently developed computational protocol to predict in silico the
photochemical fate of 2-hydroperoxypropanal (2-HPP) in the actinic
region. We combine different levels of electronic structure methods—SCS-ADC(2)
and XMS-CASPT2—with the nuclear ensemble approach and trajectory
surface hopping to understand the mechanistic details of the possible
nonradiative processes of 2-HPP. In particular, we predict the photoabsorption
cross-section and the wavelength-dependent quantum yields for the
observed photolytic pathways and combine them to determine in silico
photolysis rate constants. The limitations of our protocol and possible
future improvements are discussed.
Collapse
Affiliation(s)
- Emanuele Marsili
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Antonio Prlj
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
9
|
J. Medeiros D, Blitz MA, Seakins PW, Whalley LK. Direct Measurements of Isoprene Autoxidation: Pinpointing Atmospheric Oxidation in Tropical Forests. JACS AU 2022; 2:809-818. [PMID: 35557766 PMCID: PMC9088302 DOI: 10.1021/jacsau.1c00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 05/23/2023]
Abstract
2-Methyl-1,3-butadiene (isoprene), released from biogenic sources, accounts for approximately a third of hydrocarbon emissions and is mainly removed by hydroxyl radicals, OH, the primary initiator of atmospheric oxidation. In situ measurements in clean tropical forests (high isoprene and low NO x ) have measured OH concentrations up to an order of magnitude higher than model predictions, which impacts our understanding of global oxidation. In this study, direct, laser flash photolysis, laser-induced fluorescence measurements at elevated temperatures have observed OH recycling in the presence of isoprene and oxygen under conditions where interference from secondary or heterogeneous chemistry is minimal. Our results provide the first direct, time-resolved, experimental validation of the theory-based Leuven Isoprene Mechanism (LIM1), based on isomerization of isoprene-RO2 radicals and OH regeneration, that partially accounts for model:measurement divergence in OH. While our data can be fit with only minor alterations in important LIM1 parameters, and the overall rate of product formation is similar to LIM1, there are differences with the recent experimental study by Teng et al. J. Am. Chem. Soc. 2017, 139, 5367-5377. In addition, our study indicates that the dihydroperoxide products are significantly enhanced over previous estimates. Dihydroperoxides are chemical and photochemical sources of OH, and the implications of enhanced hydroperoxide formation on the agreement between models and observations in tropical forests are examined.
Collapse
Affiliation(s)
| | - Mark A. Blitz
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- National
Centre for Atmospheric Science (NCAS), University
of Leeds, Leeds LS2 9JT, UK
| | | | - Lisa K. Whalley
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- National
Centre for Atmospheric Science (NCAS), University
of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Goldman MJ, Green WH, Kroll JH. Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NO x Level. J Phys Chem A 2021; 125:10303-10314. [PMID: 34843244 DOI: 10.1021/acs.jpca.1c07203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic peroxy radicals (RO2) are key intermediates in the oxidation of organic compounds in both combustion systems and the atmosphere. While many studies have focused on reactions of RO2 in specific applications, spanning a relatively limited range of reaction conditions, the generalized behavior of RO2 radicals across the full range of reaction conditions (temperatures, pressures, and NO levels) has, to our knowledge, never been explored. In this work, two simple model systems, n-propyl peroxy radical and γ-isobutanol peroxy radical, are used to evaluate RO2 fate using pressure-dependent kinetics. The fate of these radicals was modeled based on literature data over 250-1250 K, 0.01-100 bar, and 1 ppt to 100 ppm of NO, which spans the typical range of atmospheric and combustion conditions. Covering this entire range provides a broad overview of the reactivity of these species under both atmospheric and combustion conditions, as well as under conditions intermediate to the two. A particular focus is on the importance of reactions that were traditionally considered to occur in only one of the two sets of conditions: RO2 unimolecular isomerization reactions (long known to occur in combustion systems but only recently appreciated in atmospheric systems) and RO2 bimolecular reactions of RO2 with NO (thought to occur mainly in atmospheric systems and rarely considered in combustion chemistry).
Collapse
Affiliation(s)
- Mark Jacob Goldman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jesse H Kroll
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Møller KH, Bates KH, Kjaergaard HG. The Importance of Peroxy Radical Hydrogen-Shift Reactions in Atmospheric Isoprene Oxidation. J Phys Chem A 2019; 123:920-932. [DOI: 10.1021/acs.jpca.8b10432] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristian H. Møller
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kelvin H. Bates
- Center for the Environment, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
12
|
Otkjær RV, Jakobsen HH, Tram CM, Kjaergaard HG. Calculated Hydrogen Shift Rate Constants in Substituted Alkyl Peroxy Radicals. J Phys Chem A 2018; 122:8665-8673. [DOI: 10.1021/acs.jpca.8b06223] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rasmus V. Otkjær
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Helene H. Jakobsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Camilla Mia Tram
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
13
|
Medeiros DJ, Blitz MA, James L, Speak TH, Seakins PW. Kinetics of the Reaction of OH with Isoprene over a Wide Range of Temperature and Pressure Including Direct Observation of Equilibrium with the OH Adducts. J Phys Chem A 2018; 122:7239-7255. [DOI: 10.1021/acs.jpca.8b04829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. J. Medeiros
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | - M. A. Blitz
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
- National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, U.K
| | - L. James
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | - T. H. Speak
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | - P. W. Seakins
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
- National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
14
|
Wennberg PO, Bates KH, Crounse JD, Dodson LG, McVay RC, Mertens LA, Nguyen TB, Praske E, Schwantes RH, Smarte MD, St Clair JM, Teng AP, Zhang X, Seinfeld JH. Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chem Rev 2018. [PMID: 29522327 DOI: 10.1021/acs.chemrev.7b00439] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isoprene carries approximately half of the flux of non-methane volatile organic carbon emitted to the atmosphere by the biosphere. Accurate representation of its oxidation rate and products is essential for quantifying its influence on the abundance of the hydroxyl radical (OH), nitrogen oxide free radicals (NO x), ozone (O3), and, via the formation of highly oxygenated compounds, aerosol. We present a review of recent laboratory and theoretical studies of the oxidation pathways of isoprene initiated by addition of OH, O3, the nitrate radical (NO3), and the chlorine atom. From this review, a recommendation for a nearly complete gas-phase oxidation mechanism of isoprene and its major products is developed. The mechanism is compiled with the aims of providing an accurate representation of the flow of carbon while allowing quantification of the impact of isoprene emissions on HO x and NO x free radical concentrations and of the yields of products known to be involved in condensed-phase processes. Finally, a simplified (reduced) mechanism is developed for use in chemical transport models that retains the essential chemistry required to accurately simulate isoprene oxidation under conditions where it occurs in the atmosphere-above forested regions remote from large NO x emissions.
Collapse
|