1
|
Shu Y, Varga Z, Zhang D, Truhlar DG. ChemPotPy: A Python Library for Analytic Representations of Potential Energy Surfaces and Diabatic Potential Energy Matrices. J Phys Chem A 2023; 127:9635-9640. [PMID: 37916790 DOI: 10.1021/acs.jpca.3c05899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Constructing analytic representations of global and semiglobal potential energy surfaces is difficult and can be laborious, and it is even harder when one needs coupled potential energy surfaces and their electronically nonadiabatic couplings. When accomplished, however, the resulting potential functions are a valuable resource. To facilitate the convenient use of potentials that have been developed, we provide a collection of existing surfaces in a library with consistent units and formats. A potential energy surface library of this type, namely PotLib, was built more than 20 years ago. However, that library only provided pristine Fortran subroutines for each potential energy surface, and therefore, it is not as user-friendly as would be desirable. Here, we report the creation of ChemPotPy, a CHEMical library of POTential energy surfaces in PYthon. ChemPotPy is a user-friendly library for analytic representation of single-state and multistate potential energy surfaces and couplings. A given entry in the library contains an analytic potential energy function or analytic functions for a set of coupled potential energy surfaces, and depending on the case, it may also include analytic or numerical gradients, nonadiabatic coupling vectors, and/or diabatic potential energy matrices and their gradients. Only three inputs, namely, the chemical formula of the system, the name of the potential energy surface or surface set, and the Cartesian geometry, are required. ChemPotPy uses the same units for input and output quantities of all surfaces and surface sets to facilitate general interfaces with the dynamics programs. The initial version of the library contains 338 entries, and we anticipate that more will be added in the future.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Zoltan Varga
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Dayou Zhang
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
2
|
Wang HD, Fu YL, Fu B, Fang W, Zhang DH. A highly accurate full-dimensional ab initio potential surface for the rearrangement of methylhydroxycarbene (H 3C-C-OH). Phys Chem Chem Phys 2023; 25:8117-8127. [PMID: 36876923 DOI: 10.1039/d3cp00312d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
We report here a full-dimensional machine learning global potential surface (PES) for the rearrangement of methylhydroxycarbene (H3C-C-OH, 1t). The PES is trained with the fundamental invariant neural network (FI-NN) method on 91 564 ab initio energies calculated at the UCCSD(T)-F12a/cc-pVTZ level of theory, covering three possible product channels. FI-NN PES has the correct symmetry properties with respect to permutation of four identical hydrogen atoms and is suitable for dynamics studies of the 1t rearrangement. The averaged root mean square error (RMSE) is 11.4 meV. Six important reaction pathways, as well as the energies and vibrational frequencies at the stationary geometries on these pathways are accurately preproduced by our FI-NN PES. To demonstrate the capacity of the PES, we calculated the rate coefficient of hydrogen migration in -CH3 (path A) and hydrogen migration of -OH (path B) with instanton theory on this PES. Our calculations predicted the half-life of 1t to be 95 min, which is excellent in agreement with experimental observations.
Collapse
Affiliation(s)
- Heng-Ding Wang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yan-Lin Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wei Fang
- Fudan University, Shanghai, 200032, China.
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
3
|
Qin J, Liu Y, Li J. Quantitative Dynamics of Paradigmatic SN2 reaction OH− + CH3F on Accurate Full-Dimensional Potential Energy Surface. J Chem Phys 2022; 157:124301. [DOI: 10.1063/5.0112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bimolecular reaction between OH− and CH3F is not just a prototypical SN2 process but also has three other product channels. Here, we develop an accurate full-dimensional potential energy surface (PES) based on 191 193 points calculated at the level CCSD(T)-F12a/aug-cc-pVTZ. A detailed dynamics and mechanism analysis were carried out on this PES by using the quasi-classical trajectory approach. It is verified that the trajectories do not follow the minimum energy path (MEP) but directly dissociate to F− and CH3OH. In addition, a new transition state for proton exchange and a new product complex CH2F−‧‧‧H2O for proton abstraction were discovered. The trajectories avoid the transition state or this complex, instead dissociate to H2O and CH2F− directly through the ridge regions of the MEP before the transition state. These non-MEP dynamics become more pronounced at high collision energies. Detailed dynamics simulations provide new insights into the atomic-level mechanisms of the title reaction thanks to the new chemically accurate PES with the aid of the machine learning.
Collapse
Affiliation(s)
- Jie Qin
- Chemistry and Chemical Engineering, Chongqing University Department of Chemical Engineering, China
| | | | - Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, China
| |
Collapse
|
4
|
Song K, Song H, Li J. Validating experiments for the reaction H 2 + NH 2- by dynamical calculations on an accurate full-dimensional potential energy surface. Phys Chem Chem Phys 2022; 24:10160-10167. [PMID: 35420091 DOI: 10.1039/d2cp00870j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion-molecule reactions play key roles in the field of ion related chemistry. As a prototypical multi-channel ion-molecule reaction, the reaction H2 + NH2- → NH3 + H- has been studied for decades. In this work, we develop a new globally accurate potential energy surface (PES) for the title system based on hundreds of thousands of sampled points over a wide dynamically relevant region that covers long-range interacting configuration space. The permutational invariant polynomial-neural network (PIP-NN) method is used for fitting and the resulting total root mean squared error (RMSE) is extremely small, 0.026 kcal mol-1. Extensive dynamical and kinetic calculations are carried out on this PIP-NN PES. Impressively, a unique phenomenon of significant reactivity suppression by exciting the rotational mode of H2 is reported, supported by both the quasi-classical trajectory (QCT) and quantum dynamics (QD) calculations. Further analysis uncovers that exciting the H2 rotational mode would prevent the formation of the reactant complex and thus suppress the reactivity. The calculated rate coefficients for H2/D2 + NH2- agree well with the experimental results, which show an inverse temperature dependence from 50 to 300 K, consistent with the capture nature of this barrierless reaction. The significant kinetic isotope effect observed by experiments is well reproduced by the QCT computations as well.
Collapse
Affiliation(s)
- Kaisheng Song
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, P. R. China.
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, P. R. China.
| |
Collapse
|
5
|
Theoretical Description of Water from Single-Molecule to Condensed Phase: a Review of Recent Progress on Potential Energy Surfaces and Molecular Dynamics. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
6
|
Hadizadeh MH, Pan Z, Azamat J. Investigation of OH radical in the water nanodroplet during vapor freezing process: An ab initio molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Song H, Zhu Y, Pan M, Yang M. Dissociative photodetachment of H 3O 2-: a full-dimensional quantum dynamics study. Phys Chem Chem Phys 2021; 23:22298-22304. [PMID: 34590660 DOI: 10.1039/d1cp03495b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transition state is a central concept of chemistry. Photoelectron-photofragment coincidence (PPC) spectroscopy has been proven as an attractive method to study the transition state dynamics. Within a state-of-the-art full-dimensional quantum mechanical model, the dissociative photodetachment dynamics of H3O2- is investigated on accurate anion and neutral potential energy surfaces. The calculated PPC spectrum of H3O2- agrees well with the experimental measurement. The dissociative product OH is exclusively populated on the ground vibrational state, implying the character of the spectator bond. In contrast, the product H2O is predominantly populated in the ground and fundamental states of the symmetric and antisymmetric stretching modes, which is caused by the strong coupling between the antisymmetric motion of the transferred H atom in the transient intermediate [H3O2]* and both stretching modes of the product H2O.
Collapse
Affiliation(s)
- Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongfa Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Mengyi Pan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China. .,College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079, China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China. .,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| |
Collapse
|
8
|
Cao W, Xantheas SS, Wang XB. Cryogenic Vibrationally Resolved Photoelectron Spectroscopy of OH -(H 2O): Confirmation of Multidimensional Franck-Condon Simulation Results for the Transition State of the OH + H 2O Reaction. J Phys Chem A 2021; 125:2154-2162. [PMID: 33661632 DOI: 10.1021/acs.jpca.1c00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a transition state spectroscopic study of the OH + H2O reaction using the experimental technique of cryogenic negative ion photoelectron spectroscopy (NIPES). The recorded NIPE spectrum at 193 nm exhibits multiple vibrational progressions that include excitations to the shared H atom antisymmetric stretching mode with an interval of 0.32 eV as well as other progressions, mainly involving the H bending and O···O symmetric stretching modes. The vertical detachment energy (VDE) was measured at 3.53 eV, whereas an upper limit for the adiabatic detachment energy (ADE) was estimated at 2.90 eV. These values are in excellent agreement with the theoretically computed values of 3.51 and 2.87 eV, respectively, obtained at the CCSD(T)/aug-cc-pV5Z level of theory. The recorded NIPE spectrum is in very good agreement when compared to the one recently reported from four-dimensional Franck-Condon simulations, in which a similar spectral profile was predicted. Besides observing the ground state, we identified a charge-transfer excited state in the form of [OH-(H2O)+] with a relative energy of 1.39 eV, well matching the previous prediction of 1.36 eV.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Li J, Li J. A Full-Dimensional Potential Energy Surface and Dynamics of the Multichannel Reaction between H and HO 2. J Phys Chem A 2021; 125:1540-1552. [PMID: 33591185 DOI: 10.1021/acs.jpca.0c11213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In addition to its vital significance in combustion and atmospheric chemistry, the reaction between H' and HO2 on the ground triplet state represents a prototype with multiple product channels, including H2 + O2, OH + OH, O + H2O, and H + H'O2. In this work, a full-dimensional accurate potential energy surface (PES) for the title reaction was developed to provide reliable descriptions for all dynamically relevant regions. Using this PES, we adopted the quasi-classical trajectory approach to study the corresponding reaction dynamics, including the reactivity of each product channel and the associated product branching ratio, the product energy distributions, product angular distributions, and associated microscopic mechanisms. For representing distributions of the product energies, such as product translational energy as well as product rotational and vibrational energies, both the traditional histogram and the kernel density estimation (KDE) methods were used and compared. It seems that the features of the resulting distributions in this work are very similar to each other among different methods. The KDE method is suggested for statistics, particularly for those populations with small oscillations in the histogram plot.
Collapse
Affiliation(s)
- Jia Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
10
|
Qin J, Li J. An accurate full-dimensional potential energy surface for the reaction OH + SO → H + SO2. Phys Chem Chem Phys 2021; 23:487-497. [DOI: 10.1039/d0cp05206j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An accurate full-dimensional PES for the OH + SO ↔ H + SO2 reaction is developed by the permutation invariant polynomial-neural network approach.
Collapse
Affiliation(s)
- Jie Qin
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 401331
- China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
11
|
Chu X, Qian W, Lu B, Wang L, Qin J, Li J, Rauhut G, Trabelsi T, Francisco JS, Zeng X. The Triplet Hydroxyl Radical Complex of Phosphorus Monoxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xianxu Chu
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Weiyu Qian
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Bo Lu
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Lina Wang
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Jie Qin
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 401331 China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 401331 China
| | - Guntram Rauhut
- Institute for Theoretical Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Tarek Trabelsi
- Department of Earth and Environment Science and Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6243 USA
| | - Joseph S. Francisco
- Department of Earth and Environment Science and Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6243 USA
| | - Xiaoqing Zeng
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
12
|
Chu X, Qian W, Lu B, Wang L, Qin J, Li J, Rauhut G, Trabelsi T, Francisco JS, Zeng X. The Triplet Hydroxyl Radical Complex of Phosphorus Monoxide. Angew Chem Int Ed Engl 2020; 59:21949-21953. [PMID: 33073924 DOI: 10.1002/anie.202011512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Indexed: 01/07/2023]
Abstract
Phosphorus monoxide (. PO) is a key intermediate in phosphorus chemistry, and its association with the hydroxyl radical (. OH) to yield metaphosphorous acid (cis-HOPO) contributes to the chemiluminescence in the combustion of phosphines. When photolyzing cis-HOPO in an Ar-matrix at 2.8 K, the simplest dioxophosphorane HPO2 and an elusive hydroxyl radical complex (HRC) of . PO form. This prototypical radical-radical complex reforms into cis-HOPO at above 12.0 K by overcoming a barrier of 0.28±0.02 kcal mol-1 . The vibrational spectra of this HRC and its D- and 18 O-isotopologues suggest a structure of . OH⋅⋅⋅OP. , for which a triplet spin multiplicity with a binding energy of -3.20 kcal mol-1 has been computed at the UCCSD(T)-F12a/aug-cc-pVTZ level.
Collapse
Affiliation(s)
- Xianxu Chu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Bo Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lina Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jie Qin
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Tarek Trabelsi
- Department of Earth and Environment Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6243, USA
| | - Joseph S Francisco
- Department of Earth and Environment Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6243, USA
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
13
|
Liu Y, Li J. Quantitative Dynamics of the N 2O + C 2H 2 → Oxadiazole Reaction: A Model for 1,3-Dipolar Cycloadditions. ACS OMEGA 2020; 5:23343-23350. [PMID: 32954185 PMCID: PMC7496009 DOI: 10.1021/acsomega.0c03210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The reaction N2O + C2H2 → oxadiazole has been considered as a prototype for 1,3-dipolar cycloadditions. Here, we report a comprehensive dynamical study of this important reaction on a full-dimensional potential energy surface, which is fitted to about 64 000 high-level ab initio data by a machine learning approach. Comprehensive dynamical simulations are carried out to provide quantitative chemical insight into its reaction dynamics. In addition to confirming the enhancement effect of the N2O bending mode on the reactivity, intricate mode specificity effects of other vibrational modes in reactants are revealed for the first time. The asymmetric stretching mode of N2O and the C-C-H bending mode of C2H2 show no effect. All remaining modes can enhance the reactivity. In particular, the vibrational excitation of the N2O symmetric stretching mode shows similar enhancement effect on the title reaction, compared to its bending mode excitation. Detailed analysis reveals that the concerted mechanism dominates with the reactants propelled sufficiently close to each other to yield product. This study advances our understanding of the chemical dynamics of the title reaction.
Collapse
|
14
|
Jiang B, Li J, Guo H. High-Fidelity Potential Energy Surfaces for Gas-Phase and Gas-Surface Scattering Processes from Machine Learning. J Phys Chem Lett 2020; 11:5120-5131. [PMID: 32517472 DOI: 10.1021/acs.jpclett.0c00989] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this Perspective, we review recent advances in constructing high-fidelity potential energy surfaces (PESs) from discrete ab initio points, using machine learning tools. Such PESs, albeit with substantial initial investments, provide significantly higher efficiency than direct dynamics methods and/or high accuracy at a level that is not affordable by on-the-fly approaches. These PESs not only are a necessity for quantum dynamical studies because of delocalization of wave packets but also enable the study of low-probability and long-time events in (quasi-)classical treatments. Our focus here is on inelastic and reactive scattering processes, which are more challenging than bound systems because of the involvement of continua. Relevant applications and developments for dynamical processes in both the gas phase and at gas-surface interfaces are discussed.
Collapse
Affiliation(s)
- Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
15
|
Li J, Varga Z, Truhlar DG, Guo H. Many-Body Permutationally Invariant Polynomial Neural Network Potential Energy Surface for N4. J Chem Theory Comput 2020; 16:4822-4832. [DOI: 10.1021/acs.jctc.0c00430] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Li
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Zoltan Varga
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
16
|
Chen C, Lu B, Zhao X, Qian W, Liu J, Trabelsi T, Francisco JS, Qin J, Li J, Wang L, Zeng X. Capture of the Sulfur Monoxide–Hydroxyl Radical Complex. J Am Chem Soc 2020; 142:2175-2179. [DOI: 10.1021/jacs.9b12152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Changyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Bo Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Xiaofang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Jie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Tarek Trabelsi
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Joseph S. Francisco
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Jie Qin
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, 401331 Chongqing, China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, 401331 Chongqing, China
| | - Lina Wang
- Department of Chemistry, Fudan University, 200433 Shanghai, China
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
- Department of Chemistry, Fudan University, 200433 Shanghai, China
| |
Collapse
|
17
|
Liu Y, Li J. An accurate potential energy surface and ring polymer molecular dynamics study of the Cl + CH4→ HCl + CH3reaction. Phys Chem Chem Phys 2020; 22:344-353. [DOI: 10.1039/c9cp05693a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal rate coefficients for the Cl + CH4/CD4reactions were studied on a new full-dimensional accurate potential energy surface with the spin–orbit corrections considered in the entrance channel.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Jun Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
18
|
Sugiura Y, Takayanagi T. Franck–Condon simulations of transition-state spectra for the OH + H2O and OD + D2O reactions. Phys Chem Chem Phys 2020; 22:20685-20692. [DOI: 10.1039/d0cp03681a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum wave packet calculations in reduced dimensions were performed to analyze the experimentally measured transition-state spectra of the OH + H2O and OD + D2O hydrogen exchange reactions.
Collapse
Affiliation(s)
- Yutaro Sugiura
- Department of Chemistry
- Saitama University
- Saitama City
- Japan
| | | |
Collapse
|
19
|
Zhu Y, Lu Y, Song H. Thermal rate coefficients and kinetic isotope effects of the reaction HO + H2O → H2O + OH. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2495-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Qin J, Liu Y, Lu D, Li J. Theoretical Study for the Ground Electronic State of the Reaction OH + SO → H + SO2. J Phys Chem A 2019; 123:7218-7227. [DOI: 10.1021/acs.jpca.9b05776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Qin
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Dandan Lu
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
21
|
Zheng R, Zhu Y, Song H. Mode-specific quantum dynamics and kinetics of the hydrogen abstraction reaction OH + H2O → H2O + OH. Phys Chem Chem Phys 2019; 21:24054-24060. [DOI: 10.1039/c9cp04721b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effect between the reactant stretching and bending modes on promoting the reaction.
Collapse
Affiliation(s)
- Rui Zheng
- School of Physics and Electronics
- North China University of Water Resources and Electric Power
- Zhengzhou 450011
- China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
| | - Yongfa Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| |
Collapse
|
22
|
Liu Y, Bai M, Song H, Xie D, Li J. Anomalous kinetics of the reaction between OH and HO2on an accurate triplet state potential energy surface. Phys Chem Chem Phys 2019; 21:12667-12675. [DOI: 10.1039/c9cp01553a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quasi-classical trajectory predicts the rate coefficient of the OH + HO2→ H2O + O2reaction based on a full dimensional accurate PIP-NN PES, which is fit to 108 000 points calculated at the CCSD(T)-F12a/AVTZ level.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Mengna Bai
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Jun Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
23
|
Zhu Y, Ping L, Bai M, Liu Y, Song H, Li J, Yang M. Tracking the energy flow in the hydrogen exchange reaction OH + H 2O → H 2O + OH. Phys Chem Chem Phys 2018; 20:12543-12556. [PMID: 29693667 DOI: 10.1039/c8cp00938d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prototypical hydrogen exchange reaction OH + H2O → H2O + OH has attracted considerable interest due to its importance in a wide range of chemically active environments. In this work, an accurate global potential energy surface (PES) for the ground electronic state was developed based on ∼44 000 ab initio points at the level of UCCSD(T)-F12a/aug-cc-pVTZ. The PES was fitted using the fundamental invariant-neural network method with a root mean squared error of 4.37 meV. The mode specific dynamics was then studied by the quasi-classical trajectory method on the PES. Furthermore, the normal mode analysis approach was employed to calculate the final vibrational state distribution of the product H2O, in which a new scheme to acquire the Cartesian coordinates and momenta of each atom in the product molecule from the trajectories was proposed. It was found that, on one hand, excitation of either the symmetric stretching mode or the asymmetric stretching mode of the reactant H2O promotes the reaction more than the translational energy, which can be rationalized by the sudden vector projection model. On the other hand, the relatively higher efficacy of exciting the symmetric stretching mode than that of the asymmetric stretching mode is caused by the prevalence of the indirect mechanism at low collision energies and the stripping mechanism at high collision energies. In addition, the initial collision energy turns ineffectively into the vibrational energy of the products H2O and OH while a fraction of the energy transforms into the rotational energy of the product H2O. Fundamental excitation of the stretching modes of H2O results in the product H2O having the highest population in the fundamental state of the asymmetric stretching mode, followed by the ground state and the fundamental state of the symmetric stretching mode.
Collapse
Affiliation(s)
- Yongfa Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Lu X, Shao K, Fu B, Wang X, Zhang DH. An accurate full-dimensional potential energy surface and quasiclassical trajectory dynamics of the H + H2O2 two-channel reaction. Phys Chem Chem Phys 2018; 20:23095-23105. [DOI: 10.1039/c8cp04045a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quasiclassical trajectory calculations reveal interesting dynamics features based on an accurate FI-NN PES for the H + H2O2 two-channel reaction.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
| | - Kejie Shao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- People's Republic of China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- People's Republic of China
| | - Xingan Wang
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- People's Republic of China
| |
Collapse
|
25
|
Synthesis, structure and characterization of a new nonlinear optical calcium borate [Ca2B5O9]·[H(OH)2]. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Li J, Xie C, Guo H. Kinetics and dynamics of the C(3P) + H2O reaction on a full-dimensional accurate triplet state potential energy surface. Phys Chem Chem Phys 2017; 19:23280-23288. [PMID: 28825759 DOI: 10.1039/c7cp04578f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A full-dimensional accurate PES for the C(3P) + H2O reaction is developed using the PIP-NN method.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Changjian Xie
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|