1
|
Li C, Bocquet ML, Lu Y, Lorente N, Gruber M, Berndt R, Weismann A. Large Orbital Moment and Dynamical Jahn-Teller Effect of AlCl-Phthalocyanine on Cu(100). PHYSICAL REVIEW LETTERS 2024; 133:126201. [PMID: 39373439 DOI: 10.1103/physrevlett.133.126201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/03/2024] [Accepted: 08/15/2024] [Indexed: 10/08/2024]
Abstract
Submonolayer amounts of chloroaluminum-phthalocyanine on Cu(100) were studied with scanning tunneling spectroscopy. The molecule can be prepared in a fourfold symmetric state whose conductance spectrum exhibits a zero-bias feature similar to a Kondo resonance. In magnetic fields, however, this resonance splits far more than expected from the spin of a single electron. Density functional theory calculations reveal a charge transfer of 1.3 electrons to the degenerate lowest unoccupied molecular orbitals. These orbitals are mixed by the orbital momentum operator L[over ^]_{z} with a large matrix element corresponding to m_{L}≈2.7. Dehydrogenation of a ligand lifts the degerenracy of the lowest unoccupied molecular orbital, reduces the splitting in magnetic fields, and induces a polarity dependence of the spectra. Using model calculations of the spin, orbital, and vibrational degrees of freedom we show that a dynamical Jahn-Teller effect reproduces the main experimental observations.
Collapse
|
2
|
Guo H, Jiménez-Sánchez MD, Martínez-Galera AJ, Gómez-Rodríguez JM. Growth of 1D ClAlPc molecular chains mediated by graphene moiré patterns. NANOSCALE 2023; 15:5083-5091. [PMID: 36808204 DOI: 10.1039/d2nr06237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The on-surface formation of iso-oriented 1D molecular architectures, with high structural perfection, on 2D materials has been a long-sought objective. However, such realization has been troublesome and limited, and it still remains an experimental challenge. Here, the quasi-1D stripe-like moiré pattern, arising at the interface of graphene grown on Rh(110), has been used to guide the formation of 1D molecular wires of π-conjugated, non-planar, chloro-aluminum phthalocyanine (ClAlPc) molecules, brought together by van der Waals interactions. Using scanning tunnelling microscopy (STM) under ultra-high vacuum (UHV) at 40 K, the preferential adsorption orientations of the molecules at low coverages have been investigated. The results shed light on the potential signature of graphene lattice symmetry breaking, induced by the incommensurate quasi-1D moiré pattern of Gr/Rh(110), as the subtle mechanism behind this templated growth of 1D molecular structures. For coverages close to 1 ML, the molecule-molecule interactions favor a closely packed square lattice arrangement. The present work provides new insights to tailor 1D molecular structures on graphene grown on a non-hexagonal metal substrate.
Collapse
Affiliation(s)
- Haojie Guo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | - Mariano D Jiménez-Sánchez
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | - Antonio J Martínez-Galera
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - José M Gómez-Rodríguez
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
3
|
Moiseeva EO, Trashin S, Korostei YS, Ullah Khan S, Kosov AD, De Wael K, Dubinina TV, Tomilova LG. Electrochemical and spectroelectrochemical studies of tert-butyl-substituted aluminum phthalocyanine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Polek M, Basova TV, Chassé T, Peisert H. The interface between chloroaluminum phthalocyanine and titanium dioxide: the influence of surface defects and substrate termination. Phys Chem Chem Phys 2021; 23:13370-13380. [PMID: 34105557 DOI: 10.1039/d1cp01638e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interface properties of chloroaluminum(iii) phthalocyanine (AlClPc) on two different rutile titanium dioxide (TiO2) single crystal surfaces ((100) and (001)) have been studied using X-ray and ultraviolet photoemission spectroscopy (XPS and UPS). It is shown that the strength of the interaction clearly depends on the substrate termination and preparation. Generally, the (001) surface is more reactive compared to the (100) surface. The most important interaction channel involves the nitrogen atoms of the phthalocyanine macrocycle. An exposure to oxygen during the annealing steps of the preparation procedure allows diminishing the extent of interaction of nitrogen with titanium dioxide. The work function of AlClPc/TiO2 is rather independent of the substrate, indicating a pinning regime at all interfaces, where the HOMO of the molecule is aligned at the maximum of the defect states of the substrate.
Collapse
Affiliation(s)
- Małgorzata Polek
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Tamara V Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Thomas Chassé
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany. and Center for Light-Matter Interaction, Sensors & Analytics (LISA+) at the University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Heiko Peisert
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| |
Collapse
|
5
|
Liu D, Di B, Peng Z, Yin C, Zhu H, Wen X, Chen Q, Zhu J, Wu K. Surface-mediated ordering of pristine Salen molecules on coinage metals. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational isomers of Salen molecules and their self-assembled structures on coinage metal surfaces.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Bin Di
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Zhantao Peng
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Cen Yin
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Hao Zhu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Xiaojie Wen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Qiwei Chen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei 230029
- China
| | - Kai Wu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
6
|
Yin C, Peng Z, Liu D, Song H, Zhu H, Chen Q, Wu K. Selective Intramolecular Dehydrocyclization of Co-Porphyrin on Au(111). Molecules 2020; 25:molecules25173766. [PMID: 32824933 PMCID: PMC7503656 DOI: 10.3390/molecules25173766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/02/2022] Open
Abstract
The on-surface C–H bond activation and coupling reaction is a powerful approach to constructing fine-tuned surface nanostructures. It is quite challenging to control its regioselectivity due to the inertness of the C–H bond involved. With scanning tunneling microscopy/spectroscopy and theoretical calculations, the C–H activation and sequential intramolecular dehydrocyclization of meso-tetra(p-methoxyphenyl)porphyrinatocobalt(II) was explored on Au(111), showing that the methoxy groups in the molecule could kinetically mediate the selectivity of the intramolecular reaction over its intermolecular coupling counterpart. The experimental results demonstrate that the introduced protecting group could help augment the selectivity of such on-surface reaction, which can be applied to the precise fabrication of functional surface nanostructures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kai Wu
- Correspondence: (Q.C.); (K.W.)
| |
Collapse
|
7
|
Franco-Cañellas A, Duhm S, Gerlach A, Schreiber F. Binding and electronic level alignment of π-conjugated systems on metals. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:066501. [PMID: 32101802 DOI: 10.1088/1361-6633/ab7a42] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We review the binding and energy level alignment of π-conjugated systems on metals, a field which during the last two decades has seen tremendous progress both in terms of experimental characterization as well as in the depth of theoretical understanding. Precise measurements of vertical adsorption distances and the electronic structure together with ab initio calculations have shown that most of the molecular systems have to be considered as intermediate cases between weak physisorption and strong chemisorption. In this regime, the subtle interplay of different effects such as covalent bonding, charge transfer, electrostatic and van der Waals interactions yields a complex situation with different adsorption mechanisms. In order to establish a better understanding of the binding and the electronic level alignment of π-conjugated molecules on metals, we provide an up-to-date overview of the literature, explain the fundamental concepts as well as the experimental techniques and discuss typical case studies. Thereby, we relate the geometric with the electronic structure in a consistent picture and cover the entire range from weak to strong coupling.
Collapse
Affiliation(s)
- Antoni Franco-Cañellas
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
8
|
Forker R, Gruenewald M, Sojka F, Peuker J, Mueller P, Zwick C, Huempfner T, Meissner M, Fritz T. Fraternal twins: distinction between PbPc and SnPc by their switching behaviour in a scanning tunnelling microscope. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:134004. [PMID: 30729922 DOI: 10.1088/1361-648x/aafeae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this contribution, we compare the optical absorbance behaviour and the structural properties of lead(II)-phthalocyanine (PbPc) and tin(II)-phthalocyanine (SnPc) thin films. To this end, we employ a Ag(1 1 1) substrate terminated with a monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride constituting an internal interface whose main effect is an electronic decoupling of the phthalocyanine adlayer from the metal surface. As deduced from low-energy electron diffraction and scanning tunnelling microscopy (STM) measurements, the epitaxial relations and unit cell compositions of the prevailing PbPc monolayer and multilayer domains are confusingly similar to those of SnPc on PTCDA/Ag(1 1 1). However, SnPc and PbPc can be readily distinguished by their STM-induced switching behaviours: while the former is capable of reversible configurational changes, no effect on the latter could be achieved by us under comparable conditions. This corroborates earlier theoretical predictions and even renders the chemical identification of individual shuttlecock-shaped metal-phthalocyanines feasible.
Collapse
Affiliation(s)
- Roman Forker
- Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, 07743 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|