1
|
Kim HR, Yeon C, Kim JH, Lee G, Baek S, Lim H, Lee CW, Joo JH. Enhancing OER Activity Through Water Treatment-Induced Surface Reconstruction of Metal Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500078. [PMID: 39905894 DOI: 10.1002/smll.202500078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/20/2025] [Indexed: 02/06/2025]
Abstract
This research introduces a simple and effective method to enhance oxygen evolution reaction (OER) performance through surface reconstruction of metal substrates via hydration. A water treatment technique is employed to form a nanometer-thick hydroxide layer on Ni foam, which significantly improved OER activity compared to pristine Ni. To further explore catalyst performance on hydrated substrates, NiFe layered double hydroxide (LDH) is deposited, resulting in NiFe LDH@hydrated Ni foam achieving superior performance and exceptional stability, maintaining 1 A cm-2 for 1000 h. In contrast, NiFe LDH@pristine Ni foam showed rapid degradation. Interestingly, while the hydrated hydroxide layer demonstrated remarkable OER activity, it is ineffective for hydrogen evolution reaction (HER). Density functional theory (DFT) calculations revealed the differing roles of hydroxides in OER and HER, providing insights into their electrochemical pathways. These findings highlight that simple hydration enhances the activity and long-term stability of LDH catalysts, addressing a key limitation in their practical use. This study demonstrates a promising and scalable strategy for improving OER performance and catalyst durability, offering valuable insights into the role of surface hydroxides in electrode reactions for energy applications.
Collapse
Affiliation(s)
- Hye Ri Kim
- Department of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Changho Yeon
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jee Hyeon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
- Center for Quantum Conversion Research (QCR), Institute of Basic Science (IBS), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Gahyeon Lee
- Department of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, South Korea
| | - Seulgi Baek
- Department of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hyunseob Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
- Center for Quantum Conversion Research (QCR), Institute of Basic Science (IBS), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Chan-Woo Lee
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
- Energy AI & Computational Science Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
| | - Jong Hoon Joo
- Department of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, South Korea
| |
Collapse
|
2
|
Li Z, Li M, Chen Y, Ye X, Liu M, Lee LYS. Upcycling of Spent LiFePO 4 Cathodes to Heterostructured Electrocatalysts for Stable Direct Seawater Splitting. Angew Chem Int Ed Engl 2024; 63:e202410396. [PMID: 39115462 DOI: 10.1002/anie.202410396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Indexed: 09/26/2024]
Abstract
The pursuit of carbon-neutral energy has intensified the interest in green hydrogen production from direct seawater electrolysis, given the scarcity of freshwater resources. While Ni-based catalysts are known for their robust activity in alkaline water oxidation, their catalytic sites are prone to rapid degradation in the chlorine-rich environments of seawater, leading to limited operation time. Herein, we report a Ni(OH)2 catalyst interfaced with laser-ablated LiFePO4 (Ni(OH)2/L-LFP), derived from spent Li-ion batteries (LIBs), as an effective and stable electrocatalyst for direct seawater oxidation. Our comprehensive analyses reveal that the PO4 3- species, formed around L-LFP, effectively repels Cl- ions during seawater oxidation, mitigating corrosion. Simultaneously, the interface between in situ generated NiOOH and Fe3(PO4)2 enhances OH- adsorption and electron transfer during the oxygen evolution reaction. This synergistic effect leads to a low overpotential of 237 mV to attain a current density of 10 mA cm-2 and remarkable durability, with only a 3.3 % activity loss after 600 h at 100 mA cm-2 in alkaline seawater. Our findings present a viable strategy for repurposing spent LIBs into high-performance catalysts for sustainable seawater electrolysis, contributing to the advancement of green hydrogen production technologies.
Collapse
Affiliation(s)
- Zhen Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mengting Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yiqun Chen
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xucun Ye
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mengjie Liu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Luis-Sunga M, González-Orive A, Calderón JC, Gamba I, Ródenas A, de Los Arcos T, Hernández-Creus A, Grundmeier G, Pastor E, García G. Nickel-Induced Reduced Graphene Oxide Nanoribbon Formation on Highly Ordered Pyrolytic Graphite for Electronic and Magnetic Applications. ACS APPLIED NANO MATERIALS 2024; 7:11088-11096. [PMID: 38808309 PMCID: PMC11131383 DOI: 10.1021/acsanm.3c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
The development of nanoribbon-like structures is an effective strategy to harness the potential benefits of graphenic materials due to their excellent electrical properties, advantageous edge sites, rapid electron transport, and large specific area. Herein, parallel and connected magnetic nanostructured nanoribbons are obtained through the synthesis of reduced graphene oxide (rGO) using NiCl2 as a precursor with potential applications in nascent electronic and magnetic devices. Several analytical techniques have been used for the thorough characterization of the modified surfaces. Atomic force microscopy (AFM) shows the characteristic topographical features of the nanoribbons. While X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy provided information on the chemical state of Ni and graphene-like structures, magnetic force microscopy (MFM) and scanning Kelvin probe microscopy (SKPFM) confirmed the preferential concentration of Ni onto rGO nanoribbons. These results indicate that the synthesized material shows 1D ordering of nickel nanoparticles (NiNPs)-decorating tiny rGO flakes into thin threads and the subsequent 2D arrangement of the latter into parallel ribbons following the topography of the HOPG basal plane.
Collapse
Affiliation(s)
- Maximina Luis-Sunga
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
| | - Alejandro González-Orive
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
- Department
of Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn 33098, Germany
| | - Juan Carlos Calderón
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
- Department
of Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn 33098, Germany
| | - Ilaria Gamba
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
| | - Airán Ródenas
- Departamento
de Física, Facultad de ciencias, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, S/N, La Laguna, Santa Cruz de Tenerife 38200, Spain
- Instituto
Universitario de Estudios Avanzados (IUdEA), Departamento de Física, Universidad de La Laguna, PO Box 456, La Laguna, Santa Cruz de Tenerife 38200, España
| | - Teresa de Los Arcos
- Department
of Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn 33098, Germany
| | - Alberto Hernández-Creus
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
| | - Guido Grundmeier
- Department
of Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn 33098, Germany
| | - Elena Pastor
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
| | - Gonzalo García
- Instituto
Universitario de Materiales y Nanotecnología, Departamento
de Química, Universidad de La Laguna
(ULL), PO Box 456, La Laguna, Santa
Cruz de Tenerife 38200, España
| |
Collapse
|
4
|
Blume AR, Calvet W, Ghafari A, Mayer T, Knop-Gericke A, Schlögl R. Structural and chemical properties of NiO x thin films: the role of oxygen vacancies in NiOOH formation in a H 2O atmosphere. Phys Chem Chem Phys 2023; 25:25552-25565. [PMID: 37718648 DOI: 10.1039/d3cp02047a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
NiOx films grown from 50 nm thick Ni on Si(111) were put in contact with oxygen and subsequently water vapor at elevated temperatures. Near ambient pressure (NAP)-XPS and -XAS reveal the formation of oxygen vacancies at elevated temperatures, followed by H2O dissociation and saturation of the oxygen vacancies with chemisorbing OH. Through repeated heating and cooling, OH-saturated oxygen vacancies act as precursors for the formation of thermally stable NiOOH on the sample surface. This is accompanied by a significant restructuring of the surface which increases the probability of NiOOH formation. Exposure of a thin NiOx film to H2O can lead to a partial reduction of NiOx to metallic Ni accompanied by a distinct shift of the NiOx spectra with respect to the Fermi edge. DFT calculations show that the formation of oxygen vacancies and subsequently Ni0 leads to a state within the band gap of NiO which pins the Fermi edge.
Collapse
Affiliation(s)
- A Raoul Blume
- Max-Planck-Institut für Chemische Energiekonversion, Postfach 101365, 45413 Mülheim an der Ruhr, Germany.
| | - Wolfram Calvet
- Fachbereich 1, Umweltbundesamt, Wörlitzer Platz 1, 06844 Dessau-Roßlar, Germany
| | - Aliakbar Ghafari
- Max-Planck-Institut für Chemische Energiekonversion, Postfach 101365, 45413 Mülheim an der Ruhr, Germany.
| | - Thomas Mayer
- FG Oberflächenforschung, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Axel Knop-Gericke
- Max-Planck-Institut für Chemische Energiekonversion, Postfach 101365, 45413 Mülheim an der Ruhr, Germany.
| | - Robert Schlögl
- Abt. Anorganische Chemie, Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
5
|
Hao M, Assresahegn BD, Abdellah A, Miner L, Al Hejami A, Zaker N, Gaudet J, Roué L, Botton GA, Beauchemin D, Higgins DC, Thorpe S, Harrington DA, Guay D. Role of Ir Decoration in Activating a Multiscale Fractal Surface in Porous Ni for the Oxygen Evolution Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Minghui Hao
- Institut national de la recherche scientifique (INRS), Centre Énergie, Matériaux Télécommunications, Varennes, Quebec J3X 1P7, Canada
| | - Birhanu Desalegn Assresahegn
- Institut national de la recherche scientifique (INRS), Centre Énergie, Matériaux Télécommunications, Varennes, Quebec J3X 1P7, Canada
| | - Ahmed Abdellah
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Lukas Miner
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Ahmed Al Hejami
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Nafiseh Zaker
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Julie Gaudet
- Institut national de la recherche scientifique (INRS), Centre Énergie, Matériaux Télécommunications, Varennes, Quebec J3X 1P7, Canada
| | - Lionel Roué
- Institut national de la recherche scientifique (INRS), Centre Énergie, Matériaux Télécommunications, Varennes, Quebec J3X 1P7, Canada
| | - Gianluigi A. Botton
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Diane Beauchemin
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Drew C. Higgins
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Steven Thorpe
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| | - David A. Harrington
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Daniel Guay
- Institut national de la recherche scientifique (INRS), Centre Énergie, Matériaux Télécommunications, Varennes, Quebec J3X 1P7, Canada
| |
Collapse
|
6
|
Ádám AA, Ziegenheim S, Papp Á, Szabados M, Kónya Z, Kukovecz Á, Varga G. Nickel nanoparticles for liquid phase toluene oxidation – Phenomenon, opportunities and challenges. ChemCatChem 2022. [DOI: 10.1002/cctc.202200700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Adél Anna Ádám
- University of Szeged Faculty of Science and Informatics: Szegedi Tudomanyegyetem Termeszettudomanyi es Informatikai Kar Department of Organic Chemistry Dóm tér 8. 6720 Szeged HUNGARY
| | - Szilveszter Ziegenheim
- University of Szeged Faculty of Science and Informatics: Szegedi Tudomanyegyetem Termeszettudomanyi es Informatikai Kar Department of Organic Chemistry Dóm tér 8. 6720 Szeged HUNGARY
| | - Ádám Papp
- University of Szeged Faculty of Science and Informatics: Szegedi Tudomanyegyetem Termeszettudomanyi es Informatikai Kar Department of Organic Chemistry Dóm tér 8. 6720 Szeged HUNGARY
| | - Márton Szabados
- University of Szeged Faculty of Science and Informatics: Szegedi Tudomanyegyetem Termeszettudomanyi es Informatikai Kar Department of Organic Chemistry Dóm tér 8. 6720 Szeged HUNGARY
| | - Zoltán Kónya
- University of Szeged Faculty of Science and Informatics: Szegedi Tudomanyegyetem Termeszettudomanyi es Informatikai Kar Applied and Environmental Chemistry Department Rerrich Béla tér 1. 6720 Szeged HUNGARY
| | - Ákos Kukovecz
- University of Szeged Faculty of Science and Informatics: Szegedi Tudomanyegyetem Termeszettudomanyi es Informatikai Kar Applied and Environmental Chemistry Department Rerrich Béla tér 1. 6720 Szeged HUNGARY
| | - Gábor Varga
- Szegedi Tudományegyetem Természettudományi és Informatikai Karának: Szegedi Tudomanyegyetem Termeszettudomanyi es Informatikai Kar Department of Physical Chemistry and Materials Science Rerrich Béla sq. 1. 6720 Szeged HUNGARY
| |
Collapse
|
7
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
8
|
Therese Angeles A, Park J, Ham K, Bong S, Lee J. High-performance capacitive deionization electrodes through regulated electrodeposition of manganese oxide and nickel-manganese oxide/hydroxide onto activated carbon. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Cole KM, Abed J, Kirk DW, Thorpe SJ. Stabilizing Hydrous β-NiOOH for Efficient Electrocatalytic Water Oxidation by Integrating Y and Co into Amorphous Ni-Based Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58682-58690. [PMID: 34860485 DOI: 10.1021/acsami.1c18680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A two-stage ball milling process was used to synthesize amorphous Ni79.2Nb12.5Y8.3 and Ni74.2Co5Nb12.5Y8.3 nanoparticles from elemental powders. The two-stage ball milling process provides a scalable and industrially applicable method for producing non-metalloid amorphous nanoparticles. The amorphous nanoparticles displayed excellent catalytic performance toward the oxygen evolution reaction (OER) in 1 M KOH, displaying lower overpotentials than IrO2 at 10 mA cm-2. The addition of Co in the amorphous alloy reduced the overpotential to 288 mV at 10 mA cm-2. The pairing of X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy revealed that the improved OER activity of amorphous Ni74.2Co5Nb12.5Y8.3 was attributed to the catalytic synergy between Y and Co. The integration of Y supported proton-coupled electron-transfer processes that assisted with the electrostatic adsorption of OH- and formation of oxyhydroxide species, while Co sites enabled metal-oxo bonding to prevent Ni overcharging and the stabilization of β-NiOOH. The catalytic synergy between Y and Co reduces the amount of Co needed to enhance the OER activity of Ni-based alloys and lessens the dependence on Co, which is in high demand in many renewable energy and storage applications.
Collapse
Affiliation(s)
- Kevin M Cole
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Jehad Abed
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Donald W Kirk
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Steven J Thorpe
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
10
|
Eslamibidgoli MJ, Huang J, Kowalski PM, Eikerling MH, Groß A. Deprotonation and cation adsorption on the NiOOH/water interface: A grand-canonical first-principles investigation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Huang J, Li M, Eslamibidgoli MJ, Eikerling M, Groß A. Cation Overcrowding Effect on the Oxygen Evolution Reaction. JACS AU 2021; 1:1752-1765. [PMID: 34723278 PMCID: PMC8549051 DOI: 10.1021/jacsau.1c00315] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 05/05/2023]
Abstract
The influence of electrolyte ions on the catalytic activity of electrode/electrolyte interfaces is a controversial topic for many electrocatalytic reactions. Herein, we focus on an effect that is usually neglected, namely, how the local reaction conditions are shaped by nonspecifically adsorbed cations. We scrutinize the oxygen evolution reaction (OER) at nickel (oxy)hydroxide catalysts, using a physicochemical model that integrates density functional theory calculations, a microkinetic submodel, and a mean-field submodel of the electric double layer. The aptness of the model is verified by comparison with experiments. The robustness of model-based insights against uncertainties and variations in model parameters is examined, with a sensitivity analysis using Monto Carlo simulations. We interpret the decrease in OER activity with the increasing effective size of electrolyte cations as a consequence of cation overcrowding near the negatively charged electrode surface. The same reasoning could explain why the OER activity increases with solution pH on the RHE scale and why the OER activity decreases in the presence of bivalent cations. Overall, this work stresses the importance of correctly accounting for local reaction conditions in electrocatalytic reactions to obtain an accurate picture of factors that determine the electrode activity.
Collapse
Affiliation(s)
- Jun Huang
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Mengru Li
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| | - Mohammad J. Eslamibidgoli
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Michael Eikerling
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance: JARA-Energy, 52425 Jülich, Germany
| | - Axel Groß
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
- Helmholtz
Institute Ulm (HIU) Electrochemical Energy Storage, 89069 Ulm, Germany
| |
Collapse
|
12
|
Jin C, Zhai P, Wei Y, Chen Q, Wang X, Yang W, Xiao J, He Q, Liu Q, Gong Y. Ni(OH) 2 Templated Synthesis of Ultrathin Ni 3 S 2 Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102097. [PMID: 34228390 DOI: 10.1002/smll.202102097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Indexed: 06/13/2023]
Abstract
Ultrathin nickel (Ni)-based sulfide nanosheets have been reported as excellent electrocatalysts for overall water splitting; however, the uncontrollability over thickness due to the nonlayered structure still hampers its practical application. Herein, a simple topochemical conversion strategy is employed to synthesize cobalt-doped Ni3 S2 (Co-Ni3 S2 ) ultrathin nanosheets on Ni foam. The Co-Ni3 S2 nanosheets are controlled synthesized by using Co-Ni(OH)2 ultrathin nanosheets as templates with anneal and sulfurization treatment, showing exceptional electrocatalytic activity. This template-assisted method can also be applied to obtain Ni, NiO, and NiPx nanosheets, providing a universal strategy to synthesize ultrathin nanosheets of nonlayered materials. The overall water splitting of this Co-Ni3 S2 ultrathin nanosheets achieves a low voltage of 1.54 V at a current density of 10 mA cm-2 and high durability in 1 m KOH, comparable to the best performance of electrochemical water splitting ever reported. The detailed structural transformation of Ni-based sulfides in the catalytic process and its mechanism are further explored both experimentally and theoretically.
Collapse
Affiliation(s)
- Chunqiao Jin
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
- School of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Pengbo Zhai
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yi Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xingguo Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Weiwei Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jing Xiao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qianqian He
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qingyun Liu
- School of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
13
|
|
14
|
Gao M, Guo ZY, Wang XY, Li WW. Self-Supported, Sulfate-Functionalized Nickel Hydroxide Nanoplates with Enhanced Wettability and Conductivity for Use in High-Performance Supercapacitors. CHEMSUSCHEM 2019; 12:5291-5299. [PMID: 31674132 DOI: 10.1002/cssc.201902397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Nickel hydroxide is promising for use in supercapacitor applications because of its low cost and tunable electrochemical properties, but its performance is usually restricted by insufficient conductivity and surface reactivity. In this work, sulfate-functionalized Ni(OH)2 (SNO) nanoplates were grown in situ on nickel foam (NF) by a green and facile one-step hydrothermal treatment of NF without the need for an external Ni source or surfactant addition. The resulting material showed a 9.3 times higher areal capacity and 1.8 times higher rate capability than the sulfate-free control and retained 81.3 % capacity after 5000 cycles. If used as the positive electrode in a hybrid supercapacitor, the SNO/NF//activated carbon system achieved >95 % Coulombic efficiency, a maximum energy density of 3.59 Wh m-2 , and a maximum power density of 44.63 Wm-2 , which surpass those achievable by most known Ni-based supercapacitors. Detailed material characterization and DFT calculations revealed that the introduction of sulfate expanded the layer spacing of Ni(OH)2 and improved the electrical conductivity and wettability to favor more efficient electrolyte diffusion, charge transfer, and reactant adsorption. The high loading of reactive components and inherited porous structure also contributed to the superior capacitive performance of the SNO/NF electrodes. Therefore, SNO/NF holds great potential for commercialized supercapacitor applications.
Collapse
Affiliation(s)
- Miao Gao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P.R. China
- USTC-City U joint Advanced Research Center, Suzhou, 215123, P.R. China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P.R. China
| | - Xing-Yi Wang
- Nano Science & Technology Institute, University of Science & Technology of China, Suzhou, 215123, P.R. China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, P.R. China
- USTC-City U joint Advanced Research Center, Suzhou, 215123, P.R. China
| |
Collapse
|
15
|
Wang S, Li D, Zeng Q, Xiong M, Zhang Q, Wu K. First‐principles study on the adhesive and electronic property of c‐BN(111)/Cu(111) interface. SURF INTERFACE ANAL 2019. [DOI: 10.1002/sia.6732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shen Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Material Science and EngineeringSouthwest Jiaotong University Chengdu China
| | - Da Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Material Science and EngineeringSouthwest Jiaotong University Chengdu China
| | - Qiang Zeng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Material Science and EngineeringSouthwest Jiaotong University Chengdu China
| | - Min Xiong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Material Science and EngineeringSouthwest Jiaotong University Chengdu China
| | - Qiao Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Material Science and EngineeringSouthwest Jiaotong University Chengdu China
| | - Kaipeng Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Material Science and EngineeringSouthwest Jiaotong University Chengdu China
| |
Collapse
|
16
|
Kim S, Kim K, Kim HJ, Lee HN, Park TJ, Park YM. Non-enzymatic electrochemical lactate sensing by NiO and Ni(OH)2 electrodes: A mechanistic investigation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.172] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Jahangiri S, Mosey NJ. Molecular structure and interactions of water intercalated in nickel hydroxide. Phys Chem Chem Phys 2018; 20:11444-11453. [PMID: 29645028 DOI: 10.1039/c8cp00070k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure and properties of α-Ni(OH)2 containing water and nitrate have been investigated computationally. The adsorption of water molecules on the Ni(OH)2 surface is also investigated to provide insight into the nature of the water-Ni(OH)2 interactions. The spectroscopic and dynamical behaviour of the intercalated species has been characterized and used to explain experimental findings reported for this material. The results presented here indicate that the water molecules interact non-covalently with Ni(OH)2, with a binding energy that is comparable in magnitude with that of the water dimer hydrogen bond. The presence of the intercalated species increases the distance between the Ni(OH)2 layers such that the interlayer interactions are negligible. The weakening of the interlayer interactions facilitates the horizontal displacement of the layers relative to one another, providing a possible origin for stacking faults observed in α-Ni(OH)2. Comparison of the vibrational frequencies calculated here with the experimental spectra confirms that α-Ni(OH)2 containing only water molecules can be synthesized. The structures of the water molecules intercalated in α-Ni(OH)2 were found to be analogous to those absorbed in γ-NiOOH, while the water-layer interactions are stronger in γ-NiOOH. The results presented here characterize the structure and interactions of water intercalated in nickel hydroxides and also provide insights into the effects of intercalated water on the properties of layered metal hydroxides.
Collapse
Affiliation(s)
- Soran Jahangiri
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7M 0A9, Canada.
| | | |
Collapse
|