1
|
Li SL, Chen Y, Tian G, Kou L, Qiao L, Zhao Y, Gan LY. High catalytic activity and abundant active sites in M 2C 12 monolayer for nitrogen reduction reaction. J Colloid Interface Sci 2024; 675:411-418. [PMID: 38976967 DOI: 10.1016/j.jcis.2024.06.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Developing highly efficient single-atom catalysts (SACs) for the nitrogen reduction reaction (NRR) to ammonia production has garnered significant attention in the scientific community. However, achieving high activity and selectivity remains challenging due to the lack of innate activity in most existing catalysts or insufficient active site density. This study delves into the potential of M2C12 materials (M = Cr, Ir, Mn, Mo, Os, Re, Rh, Ru, W, Fe, Cu, and Ti) with high transition metal coverage as SACs for NRR using first-principles calculations. Among these materials, Os2C12 exhibited superior catalytic activity for NRR, with a low overpotential of 0.39 V and an Os coverage of up to 72.53 wt%. To further boost its catalytic activity, a nonmetal (NM) atom doping (NM = B, N, O, and S) and C vacancy modification were explored in Os2C12. It is found that the introduction of O enables exceptional catalytic activity, selectivity, and stability, with an even lower overpotential of 0.07 V. Incorporating the O atom disrupted the charge balance of its coordinating C atoms, effectively increasing the positive charge density of the Os-d-orbit-related electronic structure. This promoted strong d-π* coupling between Os and N2H, enhancing N2H adsorption and facilitating NRR processes. This comprehensive study provides valuable insights into NRR catalyst design for sustainable ammonia production and offers a reference for exploring alternative materials in other catalytic reactions.
Collapse
Affiliation(s)
- Shu-Long Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China; Western Superconducting Technologies Co, Ltd., Xi'an 710018, China
| | - Yutao Chen
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Guo Tian
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China.
| | - Yong Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China.
| | - Li-Yong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
2
|
Duan Y, Wang Y, Zhang W, Ban C, Feng Y, Tao X, Li A, Wang K, Zhang X, Han X, Fan W, Zhang B, Zou H, Gan L, Han G, Zhou X. Large-Scale Synthesis of High-Loading Single Metallic Atom Catalysts by a Metal Coordination Route. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404900. [PMID: 38857942 DOI: 10.1002/adma.202404900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Single atom catalyst (SAC) is one of the most efficient and versatile catalysts with well-defined active sites. However, its facile and large-scale preparation, the prerequisite of industrial applications, has been very challenging. This dilemma originates from the Gibbs-Thomson effect, which renders it rather difficult to achieve high single atom loading (< 3 mol%). Further, most synthesizing procedures are quite complex, resulting in significant mass loss and thus low yields. Herein, a novel metal coordination route is developed to address these issues simultaneously, which is realized owing to the rapid complexation between ligands (e.g., biuret) and metal ions in aqueous solutions and subsequent in situ polymerization of the formed complexes to yield SACs. The whole preparation process involves only one heating step operated in air without any special protecting atmospheres, showing general applicability for diverse transition metals. Take Cu SAC for an example, a record yield of up to 3.565 kg in one pot and an ultrahigh metal loading 16.03 mol% on carbon nitride (Cu/CN) are approached. The as-prepared SACs are demonstrated to possess high activity, outstanding selectivity, and robust cyclicity for CO2 photoreduction to HCOOH. This research explores a robust route toward cost-effective, massive production of SACs for potential industrial applications.
Collapse
Affiliation(s)
- Youyu Duan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401135, China
| | - Yang Wang
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Weixuan Zhang
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Chaogang Ban
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Yajie Feng
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Xiaoping Tao
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Ang Li
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100024, China
| | - Kaiwen Wang
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100024, China
| | - Xu Zhang
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100024, China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100024, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Bin Zhang
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, China
| | - Hanjun Zou
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, China
| | - Liyong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401135, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Guang Han
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China
| | - Xiaoyuan Zhou
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401135, China
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
3
|
Gusarov S. Advances in Computational Methods for Modeling Photocatalytic Reactions: A Review of Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2119. [PMID: 38730926 PMCID: PMC11085804 DOI: 10.3390/ma17092119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Photocatalysis is a fascinating process in which a photocatalyst plays a pivotal role in driving a chemical reaction when exposed to light. Its capacity to harness light energy triggers a cascade of reactions that lead to the formation of intermediate compounds, culminating in the desired final product(s). The essence of this process is the interaction between the photocatalyst's excited state and its specific interactions with reactants, resulting in the creation of intermediates. The process's appeal is further enhanced by its cyclic nature-the photocatalyst is rejuvenated after each cycle, ensuring ongoing and sustainable catalytic action. Nevertheless, comprehending the photocatalytic process through the modeling of photoactive materials and molecular devices demands advanced computational techniques founded on effective quantum chemistry methods, multiscale modeling, and machine learning. This review analyzes contemporary theoretical methods, spanning a range of lengths and accuracy scales, and assesses the strengths and limitations of these methods. It also explores the future challenges in modeling complex nano-photocatalysts, underscoring the necessity of integrating various methods hierarchically to optimize resource distribution across different scales. Additionally, the discussion includes the role of excited state chemistry, a crucial element in understanding photocatalysis.
Collapse
Affiliation(s)
- Sergey Gusarov
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
4
|
Alemany-Molina G, Navlani-García M, Juan-Juan J, Morallón E, Cazorla-Amorós D. Exploring the synergistic effect of palladium nanoparticles and highly dispersed transition metals on carbon nitride/super-activated carbon composites for boosting electrocatalytic activity. J Colloid Interface Sci 2024; 660:401-411. [PMID: 38244506 DOI: 10.1016/j.jcis.2024.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
In the present work, multifunctional electrocatalysts formed by palladium nanoparticles (Pd NPs) loaded on Fe or Cu-containing composite supports, based on carbon nitride (C3N4) and super-activated carbon with a high porosity development (SBET 3180 m2/g, VDR 1.57 cm3/g, and VT 1.65 cm3/g), were synthesised. The presence of Fe or Cu sites favoured the formation of Pd NPs with small average particle size and a very narrow size distribution, which agreed with Density Functional Theory (DFT) calculations showing that the interaction of Pd clusters with C3N4 flakes is weaker than with Cu- or Fe-C3N4 sites. The electroactivity was also dependent on the composition and, as suggested by preliminary DFT calculations, the Pd-Cu catalyst showed lower overpotential for hydrogen evolution reaction (HER) while bifunctional oxygen reduction reaction/ oxygen evolution reaction (ORR/OER) behaviour was superior in Pd-Fe sample. The Pd-Fe electrocatalyst was studied in a zinc-air battery (ZAB) for 10 h, showing a performance similar to a commercial Pt/C + RuO2 catalyst with a high content of precious metal. This study demonstrates the synergistic effect between Pd species and transition metals and shows that transition metals anchored on C3N4-based composite materials promote the electroactivity of Pd NPs in HER, ORR and OER due to the interaction between both species.
Collapse
Affiliation(s)
- G Alemany-Molina
- Department of Inorganic Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - M Navlani-García
- Department of Inorganic Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - J Juan-Juan
- Research Support Services, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - E Morallón
- Department of Physical Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - D Cazorla-Amorós
- Department of Inorganic Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain.
| |
Collapse
|
5
|
Deng C, Xie S, Li Y, Zhao Y, Zhou P, Sheng H, Ji H, Chen C, Zhao J. Strong Spin Polarization Effect of Atomically Dispersed Metal Site Boosts the Selective Photocatalytic Nitrobenzene Hydrogenation to Aniline over Graphitic Carbon Nitride. J Phys Chem A 2023; 127:2787-2794. [PMID: 36924022 DOI: 10.1021/acs.jpca.3c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Atomically dispersed catalysts (ADCs) with a well-defined structure are theoretically desirable for a high-selectivity photocatalytic reaction. However, achieving high product selectivity remains a practical challenge for ADCs-based photocatalysts. Herein, we reveal a spin polarization effect on achieving high product selectivity (95.0%) toward the photocatalytic nitrobenzene (PhNO2) hydrogenation to aniline (PhNH2) on atomically dispersed Fe site-loaded graphitic carbon nitride (Fe/g-C3N4). In combination with the Gibbs free energy diagram and electronic structure analysis, the origin of the photocatalytic performance is attributed not only to the strong metal-support interaction between the Fe site and g-C3N4, but more importantly to the strong spin polarization effect that promotes the potential-determining step (PDS) of *PhNO to *PhNOH. This work could be helpful for the design of ADCs-based photocatalysts in view of the spin polarization effect.
Collapse
Affiliation(s)
- Chaoyuan Deng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shijie Xie
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Youji Li
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China
| | - Yukun Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peng Zhou
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Sheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Zhang W, Huang Z, Gao Z, Perez‐Aguilar JM, Gu Z, Tu Y. Single Atom Catalysis for Hydrogen Evolution Reaction using Transition‐metal Atoms Doped g‐C
3
N
3
: A Density Functional Theory Study. ChemistrySelect 2023. [DOI: 10.1002/slct.202203475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Wenya Zhang
- College of Physical Science and Technology & Microelectronics Industry Research Institute Yangzhou University Jiangsu 225009 China
| | - Zhijing Huang
- College of Physical Science and Technology & Microelectronics Industry Research Institute Yangzhou University Jiangsu 225009 China
| | - Zhaoju Gao
- College of Physical Science and Technology & Microelectronics Industry Research Institute Yangzhou University Jiangsu 225009 China
| | - Jose Manuel Perez‐Aguilar
- School of Chemical Sciences Meritorious Autonomous University of Puebla (BUAP), University City Puebla 72570 Mexico
| | - Zonglin Gu
- College of Physical Science and Technology & Microelectronics Industry Research Institute Yangzhou University Jiangsu 225009 China
| | - Yusong Tu
- College of Physical Science and Technology & Microelectronics Industry Research Institute Yangzhou University Jiangsu 225009 China
| |
Collapse
|
7
|
Abdelgawad A, Salah B, Eid K, Abdullah AM, Al-Hajri RS, Al-Abri M, Hassan MK, Al-Sulaiti LA, Ahmadaliev D, Ozoemena KI. Pt-Based Nanostructures for Electrochemical Oxidation of CO: Unveiling the Effect of Shapes and Electrolytes. Int J Mol Sci 2022; 23:15034. [PMID: 36499359 PMCID: PMC9737813 DOI: 10.3390/ijms232315034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a function of Pt-shape is necessary and is not yet reported. Herein, porous Pt nanodendrites (Pt NDs) were synthesized via the ultrasonic irradiation method, and its CO oxidation performance was benchmarked in different electrolytes relative to 1-D Pt chains nanostructure (Pt NCs) and commercial Pt/C catalyst under the same condition. This is a trial to confirm the effect of the size and shape of Pt as well as the pH of electrolytes on the COOxid. The COOxid activity and durability of Pt NDs are substantially superior to Pt NCs and Pt/C in HClO4, KOH, and NaHCO3 electrolytes, respectively, owing to the porous branched structure with a high surface area, which maximizes Pt utilization. Notably, the COOxid performance of Pt NPs in HClO4 is higher than that in NaHCO3, and KOH under the same reaction conditions. This study may open the way for understanding the COOxid activities of Pt-based catalysts and avoiding CO-poisoning in fuel cells.
Collapse
Affiliation(s)
- Ahmed Abdelgawad
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, P O Wits, Johannesburg 2050, South Africa
| | - Kamel Eid
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, P O Wits, Johannesburg 2050, South Africa
| | | | - Rashid S. Al-Hajri
- Petroleum and Chemical Engineering Department, Sultan Qaboos University, Muscat 123, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Centre, Sultan Qaboos University, P.O. Box 17, PC 123, SQU, Al-Khoudh 123, Oman
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, PC 123, SQU, A-Khoudh 123, Oman
| | | | - Leena A. Al-Sulaiti
- Department of Mathematics, Statistics, and Physics, Qatar University, Doha 2713, Qatar
| | - Doniyorbek Ahmadaliev
- Andijan State Pedagogical Institute, Andijan 170100, Uzbekistan
- Presidential School in Andijan, Agency for Presidential Educational Institutions of the Republic of Uzbekistan, Andijan 170100, Uzbekistan
| | - Kenneth I. Ozoemena
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
8
|
On the interface between biomaterials and two-dimensional materials for biomedical applications. Adv Drug Deliv Rev 2022; 186:114314. [PMID: 35568105 DOI: 10.1016/j.addr.2022.114314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their ultrathin 2D structures with a high degree of anisotropy and functionality. Reliable manipulation of interfaces between 2D materials and biomaterials is a new frontier for biomedical nanoscience and combining biomaterials with 2D materials offers a promising way to fabricate innovative 2D biomaterials composites with distinct functionality for biomedical applications. Here, we focus exclusively on a summary of the current work in the interface investigation of 2D biomaterials. Specifically, we highlight extraordinary features that make 2D materials so desirable, as well as the molecular level interactions between 2D materials and biomaterials that have been studied thus far. Furthermore, the approaches for investigating the interface characteristics of 2D biomaterials are presented and described in depth. To capture the emerging trend in mass manufacturing of 2D materials, we review the research progress on biomaterial-assisted exfoliation. Finally, we present a critical assessment of newly developed 2D biomaterials in biomedical applications.
Collapse
|
9
|
Yu M, Liu C, Sun X, Lu J, Niu J. Understanding of the Dual Roles of Phosphorus in Atomically Distributed Fe/Co-N 4P 2 over Carbon Nitride for Photocatalytic Debromination from Tetrabromobisphenol A. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5376-5383. [PMID: 35067046 DOI: 10.1021/acsami.1c21850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically dispersed Fe and Co on carbon nitride under an external phosphine (PH3) atmosphere (P-Fe1Co1/CN) are prepared. Combined with the results of calculations and experiments, the formed P-induced bimetallic single atoms of Fe/Co-N4P2 can provide more reactive sites to enhance optical performance. Meanwhile, the introduced P can coordinate with Fe and Co and change the sole nitrogen coordination environment via the bridging effect. Herein, on the one hand, the structure of Fe-P-Co enhances interactions of single atoms in heterogeneous metals, and, on the other hand, the formed Fe/Co-N4P2 effectively changes the electron configuration in coordination centers. All of the abovementioned findings can enhance the photocatalytic performance of P-Fe1Co1/CN, achieving 96% removal and 51% debromination rates from tetrabromobisphenol A under visible light irradiation. The two efficiencies can be further improved under UV-vis light irradiation. The findings of this work reveal the dual roles of P in bimetallic single-atom catalysts, provide a facile method to synthesize P-assisted bimetal single-atom photocatalysts, and highlight the great potential of carbon nitride-based single atoms as photocatalysts.
Collapse
Affiliation(s)
- Mingchuan Yu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Cong Liu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaoli Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
10
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
11
|
Catalytic activity of V2CO2 MXene supported transition metal single atoms for oxygen reduction and hydrogen oxidation reactions: A density functional theory calculation study. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63823-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Liu G, Yan Q, Zhou Y, Zhang X, Spanjers H. DFT and experimental study of elemental mercury (Hg0) removal by 2D-g-C3N4. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Guo Y, Xia M, Zhang M, Zou J, You Y, Cheng W, Dou J. A strategy for enhancing the photoactivity of g-C 3N 4-based single-atom catalysts via sulphur doping: a theoretical study. Phys Chem Chem Phys 2021; 23:6632-6640. [PMID: 33709091 DOI: 10.1039/d1cp00192b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Single-atom catalysts (SACs) have received intense attention owing to their maximum utilization efficiency of metal atoms and high catalytic activity. Although SACs possess many merits, such as high activity, selectivity and stability in photocatalysis, the difficulty of fabricating atomically dispersed atom catalysts with a high level of metal loading limits their practical applications. Here, a sulphur-doping strategy was proposed to enhance the incorporation of single Pt atoms in monolayer graphitic carbon nitride (g-C3N4), and the structural, electronic and optical properties were investigated through density functional theory (DFT) calculations. This work verified that SACs based on sulphur-doped monolayer g-C3N4 (S-g-C3N4) exhibit a lower band gap energy, higher photocatalytic oxidation ability, easier charge separation, lower oxidation state of Pt atoms and wider light absorption range. This work provides a promising path for fabricating efficient g-C3N4-based photocatalytic SACs.
Collapse
Affiliation(s)
- Yanqing Guo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhao X, Deng C, Meng D, Ji H, Chen C, Song W, Zhao J. Nickel-Coordinated Carbon Nitride as a Metallaphotoredox Platform for the Cross-Coupling of Aryl Halides with Alcohols. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04725] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Chaoyuan Deng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Di Meng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| |
Collapse
|
15
|
Zhao M, Feng J, Yang W, Song S, Zhang H. Recent Advances in Graphitic Carbon Nitride Supported Single‐Atom Catalysts for Energy Conversion. ChemCatChem 2020. [DOI: 10.1002/cctc.202001517] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meng Zhao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Weiting Yang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Key Laboratory of Advanced Materials of Tropical Island Resources Ministry of Education School of Science Hainan University Haikou 570228 P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
16
|
Jian M, Zhao C, Li WX. Ligand Stabilized Ni 1 Catalyst for Efficient CO Oxidation. Chemphyschem 2020; 21:2417-2425. [PMID: 33063907 DOI: 10.1002/cphc.202000730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Indexed: 12/30/2022]
Abstract
Supported single transition metal (TM1 ) catalysts have attracted broad attention in academia recently. Still, their corresponding reactivity and stability under reaction conditions are critical but have not well explored at the fundamental level. Herein, we use density functional theory calculation and ab initio molecular dynamics simulation to investigate the role of reactants and ligands on the reactivity and stability of graphitic carbon nitride (g-C3 N4 ) supported Ni1 for CO oxidation. We find out that supported bare Ni1 atoms are only metastable on the surface and tend to diffuse into the interlayer of g-C3 N4 . Though Ni1 is catalytically active at moderate temperatures, CO adsorption induced dimerization deactivates the catalyst. Hydroxyl groups not only are able to stabilize the supported Ni1 atom, but also increase the reactivity by participating directly in the reaction. Our results provide valuable insights on improving the chemical stability of TM1 by ligands without sacrificing the reactivity, which are helpful for the rational design of highly loaded atomically dispersed supported metal catalysts.
Collapse
Affiliation(s)
- Minzhen Jian
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuanlin Zhao
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei-Xue Li
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
17
|
Simultaneous catalytic oxidation of nitric oxide and elemental mercury by single-atom Pd/g-C3N4 catalyst: A DFT study. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Kong N, Fan X, Liu F, Wang L, Lin H, Li Y, Lee ST. Single Vanadium Atoms Anchored on Graphitic Carbon Nitride as a High-Performance Catalyst for Non-oxidative Propane Dehydrogenation. ACS NANO 2020; 14:5772-5779. [PMID: 32374154 DOI: 10.1021/acsnano.0c00659] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In comparison with oil-based cracking technologies, the on-purpose dehydrogenation of propane (PDH) is a more eco-friendly and profitable approach to produce propylene. By means of density functional theory calculations, the present work reveals that the single vanadium (V) atom anchored on graphitic carbon nitride (V1/g-C3N4) may serve as a promising single-atom catalyst for non-oxidative PDH with industrially practical activity, selectivity, and thermal stability. The high activity of V1/g-C3N4 for PDH is attributed to the low-coordinated 3d orbitals of single V atoms, while the propylene selectivity is originated from the inhibition of the di-σ binding mode of propylene on the single V atoms. This work provides a guideline to design and screen out promising single-atom catalysts for selective dehydrogenation of alkanes.
Collapse
Affiliation(s)
- Ningning Kong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, No. 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xing Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, No. 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fangfang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, No. 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, No. 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, No. 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, No. 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, No. 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Designing noble metal single-atom-loaded two-dimension photocatalyst for N 2 and CO 2 reduction via anion vacancy engineering. Sci Bull (Beijing) 2020; 65:720-725. [PMID: 36659105 DOI: 10.1016/j.scib.2019.12.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 01/21/2023]
Abstract
Building highly active and stable noble metal single atom (MSA) catalyst onto photocatalyst materials for nitrogen reduction reaction (NRR) and CO2 reduction reaction (CRR) is a key to future renewable energy conversion and storage technologies. Here we present a design strategy to optimize the stability and electronic property of noble metal single atoms (MSAs, M = Rh, Pd, Ag, Ir, Pt, Au) catalyst supported on g-C3N4 and 2H-MoS2 photocatalysts towards NRR and CRR. Our results indicate that the MSAs tend to be trapped at the anion-vacancy sites of photocatalyst rather than the pristine photocatalyst surface. This anion vacancy can promise the MSAs with an optimized electron-captured ability in the photoexcitation process, thus decreasing the energy barriers of NRR and CRR on MSAs. Especially, it is revealed that the N-vacancy-stabilized IrSA on g-C3N4 and the S-vacancy-stabilized RhSA on 2H-MoS2 own the lowest energy barrier in NRR. However, for CRR, the HCOOH is the main product on MSAs supported by g-C3N4 and 2H-MoS2. The N-vacancy-stabilized PdSA on g-C3N4 and the S-vacancy-stabilized AuSA on 2H-MoS2 show the lowest energy barrier for HCOOH production in CRR. This finding offers an approach to design specific active MSA centres on photocatalysts by the anion vacancy engineering.
Collapse
|
20
|
Coulson B, Lari L, Isaacs M, Raines DJ, Douthwaite RE, Duhme‐Klair A. Carbon Nitride as a Ligand: Selective Hydrogenation of Terminal Alkenes Using [(η
5
‐C
5
Me
5
)IrCl(g‐C
3
N
4
‐κ
2
N,N’
)]Cl. Chemistry 2020; 26:6862-6868. [DOI: 10.1002/chem.201905749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Ben Coulson
- Department of ChemistryUniversity of York York YO10 5DD UK
| | - Leonardo Lari
- Department of PhysicsUniversity of York York YO10 5DD UK
| | - Mark Isaacs
- HarwellXPS, R92 Research Complex at HarwellRutherford Appleton Laboratories Harwell, Didcot OX11 0QS UK
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | | | | | | |
Collapse
|
21
|
Influence of nitrogen vacancies on selective oxidation of aromatic alcohols on g-C3N4: A comparative DFT study. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Wang S, Li J, Li Q, Bai X, Wang J. Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation. NANOSCALE 2020; 12:364-371. [PMID: 31825440 DOI: 10.1039/c9nr07726j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Single-atom catalysts (SACs) often present outstanding activity due to their high ratio of low-coordinated metal atoms and can be applied to the activation of strong chemical bonds such as C[triple bond, length as m-dash]O. Herein, we investigate the potential usage of a single-atom catalyst, in which isolated cobalt atoms are supported on porous graphitic carbon nitride (Co/g-C3N4), for CO oxidation. Based on the adsorption/co-adsorption energies of O2, CO, 2O2, CO + O2 and 2CO, the screening criteria and the reaction mechanisms of CO oxidation, including the Eley-Rideal, New Eley-Rideal, Langmuir-Hinshelwood, and termolecular Eley-Rideal mechanisms, are established and compared. In particular, the energy barriers of the rate-limiting steps for the CO oxidation process by all possible reaction pathways are in a range from 0.21 to 0.59 eV, suggesting that the Co/g-C3N4 catalyst can boost CO oxidation at low temperature. Moreover, the preparation of the SAC (Co/g-C3N4) by using CoCl2 as an appropriate metal precursor and the stability (up to 600 K) are evaluated by ab initio molecular dynamics simulations. The high stability and excellent activity of the Co/g-C3N4 SAC for CO oxidation offer a high possibility of clean energy production.
Collapse
Affiliation(s)
- Shiyan Wang
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Jiaqi Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Li
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Xiaowan Bai
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
23
|
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019; 120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iann C. Gerber
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Philippe Serp
- LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, 31400 Toulouse, France
| |
Collapse
|
24
|
Single-Atom X/g-C3N4(X = Au1, Pd1, and Ru1) Catalysts for Acetylene Hydrochlorination: A Density Functional Theory Study. Catalysts 2019. [DOI: 10.3390/catal9100808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mechanisms of the single-atom X/g-C3N4(X = Au1, Pd1, and Ru1) catalysts for the acetylene hydrochlorination reaction were systematically investigated using the density functional theory (DFT) B3LYP method. The density functional dispersion correction obtained by the DFT-D3 method was taken into account. During the reaction, C2H2 and HCl were well activated and the analysis of the adsorption energy demonstrated the adsorption performance of C2H2 is better than that of HCl. The catalytic mechanisms of the three catalysts consist of one intermediate and two transition states. Moreover, our results showed that the three single-atom catalysts improve the catalytic activity of the reaction to different degrees. The calculated energy barrier declines in the order of Pd1/g-C3N4 > Ru1/g-C3N4 > Au1/g-C3N4, and the energy barrier for the Au1/g-C3N4 catalyst was only 13.66 kcal/mol, proving that single-atom Au1/g-C3N4 may be a potential catalyst for hydrochlorination of acetylene to vinyl chloride.
Collapse
|
25
|
Coulson B, Isaacs M, Lari L, Douthwaite RE, Duhme-Klair AK. Carbon nitride as a ligand: edge-site coordination of ReCl(CO) 3-fragments to g-C 3N 4. Chem Commun (Camb) 2019; 55:7450-7453. [PMID: 31183485 DOI: 10.1039/c9cc02197c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IR spectroscopy and model structural studies show binding of ReCl(CO)3-fragments to carbon nitride (g-C3N4) occurs viaκ2 N,N' bidentate coordination.
Collapse
Affiliation(s)
- Ben Coulson
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - Mark Isaacs
- HarwellXPS, R92 Research Complex at Harwell, Rutherford Appleton Laboratories, Harwell, Didcot, OX11 0QS, UK and Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Leonardo Lari
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
| | | | | |
Collapse
|
26
|
Eid K, Sliem MH, Abdullah AM. Unraveling template-free fabrication of carbon nitride nanorods codoped with Pt and Pd for efficient electrochemical and photoelectrochemical carbon monoxide oxidation at room temperature. NANOSCALE 2019; 11:11755-11764. [PMID: 31183488 DOI: 10.1039/c9nr02571e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The tailored synthesis of carbon nitrides (CNs) is of particular interest in multidisciplinary catalytic applications. However, their fabrication in the form of one-dimensional (1D) nanorods for electrocatalytic carbon monoxide (CO) oxidation is not hitherto reported. Herein, a facile roadmap is presented for the rational design of Pt- and Pd-codoped CN (PtPd/CNs) nanorods via protonation of melamine in an ethylene glycol solution containing Pt and Pd precursors using NaNO3 and HCl and subsequent annealing. The protonation induces the polymerization of melamine to melon nanosheets that consequently roll up to CN nanorods. This tailored the prompt high mass production of uniform 1D CN nanorods (94 ± 2 nm) with a high surface area (155.2 m2 g-1) and they were atomically codoped with Pt and Pd (1.5 wt%) without a template and/or multiple complicated steps. The electrocatalytic CO oxidation activity of PtPd/CNs is 2.01 and 23.41 times greater than that of the commercial Pt/C catalyst and metal-free CNs, respectively, at room temperature. Meanwhile, the UV-vis light irradiation enhanced the CO oxidation activity of PtPd/CNs nanorods by 1.48 fold compared to that in the dark, emanated from the coupling between the drastic inbuilt catalytic merits of PtPd and the inimitable physicochemical properties of CNs. The presented study may pave the way for using CN-based materials in gas conversion reactions.
Collapse
Affiliation(s)
- Kamel Eid
- Center for advanced materials, Qatar University, Doha 2713, Qatar.
| | | | | |
Collapse
|
27
|
Eid K, Sliem MH, Al-Kandari H, Sharaf MA, Abdullah AM. Rational Synthesis of Porous Graphitic-like Carbon Nitride Nanotubes Codoped with Au and Pd as an Efficient Catalyst for Carbon Monoxide Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3421-3431. [PMID: 30715897 DOI: 10.1021/acs.langmuir.8b03588] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The precise fabrication of efficient catalysts for CO oxidation is of particular interest in a wide range of industrial and environmental applications. Herein, a scalable method is presented for the controlled synthesis of graphitic-like porous carbon nitride nanotubes (gC3N4NTs) codoped with Au and Pd (Au/Pd/gC3N4NTs) as efficient catalysts for carbon monoxide (CO) conversion. This includes the activation of melamine with nitric acid in the presence of ethylene glycol and metal precursors followed by consecutive polymerization and carbonization. This drives the formation of porous one-dimensional gC3N4NT with an outstanding surface area of (320.6 m2 g-1) and an atomic-level distribution of Au and Pd. Intriguingly, the CO conversion efficiency of Au/Pd/gC3N4NTs was substantially greater than that for gC3N4NTs. The approach thus presented may provide new avenues for the utilization of gC3N4 doped with multiple metal-based catalysts for CO conversion reactions which had been rarely reported before.
Collapse
Affiliation(s)
- Kamel Eid
- Center for Advanced Materials , Qatar University , Doha 2713 , Qatar
| | - Mostafa H Sliem
- Center for Advanced Materials , Qatar University , Doha 2713 , Qatar
| | - Halema Al-Kandari
- Department of Health Environment , College of Health Sciences, Public Authority for Applied Education and Training , P.O. Box 1428, Faiha 72853 , Kuwait
| | - Mohammed A Sharaf
- Department of Maritime Transportation Management Engineering , İstanbul University-Cerrahpaşa , Avcilar, Istanbul 34320 , Turkey
| | | |
Collapse
|
28
|
Axet MR, Durand J, Gouygou M, Serp P. Surface coordination chemistry on graphene and two-dimensional carbon materials for well-defined single atom supported catalysts. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Versatile Synthesis of Pd and Cu Co-Doped Porous Carbon Nitride Nanowires for Catalytic CO Oxidation Reaction. Catalysts 2018. [DOI: 10.3390/catal8100411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Developing efficient catalyst for CO oxidation at low-temperature is crucial in various industrial and environmental remediation applications. Herein, we present a versatile approach for controlled synthesis of carbon nitride nanowires (CN NWs) doped with palladium and copper (Pd/Cu/CN NWs) for CO oxidation reactions. This is based on the polymerization of melamine by nitric acid in the presence of metal-precursors followed by annealing under nitrogen. This intriguingly drove the formation of well-defined, one-dimensional nanowires architecture with a high surface area (120 m2 g−1) and doped atomically with Pd and Cu. The newly-designed Pd/Cu/CN NWs fully converted CO to CO2 at 149 °C, that was substantially more active than that of Pd/CN NWs (283 °C) and Cu/CN NWs (329 °C). Moreover, Pd/Cu/CN NWs fully reserved their initial CO oxidation activity after 20 h. This is mainly attributed to the combination between the unique catalytic properties of Pd/Cu and outstanding physicochemical properties of CN NWs, which tune the adsorption energies of CO reactant and reaction product during the CO oxidation reaction. The as-developed method may open new frontiers on using CN NWs supported various noble metals for CO oxidation reaction.
Collapse
|
30
|
Zhao Y, Zhu M, Kang L. The DFT Study of Single-Atom Pd1/g-C3N4 Catalyst for Selective Acetylene Hydrogenation Reaction. Catal Letters 2018. [DOI: 10.1007/s10562-018-2532-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|