1
|
Shi Z, Zhang Y, Gu J, Liu B, Fu H, Liang H, Ji J. Triboelectric Nanogenerators: State of the Art. SENSORS (BASEL, SWITZERLAND) 2024; 24:4298. [PMID: 39001077 PMCID: PMC11244064 DOI: 10.3390/s24134298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
The triboelectric nanogenerator (TENG), as a novel energy harvesting technology, has garnered widespread attention. As a relatively young field in nanogenerator research, investigations into various aspects of the TENG are still ongoing. This review summarizes the development and dissemination of the fundamental principles of triboelectricity generation. It outlines the evolution of triboelectricity principles, ranging from the fabrication of the first TENG to the selection of triboelectric materials and the confirmation of the electron cloud overlapping model. Furthermore, recent advancements in TENG application scenarios are discussed from four perspectives, along with the research progress in performance optimization through three primary approaches, highlighting their respective strengths and limitations. Finally, the paper addresses the major challenges hindering the practical application and widespread adoption of TENGs, while also providing insights into future developments. With continued research on the TENG, it is expected that these challenges can be overcome, paving the way for its extensive utilization in various real-world scenarios.
Collapse
Affiliation(s)
- Zhan Shi
- School of Mechanical Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Yanhu Zhang
- School of Mechanical Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Jiawei Gu
- School of Mechanical Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Bao Liu
- Institute of Automotive Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Hao Fu
- School of Mechanical Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Hongyu Liang
- School of Mechanical Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Jinghu Ji
- School of Mechanical Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
2
|
Galembeck F, Santos LP, Burgo TAL, Galembeck A. The emerging chemistry of self-electrified water interfaces. Chem Soc Rev 2024; 53:2578-2602. [PMID: 38305696 DOI: 10.1039/d3cs00763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Water is known for dissipating electrostatic charges, but it is also a universal agent of matter electrification, creating charged domains in any material contacting or containing it. This new role of water was discovered during the current century. It is proven in a fast-growing number of publications reporting direct experimental measurements of excess charge and electric potential. It is indirectly verified by its success in explaining surprising phenomena in chemical synthesis, electric power generation, metastability, and phase transition kinetics. Additionally, electrification by water is opening the way for developing green technologies that are fully compatible with the environment and have great potential to contribute to sustainability. Electrification by water shows that polyphasic matter is a charge mosaic, converging with the Maxwell-Wagner-Sillars effect, which was discovered one century ago but is still often ignored. Electrified sites in a real system are niches showing various local electrochemical potentials for the charged species. Thus, the electrified mosaics display variable chemical reactivity and mass transfer patterns. Water contributes to interfacial electrification from its singular structural, electric, mixing, adsorption, and absorption properties. A long list of previously unexpected consequences of interfacial electrification includes: "on-water" reactions of chemicals dispersed in water that defy current chemical wisdom; reactions in electrified water microdroplets that do not occur in bulk water, transforming the droplets in microreactors; and lowered surface tension of water, modifying wetting, spreading, adhesion, cohesion, and other properties of matter. Asymmetric capacitors charged by moisture and water are now promising alternative equipment for simultaneously producing electric power and green hydrogen, requiring only ambient thermal energy. Changing surface tension by interfacial electrification also modifies phase-change kinetics, eliminating metastability that is the root of catastrophic electric discharges and destructive explosions. It also changes crystal habits, producing needles and dendrites that shorten battery life. These recent findings derive from a single factor, water's ability to electrify matter, touching on the most relevant aspects of chemistry. They create tremendous scientific opportunities to understand the matter better, and a new chemistry based on electrified interfaces is now emerging.
Collapse
Affiliation(s)
- Fernando Galembeck
- Department of Physical Chemistry, University of Campinas, Institute of Chemistry, 13083-872, Campinas, Brazil.
- Galembetech Consultores e Tecnologia, 13080-661, Campinas, Brazil
| | - Leandra P Santos
- Galembetech Consultores e Tecnologia, 13080-661, Campinas, Brazil
| | - Thiago A L Burgo
- Department of Chemistry and Environmental Sciences, São Paulo State University (Unesp), 15054-000, São José do Rio Preto, Brazil
| | - Andre Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco, 50740-560, Recife, Brazil
| |
Collapse
|
3
|
Middleton J, Scott AJ, Storey R, Marucci M, Ghadiri M. Prediction of the Effective Work Function of Aspirin and Paracetamol Crystals by Density Functional Theory-A First-Principles Study. CRYSTAL GROWTH & DESIGN 2023; 23:6308-6317. [PMID: 37692333 PMCID: PMC10485818 DOI: 10.1021/acs.cgd.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Indexed: 09/12/2023]
Abstract
Crystals of active pharmaceutical ingredients (API) are prone to triboelectric charging due to their dielectric nature. This characteristic, coupled with their typically low density and often large aspect ratio, poses significant challenges in the manufacturing process. The pharmaceutical industry frequently encounters issues during the secondary processing of APIs, such as particle adhesion to walls, clump formation, unreliable flow, and the need for careful handling to mitigate the risk of fire and explosions. These challenges are further intensified by the limited availability of powder quantities for testing, particularly in the early stages of drug development. Therefore, it is highly desirable to develop predictive tools that can assess the triboelectric propensity of APIs. In this study, Density Functional Theory calculations are employed to predict the effective work function of different facets of aspirin and paracetamol crystals, both in a vacuum and in the presence of water molecules on their surfaces. The calculations reveal significant variations in the work function across different facets and materials. Moreover, the adsorption of water molecules induces a shift in the work function. These findings underscore the considerable impact of distinct surface terminations and the presence of molecular water on the calculated effective work function of pharmaceuticals. Consequently, this approach offers a valuable predictive tool for determining the triboelectric propensity of APIs.
Collapse
Affiliation(s)
- James
R. Middleton
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Andrew J. Scott
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Richard Storey
- New
Modalities Product Development, Pharmaceutical Technology & Development,
Operations, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Mariagrazia Marucci
- Oral
Product Development, Pharmaceutical Technology & Development,
Operations, AstraZeneca, Gothenburg 413 27, Sweden
| | - Mojtaba Ghadiri
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United
Kingdom
| |
Collapse
|
4
|
Shi K, Chai B, Zou H, Min D, Li S, Jiang P, Huang X. Dielectric Manipulated Charge Dynamics in Contact Electrification. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9862980. [PMID: 35198985 PMCID: PMC8829537 DOI: 10.34133/2022/9862980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
Surface charge density has been demonstrated to be significantly impacted by the dielectric properties of tribomaterials. However, the ambiguous physical mechanism of dielectric manipulated charge behavior still restricts the construction of high-performance tribomaterials. Here, using the atomic force microscopy and Kelvin probe force microscopy, an in situ method was conducted to investigate the contact electrification and charge dynamics on a typical tribomaterial (i.e., BaTiO3/PVDF-TrFE nanocomposite) at nanoscale. Combined with the characterization of triboelectric device at macroscale, it is found that the number of transferred electrons increases with contact force/area and tends to reach saturation under increased friction cycles. The incorporated high permittivity BaTiO3 nanoparticles enhance the capacitance and electron trapping capability of the nanocomposites, efficiently inhibiting the lateral diffusion of electrons and improving the output performance of the triboelectric devices. Exponential decay of the surface potential is observed over monitoring time for all dielectric samples. At high BaTiO3 loadings, more electrons can drift into the bulk and combine with the induced charges on the back electrode, forming a large leakage current and accordingly accelerating the electron dissipation. Hence, the charge trapping/storing and dissipating, as well as the charge attracting properties, should be comprehensively considered in the design of high-performance tribomaterials.
Collapse
Affiliation(s)
- Kunming Shi
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Chai
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyang Zou
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
| | - Daomin Min
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shengtao Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Wang ZL. From contact electrification to triboelectric nanogenerators. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:096502. [PMID: 34111846 DOI: 10.1088/1361-6633/ac0a50] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/10/2021] [Indexed: 05/15/2023]
Abstract
Although the contact electrification (CE) (or usually called 'triboelectrification') effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid-solid interfaces. Electron transfer also occurs in the CE at liquid-solid and liquid-liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid-solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid-solid interfaces. Second, by adding a time-dependent polarization termPscreated by the CE-induced surface electrostatic charges in the displacement fieldD, we expand Maxwell's equations to include both the medium polarizations due to electric field (P) and mechanical aggitation and medium boundary movement induced polarization term (Ps). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell's equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising fromε∂E/∂t is responsible for EM waves, while the newly added term ∂Ps/∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence.
Collapse
Affiliation(s)
- Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Abstract
Interfaces between a liquid and a solid (L-S) are the most important surface science in chemistry, catalysis, energy, and even biology. Formation of an electric double layer (EDL) at the L-S interface has been attributed due to the adsorption of a layer of ions at the solid surface, which causes the ions in the liquid to redistribute. Although the existence of a layer of charges on a solid surface is always assumed, the origin of the charges is not extensively explored. Recent studies of contact electrification (CE) between a liquid and a solid suggest that electron transfer plays a dominant role at the initial stage for forming the charge layer at the L-S interface. Here, we review the recent works about electron transfer in liquid-solid CE, including scenerios such as liquid-insulator, liquid-semiconductor, and liquid-metal. Formation of the EDL is revisited considering the existence of electron transfer at the L-S interface. Furthermore, the triboelectric nanogenerator (TENG) technique based on the liquid-solid CE is introduced, which can be used not only for harvesting mechanical energy from a liquid but also as a probe for probing the charge transfer at liquid-solid interfaces.
Collapse
Affiliation(s)
- Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
7
|
Sun LL, Lin SQ, Tang W, Chen X, Wang ZL. Effect of Redox Atmosphere on Contact Electrification of Polymers. ACS NANO 2020; 14:17354-17364. [PMID: 33210533 DOI: 10.1021/acsnano.0c07480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Triboelectric Nanogenerator has demonstrated broad applications in energy, environmental, and electronic fields, as well as huge potential in the mechanism study of contact electrification, since 2012. Herein, we employed a Triboelectric Nanogenerator working in vertical contact-separation mode to study the electrification performance of the polymer under redox atmosphere. The results show that the electron-withdrawing ability of the polymer is weakened with increasing O3 concentration. Considering that O3 is typically one of the strongest oxidants, we further studied the electrification performance under H2, CO, and O2 atmosphere. It is found that the electron-withdrawing ability was predictably weakened under O2 atmosphere similar to the case of O3. On the contrary, the electron-withdrawing ability was enhanced under H2 and CO atmosphere. Accordingly, a theoretical mechanism involving the highest occupied surface state level is proposed to explain the effect of redox atmosphere on contact electrification. These results clarify that contact electrification can be varied by redox agents. Conversely, it also suggests the possibility to manipulate the redox reactions through the modification of contact electrification.
Collapse
Affiliation(s)
- Lin Lin Sun
- State Key Laboratory of Mechatronics Engineering and Control, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Shi Quan Lin
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Tang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Institute of Applied Nanotechnology, Jiaxing, Zhejiang 314031, People's Republic of China
| | - Xi Chen
- State Key Laboratory of Mechatronics Engineering and Control, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
8
|
Lin S, Zheng M, Luo J, Wang ZL. Effects of Surface Functional Groups on Electron Transfer at Liquid-Solid Interfacial Contact Electrification. ACS NANO 2020; 14:10733-10741. [PMID: 32806074 DOI: 10.1021/acsnano.0c06075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Contact electrification (CE) at interfaces is sensitive to the functional groups on the solid surface, but its mechanism is poorly understood, especially for the liquid-solid cases. A core controversy is the identity of the charge carriers (electrons or/and ions) in the CE between liquids and solids. Here, the CE between SiO2 surfaces with different functional groups and different liquids, including DI water and organic solutions, is systematically studied, and the contribution of electron transfer is distinguished from that of ion transfer according to the charge decay behavior at surfaces at specific temperature, because electron release follows the thermionic emission theory. It is revealed that electron transfer plays an important role in the CE between liquids and functional group modified SiO2. Moreover, the electron transfer between the DI water and the SiO2 is found highly related to the electron affinity of the functional groups on the SiO2 surfaces, while the electron transfer between organic solutions and the SiO2 is independent of the functional groups, due to the limited ability of organic solutions to donate or gain electrons. An energy band model for the electron transfer between liquids and solids is further proposed, in which the effects of functional groups are considered. The discoveries in this work support the "two-step" model about the formation of an electric double-layer (Wang model), in which the electron transfer occurs first when the liquids contact the solids for the very first time.
Collapse
Affiliation(s)
- Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mingli Zheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianjun Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
9
|
Lin S, Xu L, Chi Wang A, Wang ZL. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat Commun 2020; 11:399. [PMID: 31964882 PMCID: PMC6972942 DOI: 10.1038/s41467-019-14278-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/16/2019] [Indexed: 12/04/2022] Open
Abstract
Contact electrification (CE) has been known for more than 2600 years but the nature of charge carriers and their transfer mechanisms still remain poorly understood, especially for the cases of liquid-solid CE. Here, we study the CE between liquids and solids and investigate the decay of CE charges on the solid surfaces after liquid-solid CE at different thermal conditions. The contribution of electron transfer is distinguished from that of ion transfer on the charged surfaces by using the theory of electron thermionic emission. Our study shows that there are both electron transfer and ion transfer in the liquid-solid CE. We reveal that solutes in the solution, pH value of the solution and the hydrophilicity of the solid affect the ratio of electron transfers to ion transfers. Further, we propose a two-step model of electron or/and ion transfer and demonstrate the formation of electric double-layer in liquid-solid CE.
Collapse
Affiliation(s)
- Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Aurelia Chi Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, PR China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| |
Collapse
|
10
|
Willatzen M, Wang ZL. Contact Electrification by Quantum-Mechanical Tunneling. RESEARCH (WASHINGTON, D.C.) 2019; 2019:6528689. [PMID: 31549077 PMCID: PMC6750111 DOI: 10.34133/2019/6528689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 05/27/2023]
Abstract
A simple model of charge transfer by loss-less quantum-mechanical tunneling between two solids is proposed. The model is applicable to electron transport and contact electrification between e.g. a metal and a dielectric solid. Based on a one-dimensional effective-mass Hamiltonian, the tunneling transmission coefficient of electrons through a barrier from one solid to another solid is calculated analytically. The transport rate (current) of electrons is found using the Tsu-Esaki equation and accounting for different Fermi functions of the two solids. We show that the tunneling dynamics is very sensitive to the vacuum potential versus the two solids conduction-band edges and the thickness of the vacuum gap. The relevant time constants for tunneling and contact electrification, relevant for triboelectricity, can vary over several orders of magnitude when the vacuum gap changes by one order of magnitude, say, 1 Å to 10 Å. Coulomb repulsion between electrons on the left and right material surfaces is accounted for in the tunneling dynamics.
Collapse
Affiliation(s)
- Morten Willatzen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
| |
Collapse
|
11
|
|
12
|
Lin S, Xu L, Zhu L, Chen X, Wang ZL. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901418. [PMID: 31095783 DOI: 10.1002/adma.201901418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Contact electrification (CE) (or triboelectrification) is a well-known phenomenon, and the identity of the charge carriers and their transfer mechanism have been discussed for decades. Recently, the species of transferred charges in the CE between a metal and a ceramic was revealed as electron transfer and its subsequent release is dominated by the thermionic emission process. Here, the release of CE-induced electrostatic charges on a dielectric surface under photon excitation is studied by varying the light intensity and wavelength, but under no significant raise in temperature. The results suggest that there exists a threshold photon energy for releasing the triboelectric charges from the surface, which is 4.1 eV (light wavelength at 300 nm) for SiO2 and 3.4 eV (light wavelength at 360 nm) for PVC; photons with energy smaller than this cannot effectively excite the surface electrostatic charges. This process is attributed to the photoelectron emission of the charges trapped in the surface states of the dielectric material. Further, a photoelectron emission model is proposed to describe light-induced charge decay on a dielectric surface. The findings provide an additional strong evidence about the electron transfer process in the CE between metals and dielectrics as well as polymers.
Collapse
Affiliation(s)
- Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Laipan Zhu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
13
|
Lin S, Xu L, Xu C, Chen X, Wang AC, Zhang B, Lin P, Yang Y, Zhao H, Wang ZL. Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal-Dielectric Case. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808197. [PMID: 30844100 DOI: 10.1002/adma.201808197] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/29/2019] [Indexed: 05/27/2023]
Abstract
The phenomenon of contact electrification (CE) has been known for thousands of years, but the nature of the charge carriers and their transfer mechanisms are still under debate. Here, the CE and triboelectric charging process are studied for a metal-dielectric case at different thermal conditions by using atomic force microscopy and Kelvin probe force microscopy. The charge transfer process at the nanoscale is found to follow the modified thermionic-emission model. In particular, the focus here is on the effect of a temperature difference between two contacting materials on the CE. It is revealed that hotter solids tend to receive positive triboelectric charges, while cooler solids tend to be negatively charged, which suggests that the temperature-difference-induced charge transfer can be attributed to the thermionic-emission effect, in which the electrons are thermally excited and transfer from a hotter surface to a cooler one. Further, a thermionic-emission band-structure model is proposed to describe the electron transfer between two solids at different temperatures. The findings also suggest that CE can occur between two identical materials owing to the existence of a local temperature difference arising from the nanoscale rubbing of surfaces with different curvatures/roughness.
Collapse
Affiliation(s)
- Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Xu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aurelia C Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Binbin Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Pei Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huabo Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|