1
|
Vrška D, Urban M, Neogrády P, Pittner J, Blaško M, Pitoňák M. DFT Modeling of Polyethylene Chains Cross-linked by Selected ns 1 and ns 2 Metal Atoms. J Phys Chem A 2024; 128:7634-7647. [PMID: 39219502 DOI: 10.1021/acs.jpca.4c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We analyze the structures, stabilities, and thermochemical properties of polyethylene (PE) oligomer chains cross-linked by metal (M) atoms through C-M-C bonds. Representative PEn-Mm-PEn complexes contain between 7 and 15 carbon atoms in each oligomer and one to three Li, Be, Mg, Zn, Ag, or Au cross-linking metal elements. PEn-Mm-PEn complexes are quasiplanar with nearly parallel PE chains. Their stability is determined by covalent C-M-C bonds accompanied by noncovalent dispersion interactions between PEn chains. Using the CAM-B3LYP+D3BJ+ABC functional, the binding energies of PE15-M-PE15 with respect to two PE15 radicals and metal fragments are -225, -230, -322, -551, -289, and -303 kJ/mol for Li, Ag, Au, Be, Mg, and Zn atoms, respectively. Entropy contributions (109 to 121 kJ/mol at 298.15 K) destabilize all complexes significantly. With two cross-linking metal elements in PE15-M2-PE15 complexes, binding energies are about double. Complexes with several open-shell Li, Ag, or Au doublet atoms have spins located on separated C-M-C bonds. High-spin PE15-Mm1-PE15-Mm2-PE15 complexes of three PE oligomers cross-linked by up to five doublet metal atoms create parallel PE tubes, which are suggested as elementary cells for modeling magnetic polymer tubes.
Collapse
Affiliation(s)
- Dávid Vrška
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Miroslav Urban
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Pavel Neogrády
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Jiří Pittner
- Jaroslav Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, Prague 8 CZ-18223, Czech Republic
| | - Martin Blaško
- Centre of Operations Computing Centre of SAS, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84535, Slovakia
| | - Michal Pitoňák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
- Slovak National Supercomputing Centre, Dúbravská cesta 9, Bratislava SK-84104, Slovakia
| |
Collapse
|
2
|
Slinger BL, Zhu J, Widenhoefer RA. Cationic Bis(Gold) Indenyl Complexes. Chempluschem 2024; 89:e202300691. [PMID: 38259056 DOI: 10.1002/cplu.202300691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/24/2024]
Abstract
Reaction of (P)AuOTf [P=P(t-Bu)2o-biphenyl] with indenyl- or 3-methylindenyl lithium led to isolation of gold η1-indenyl complexes (P)Au(η1-inden-1-yl) (1 a) and (P)Au(η1-3-methylinden-1-yl) (1 b), respectively, in >65 % yield. Whereas complex 1 b is static, complex 1 a undergoes facile, degenerate 1,3-migration of gold about the indenyl ligand (ΔG≠ 153K=9.1±1.1 kcal/mol). Treatment of complexes 1 a and 1 b with (P)AuNTf2 led to formation of the corresponding cationic bis(gold) indenyl complexes trans-[(P)Au]2(η1,η1-inden-1,3-yl) (2 a) and trans-[(P)Au]2(η1,η2-3-methylinden-1-yl) (2 b), respectively, which were characterized spectroscopically and modeled computationally. Despite the absence of aurophilic stabilization in complexes 2 a and 2 b, the binding affinity of mono(gold) complex 1 a toward exogenous (P)Au+ exceed that of free indene by ~350-fold and similarly the binding affinity of 1 b toward exogenous (P)Au+ exceed that of 3-methylindene by ~50-fold. The energy barrier for protodeauration of bis(gold) indenyl complex 2 a with HOAc was ≥8 kcal/mol higher than for protodeauration of mono(gold) complex 1 a.
Collapse
Affiliation(s)
- Brady L Slinger
- Department of Chemistry, Duke University French Family Science Center, Durham, NC, 27708-0346, USA
| | - Jiaqi Zhu
- Department of Chemistry, Duke University French Family Science Center, Durham, NC, 27708-0346, USA
| | - Ross A Widenhoefer
- Department of Chemistry, Duke University French Family Science Center, Durham, NC, 27708-0346, USA
| |
Collapse
|
3
|
Arabzadeh Nosratabad N, Jin Z, Arabzadeh H, Chen B, Huang C, Mattoussi H. Molar excess of coordinating N-heterocyclic carbene ligands triggers kinetic digestion of gold nanocrystals. Dalton Trans 2024; 53:467-483. [PMID: 38078852 DOI: 10.1039/d3dt02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
There has been much interest in evaluating the strength of the coordination interactions between N-heterocyclic carbene (NHC) molecules and transition metal ions, nanocolloids and surfaces. We implement a top-down core digestion test of Au nanoparticles (AuNPs) triggered by incubation with a large molar excess of poly(ethylene glycol)-appended NHC molecules, where kinetic dislodging of surface atoms and formation of NHC-Au complexes progressively take place. We characterize the structure and chemical nature of the generated PEG-NHC-Au complexes using 1D and 2D 1H-13C NMR spectroscopy, supplemented with matrix assisted laser desorption/ionization mass spectrometry, and transmission electron microscopy. We further apply the same test using thiol-modified molecules and find that though etching can be measured the kinetics are substantially slower. We discuss our findings within the classic digestion of transition metal ores and colloids induced by interactions with sodium cyanide, which provides an insight into the strength of coordination between the strong σ-donating (soft Lewis base) NHC and Au surfaces (having a soft Lewis acid character), as compared to gold-to-gold covalent binding.
Collapse
Affiliation(s)
- Neda Arabzadeh Nosratabad
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Zhicheng Jin
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Hesam Arabzadeh
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Banghao Chen
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Cheng Huang
- Florida State University, Department of Scientific Computing, Tallahassee, FL 32306, USA
| | - Hedi Mattoussi
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| |
Collapse
|
4
|
Jin Z, Yeung J, Zhou J, Retout M, Yim W, Fajtová P, Gosselin B, Jabin I, Bruylants G, Mattoussi H, O'Donoghue AJ, Jokerst JV. Empirical Optimization of Peptide Sequence and Nanoparticle Colloidal Stability: The Impact of Surface Ligands and Implications for Colorimetric Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20483-20494. [PMID: 37058597 PMCID: PMC10614165 DOI: 10.1021/acsami.3c00862] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Surface ligands play a critical role in controlling and defining the properties of colloidal nanocrystals. These aspects have been exploited to design nanoparticle aggregation-based colorimetric sensors. Here, we coated 13-nm gold nanoparticles (AuNPs) with a large library of ligands (e.g., from labile monodentate monomers to multicoordinating macromolecules) and evaluated their aggregation propensity in the presence of three peptides containing charged, thiolate, or aromatic amino acids. Our results show that AuNPs coated with the polyphenols and sulfonated phosphine ligands were good choices for electrostatic-based aggregation. AuNPs capped with citrate and labile-binding polymers worked well for dithiol-bridging and π-π stacking-induced aggregation. In the example of electrostatic-based assays, we stress that good sensing performance requires aggregating peptides of low charge valence paired with charged NPs with weak stability and vice versa. We then present a modular peptide containing versatile aggregating residues to agglomerate a variety of ligated AuNPs for colorimetric detection of the coronavirus main protease. Enzymatic cleavage liberates the peptide segment, which in turn triggers NP agglomeration and thus rapid color changes in <10 min. The protease detection limit is 2.5 nM.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Bryan Gosselin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevel 50, CP160/06, B-1050 Brussels, Belgium
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevel 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Yu H, Li D, Shang Y, Pei L, Zhang G, Yan H, Wang L. Transport properties of MoS 2/V 7(Bz) 8 and graphene/V 7(Bz) 8 vdW junctions tuned by bias and gate voltages. RSC Adv 2022; 12:17422-17433. [PMID: 35765433 PMCID: PMC9189623 DOI: 10.1039/d2ra02196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
The MoS2/V7(Bz)8 and graphene/V7(Bz)8 vdW junctions are designed and the transport properties of their four-terminal devices are comparatively investigated based on density functional theory (DFT) and the nonequilibrium Green's function (NEGF) technique. The MoS2 and graphene nanoribbons act as the source-to-drain channel and the spin-polarized one-dimensional (1D) benzene-V multidecker complex nanowire (V7(Bz)8) serves as the gate channel. Gate voltages applied on V7(Bz)8 exert different influences of electron transport on MoS2/V7(Bz)8 and graphene/V7(Bz)8. In MoS2/V7(Bz)8, the interplay of source and gate bias potentials could induce promising properties such as negative differential resistance (NDR) behavior, output/input current switching, and spin-polarized currents. In contrast, the gate bias plays an insignificant effect on the transport along graphene in graphene/V7(Bz)8. This dissimilarity is attributed to the fact that the conductivity follows the sequence of MoS2 < V7(Bz)8 < graphene. These transport characteristics are examined by analyzing the conductivity, the currents, the local density of states (LDOS), and the transmission spectra. These results are valuable in designing multi-terminal nanoelectronic devices.
Collapse
Affiliation(s)
- Hong Yu
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 P. R. China
| | - Danting Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 P. R. China
| | - Yan Shang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 P. R. China
| | - Lei Pei
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 P. R. China
| | - Guiling Zhang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 P. R. China
| | - Hong Yan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology Harbin 150040 P. R. China
| | - Long Wang
- HeiLongJiang Construction Investment Group Co. Ltd No. 523, Sanda Dongli Road Harbin 150040 P. R. China
| |
Collapse
|
6
|
Gupta R, Jash P, Sachan P, Bayat A, Singh V, Mondal PC. Electrochemical Potential‐Driven High‐Throughput Molecular Electronic and Spintronic Devices: From Molecules to Applications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ritu Gupta
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Priyajit Jash
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Pradeep Sachan
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Akhtar Bayat
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298 Université de Bordeaux 33400 Talence France
| | - Vikram Singh
- Department of Chemistry and National Science Research Institute Korea Advanced Institute of Science and Technology 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Prakash Chandra Mondal
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| |
Collapse
|
7
|
Blaško M, Pašteka LF, Urban M. DFT Functionals for Modeling of Polyethylene Chains Cross-Linked by Metal Atoms. DLPNO-CCSD(T) Benchmark Calculations. J Phys Chem A 2021; 125:7382-7395. [PMID: 34428051 DOI: 10.1021/acs.jpca.1c04793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory (DFT) functionals for calculations of binding energies (BEs) of the polyethylene (PE) chains cross-linked by selected metal atoms (M) are benchmarked against DLPNO-CCSD(T) and DLPNO-CCSD(T1) data. PEX-M-PEX complexes as compared with plain parallel PEX···PEX chains with X = 3-9 carbon atoms are model species characterized by a cooperative effect of covalent C-M-C bonds and interchain dispersion interactions. The accuracy of DLPNO-CC methods was assessed by a comparison of BEs with the canonical CCSD(T) results for small PE3-M-PE3 complexes. Functionals for PEX···PEX and closed-shell PEX-M-PEX complexes (M = Be, Mg, Zn) were benchmarked against DLPNO-CCSD(T) BEs; open-shell complexes (M = Li, Ag, Au) were benchmarked against the DLPNO-CCSD(T1) method with iterative triples. Three dispersion corrections were combined with 25 DFT functionals for calculations of BEs with respect to PEX-M and PEX fragments employing def2-TZVPP and def2-QZVPP basis sets. Accuracy to within 5% for the closed-shell PEX-M-PEX complexes was achieved with five functionals. Less accurate are functionals for the open-shell PEX-M-PEX complexes; only two functionals deviate by less than 15% from DLPNO-CCSD(T1). Particularly problematic were PEX-Li-PEX complexes. A reasonable overall performance across all complexes in terms of the mean absolute percentage error is found for the range-separated hybrid functionals ωB97X-D3 and CAM-B3LYP/D3(BJ)-ABC.
Collapse
Affiliation(s)
- Martin Blaško
- FunGlass, A. Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Lukáš F Pašteka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Miroslav Urban
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
8
|
Gupta R, Jash P, Sachan P, Bayat A, Singh V, Mondal PC. Electrochemical Potential-Driven High-Throughput Molecular Electronic and Spintronic Devices: From Molecules to Applications. Angew Chem Int Ed Engl 2021; 60:26904-26921. [PMID: 34313372 DOI: 10.1002/anie.202104724] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/25/2023]
Abstract
Molecules are fascinating candidates for constructing tunable and electrically conducting devices by the assembly of either a single molecule or an ensemble of molecules between two electrical contacts followed by current-voltage (I-V) analysis, which is often termed "molecular electronics". Recently, there has been also an upsurge of interest in spin-based electronics or spintronics across the molecules, which offer additional scope to create ultrafast responsive devices with less power consumption and lower heat generation using the intrinsic spin property rather than electronic charge. Researchers have been exploring this idea of utilizing organic molecules, organometallics, coordination complexes, polymers, and biomolecules (proteins, enzymes, oligopeptides, DNA) in integrating molecular electronics and spintronics devices. Although several methods exist to prepare molecular thin-films on suitable electrodes, the electrochemical potential-driven technique has emerged as highly efficient. In this Review we describe recent advances in the electrochemical potential driven growth of nanometric various molecular films on technologically relevant substrates, including non-magnetic and magnetic electrodes to investigate the stimuli-responsive charge and spin transport phenomena.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Priyajit Jash
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Pradeep Sachan
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Akhtar Bayat
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, 33400, Talence, France
| | - Vikram Singh
- Department of Chemistry and National Science Research Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
9
|
Blaško M, Mach P, Antušek A, Urban M. DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions. J Phys Chem A 2018; 122:1496-1503. [DOI: 10.1021/acs.jpca.7b12232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Blaško
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Pavel Mach
- Department
of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics
and Informatics, Comenius University, Mlynská Dolina, 84248 Bratislava, Slovakia
| | - Andrej Antušek
- Advanced
Technologies Research Institute, Faculty of Materials Science and
Technology in Trnava, Slovak University of Technology in Bratislava, Bottova 25, 917 24 Trnava, Slovakia
| | - Miroslav Urban
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|