1
|
Li W, Lee J, Ashokkumar M, Dumée LF. Sonochemical deposition of gold nano-shells on suspended polymeric spheres. ULTRASONICS SONOCHEMISTRY 2024; 109:107017. [PMID: 39128407 DOI: 10.1016/j.ultsonch.2024.107017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Metal nanoparticles have drawn great interest due to their unique properties for applications in the fields of catalysis, biomedicine and environmental science depending on the architecture of the metal nanoparticle composites. Amongst different designing routes, the chemical template deposition offers great flexibility in terms of the template selection and interfacial interactions, giving rise to controllable designs. In order to control over nanoparticle size distribution and deposition efficiency, a sonochemical approach has been systematically followed in this study. Key parameters of the ultrasound-assisted deposition procedures during the seeding step to synthesise gold nanoparticle-coated poly(styrene) beads were investigated. The impact of the solution pH and the ultrasonic frequency on the template deposition was examined at 139, 300, 500 and 1000 kHz. The results, monitored by transmission electron spectroscopic imaging, show that the highest gold deposition was achieved at 300 kHz, revealing the mechanistic details of the nucleation-crystal growth behaviour as a function of ultrasonic frequency and reaction time. In addition, the concentration ratio between gold ions and poly(styrene) beads was varied. The highest deposition coverage and smallest particle size were reached at 0.05 mM and 2.5 mg, respectively. The proposed mechanism of the MNPs formation and deposition behaviour were then discussed based on the tested parameters.
Collapse
Affiliation(s)
- Wu Li
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Judy Lee
- The University of Surrey, School of Chemistry and Chemical Engineering, Surrey GU27XH, United Kingdom.
| | | | - Ludovic F Dumée
- Khalifa University, Department of Chemical and Petrochemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center on 2D Nanomaterials, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Jadhav HB, Choudhary P, Gogate P, Ramniwas S, Mugabi R, Ahmad Z, Mohammed Basheeruddin Asdaq S, Ahmad Nayik G. Sonication as a potential tool in the formation of protein-based stable emulsion - Concise review. ULTRASONICS SONOCHEMISTRY 2024; 107:106900. [PMID: 38781674 PMCID: PMC11141282 DOI: 10.1016/j.ultsonch.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Emulsion systems are extensively used in the food processing sector and the use of natural emulsifiers like proteins for stabilizing emulsion has been in demand from consumers due to increased awareness about the consumption of healthy food. Numerous methods are available for the preparation of emulsion, but ultrasound got more attention among common methods owing to its economical and environment-friendly characteristics. The physical effects caused by to bursting of the cavity bubble, result in reduced droplet size, thus forming an emulsion with appreciable stability. Ultrasound ameliorates the emulsifying characteristics of natural emulsifiers like protein and improves the storage stability of the emulsion by positively boosting the rheological, emulsifying characteristics, improving zeta potential, and reducing average droplet size. The stability of protein-based emulsion is affected by environmental stresses hence conjugate of protein with polysaccharide showed good emulsifying characteristics. However, the data on the effect of ultrasound parameters on emulsifier properties is lacking and there is a need to develop a sonication device that can carry out large-scale emulsification operation. The review covers the principles and mechanisms of ultrasound-assisted formation of protein-based and protein-based conjugate emulsions. Further, the effect of ultrasound on various characteristics of protein-based emulsion is also explored. This review will provide concise data to the researchers to extend their experiments in the area of ultrasound emulsification which will help in commercializing the technology at the industrial scale.
Collapse
Affiliation(s)
- Harsh B Jadhav
- PIHM, Unit UMET, INRAE, 369 Rue Jules Guesde 59650 Villeneuve d'Ascq, France; Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Pintu Choudhary
- Department of Food Technology, CBL Government Polytechnic, Bhiwani, Haryana.
| | - Parag Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda.
| | - Zubair Ahmad
- Center of Bee Research and its Products, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian-192303, J&K, India.
| |
Collapse
|
3
|
Zhou S, Zhang W, Han X, Liu J, Asemi Z. The present state and future outlook of pectin-based nanoparticles in the stabilization of Pickering emulsions. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38733326 DOI: 10.1080/10408398.2024.2351163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The stabilization of Pickering emulsions using micro/nanoparticles has gained significant attention due to their wide range of potential applications in industries such as cosmetics, food, catalysis, tissue engineering, and drug delivery. There is a growing demand for the development of environmentally friendly micro/nanoparticles to create stable Pickering emulsions. Naturally occurring polysaccharides like pectin offer promising options as they can assemble at oil/water interfaces. This polysaccharide is considered a green candidate because of its biodegradability and renewable nature. The physicochemical properties of micro/nanoparticles, influenced by fabrication methods and post-modification techniques, greatly impact the characteristics and applications of the resulting Pickering emulsions. This review focuses on recent advancements in Pickering emulsions stabilized by pectin-based micro/nanoparticles, as well as the application of functional materials in delivery systems, bio-based films and 3D printing using these emulsions as templates. The effects of micro/nanoparticle properties on the characteristics of Pickering emulsions and their applications are discussed. Additionally, the obstacles that currently hinder the practical implementation of pectin-based micro/nanoparticles and Pickering emulsions, along with future prospects for their development, are addressed.
Collapse
Affiliation(s)
- Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiao Han
- Jilin Jinziyuan Biotechnology Co., Ltd, Shuangliao, Jilin, China
| | - Jinhui Liu
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
- Huashikang (Shenyang) Health Industry Group Co., Ltd, Shenyang, Liaoning, China
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
4
|
Zhu X, Das RS, Bhavya ML, Garcia-Vaquero M, Tiwari BK. Acoustic cavitation for agri-food applications: Mechanism of action, design of new systems, challenges and strategies for scale-up. ULTRASONICS SONOCHEMISTRY 2024; 105:106850. [PMID: 38520893 PMCID: PMC10979275 DOI: 10.1016/j.ultsonch.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Acoustic cavitation, an intriguing phenomenon resulting from the interaction of sound waves with a liquid medium, has emerged as a promising avenue in agri-food processing, offering opportunities to enhance established processes improving primary production of ingredients and further food processing. This comprehensive review provides an in-depth analysis of the mechanisms, design considerations, challenges and scale-up strategies associated with acoustic cavitation for agri-food applications. The paper starts by elucidating the fundamental principles of acoustic cavitation and its measurement, delving then into the diverse effects of different parameters associated with, the acoustic wave, mechanical design and operation of the ultrasonic system, along with those related to the food matrix. The technological advancements achieved in the design and set-up of ultrasonic reactors addressing limitations during scale up are also discussed. The design, engineering and mathematical modelling of ultrasonic equipment tailored for agri-food applications are explored, along with strategies to maximize cavitation intensity and efficiency in the application of brining, freezing, drying, emulsification, filtration and extraction. Advanced US equipment, such as multi-transducers (tubular resonator, FLOW:WAVE®) and larger processing surface areas through innovative designing (Barbell horn, CascatrodesTM), are one of the most promising strategies to ensure consistency of US operations at industrial scale. This review paper aims to provide valuable insights into harnessing acoustic cavitation's potential for up-scaling applications in food processing via critical examination of current research and advancements, while identifying future directions and opportunities for further research and innovation.
Collapse
Affiliation(s)
- Xianglu Zhu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland
| | - Rahel Suchintita Das
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8, Dublin, Ireland
| | - Mysore Lokesh Bhavya
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield D04 V1W8, Dublin, Ireland.
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown D15 DY05, Dublin, Ireland.
| |
Collapse
|
5
|
Qayum A, Rashid A, Liang Q, Wu Y, Cheng Y, Kang L, Liu Y, Zhou C, Hussain M, Ren X, Ashokkumar M, Ma H. Ultrasonic and homogenization: An overview of the preparation of an edible protein-polysaccharide complex emulsion. Compr Rev Food Sci Food Saf 2023; 22:4242-4281. [PMID: 37732485 DOI: 10.1111/1541-4337.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023]
Abstract
Emulsion systems are extensively utilized in the food industry, including dairy products, such as ice cream and salad dressing, as well as meat products, beverages, sauces, and mayonnaise. Meanwhile, diverse advanced technologies have been developed for emulsion preparation. Compared with other techniques, high-intensity ultrasound (HIUS) and high-pressure homogenization (HPH) are two emerging emulsification methods that are cost-effective, green, and environmentally friendly and have gained significant attention. HIUS-induced acoustic cavitation helps in efficiently disrupting the oil droplets, which effectively produces a stable emulsion. HPH-induced shear stress, turbulence, and cavitation lead to droplet disruption, altering protein structure and functional aspects of food. The key distinctions among emulsification devices are covered in this review, as are the mechanisms of the HIUS and HPH emulsification processes. Furthermore, the preparation of emulsions including natural polymers (e.g., proteins-polysaccharides, and their complexes), has also been discussed in this review. Moreover, the review put forward to the future HIUS and HPH emulsification trends and challenges. HIUS and HPH can prepare much emulsifier-stable food emulsions, (e.g., proteins, polysaccharides, and protein-polysaccharide complexes). Appropriate HIUS and HPH treatment can improve emulsions' rheological and emulsifying properties and reduce the emulsions droplets' size. HIUS and HPH are suitable methods for developing protein-polysaccharide forming stable emulsions. Despite the numerous studies conducted on ultrasonic and homogenization-induced emulsifying properties available in recent literature, this review specifically focuses on summarizing the significant progress made in utilizing biopolymer-based protein-polysaccharide complex particles, which can provide valuable insights for designing new, sustainable, clean-label, and improved eco-friendly colloidal systems for food emulsion. PRACTICAL APPLICATION: Utilizing complex particle-stabilized emulsions is a promising approach towards developing safer, healthier, and more sustainable food products that meet legal requirements and industrial standards. Moreover, the is an increasing need of concentrated emulsions stabilized by biopolymer complex particles, which have been increasingly recognized for their potential health benefits in protecting against lifestyle-related diseases by the scientific community, industries, and consumers.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
6
|
Nugroho RWN, Tardy BL, Eldin SM, Ilyas RA, Mahardika M, Masruchin N. Controlling the critical parameters of ultrasonication to affect the dispersion state, isolation, and chiral nematic assembly of cellulose nanocrystals. ULTRASONICS SONOCHEMISTRY 2023; 99:106581. [PMID: 37690260 PMCID: PMC10498310 DOI: 10.1016/j.ultsonch.2023.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Cellulose nanocrystals (CNCs) are typically extracted from plants and present a range of opto-mechanical properties that warrant their use for the fabrication of sustainable materials. While their commercialization is ongoing, their sustainable extraction at large scale is still being optimized. Ultrasonication is a well-established and routinely used technology for (re-) dispersing and/or isolating plant-based CNCs without the need for additional reagents or chemical processes. Several critical ultrasonication parameters, such as time, amplitude, and energy input, play dominant roles in reducing the particle size and altering the morphology of CNCs. Interestingly, this technology can be coupled with other methods to generate moderate and high yields of CNCs. Besides, the ultrasonics treatment also has a significant impact on the dispersion state and the surface chemistry of CNCs. Accordingly, their ability to self-assemble into liquid crystals and subsequent superstructures can, for example, imbue materials with finely tuned structural colors. This article gives an overview of the primary functions arising from the ultrasonication parameters for stabilizing CNCs, producing CNCs in combination with other promising methods, and highlighting examples where the design of photonic materials using nanocrystal-based celluloses is substantially impacted.
Collapse
Affiliation(s)
- Robertus Wahyu N Nugroho
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Collaborative Research Center for Nanocellulose between BRIN and Andalas University, Padang 25163, Indonesia.
| | - Blaise L Tardy
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt.
| | - R A Ilyas
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia; Center for Advanced Composite Materials, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia; Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; Center of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Malaysia.
| | - Melbi Mahardika
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Collaborative Research Center for Nanocellulose between BRIN and Andalas University, Padang 25163, Indonesia
| | - Nanang Masruchin
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; Collaborative Research Center for Nanocellulose between BRIN and Andalas University, Padang 25163, Indonesia
| |
Collapse
|
7
|
Dehghanghadikolaei A, Abdul Halim B, Sojoudi H. Impact of Processing Parameters on Contactless Emulsification via Corona Discharge. ACS OMEGA 2023; 8:24931-24941. [PMID: 37483189 PMCID: PMC10357431 DOI: 10.1021/acsomega.3c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023]
Abstract
A contactless emulsification method is presented using corona discharge. The corona discharge forms using a pin-to-plate configuration, creating a non-uniform electric field. This results in a simultaneous electrohydrodynamic (EHD) pumping of silicone oil and an electroconvection of water droplets that accelerate and submerge inside the oil, leading to a continuous water-in-oil (W/O) emulsion formation process. The impact of the oil viscosity and corona generating AC and DC electric fields (i.e., voltage and frequency) on the characteristics of the emulsions is studied. The emulsification power consumption using the AC and DC electric fields is calculated and compared to traditional emulsion formation methods. While using the DC electric field results in the formation of uniform emulsions, the AC electric field is readily available and uses less power for the emulsification. This is facile, contactless, and energy-efficient for the continuous formation of W/O emulsions.
Collapse
|
8
|
Zhao S, Yao C, Liu L, Yang M, Chen G. Ultrasound Emulsification in Microreactors: Effects of Channel Material, Surfactant Nature, and Ultrasound Parameters. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Alsmaeil AW, Kouloumpis A, Potsi G, Hammami MA, Kanj MY, Giannelis EP. Probing the Interfacial Properties of Oil-Water Interfaces Decorated with Ionizable, pH Responsive Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3118-3130. [PMID: 36791471 DOI: 10.1021/acs.langmuir.2c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particle-stabilized emulsions (Pickering emulsions) have recently attracted significant attention in scientific studies and for technological applications. The interest stems from the ease of directly assembling the particles at interfaces and modulating the interfacial properties. In this paper, we demonstrate the formation of stable, practical emulsions leveraging the assembly of ionizable, pH responsive silica nanoparticles, surface-functionalized by a mixture of silanes containing amine/ammonium groups, which renders them positively charged. Using pH as the trigger, the assembly and the behavior of the emulsion are controlled by modulating the charges of the functional groups of the nanoparticle and the oil (crude oil). In addition to their tunable charge, the particular combination of silane coupling agents leads to stable particle dispersions, which is critical for practical applications. Atomic force microscopy and interfacial tension (IFT) measurements are used to monitor the assembly, which is controlled by both the electrostatic interactions between the particles and oil and the interparticle interactions, both of which are modulated by pH. Under acidic conditions, when the surfaces of the oil and the nanoparticles (NPs) are positively charged, the NPs are not attracted at the interface and there is no significant reduction in the IFT. In contrast, under basic conditions in which the oil carries a high negative charge and the amine groups on the silica are deprotonated while still positively charged because of the ammonium groups, the NPs assemble at the interface in a closely packed configuration yielding a jammed state with a high dilatational modulus. As a result, two oil droplets do not coalesce even when pushed against each other and the emulsion stability improves significantly. The study provides new insights into the directed assembly of nanoparticles at fluid interfaces relevant to several applications, including environmental remediation, catalysis, drug delivery, food technology, and oil recovery.
Collapse
Affiliation(s)
- Ahmed Wasel Alsmaeil
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14850, United States
- EXPEC Advanced Research Center, Saudi Aramco, Dhahran 31261, Saudi Arabia
| | - Antonios Kouloumpis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Mohamed Amen Hammami
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Mazen Yousef Kanj
- College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
10
|
Fabrication of gelatin-EGCG-pectin ternary complex stabilized W/O/W double emulsions by ultrasonic emulsification: Physicochemical stability, rheological properties and structure. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
12
|
Geng Z, Zhou L, Zhang L, Hu J. Controllable emulsification by dissolved gas in water: Formation and stability of surfactant-free oil nanodroplets. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Dang TKM, Nikzad M, Truong VK, Masood S, Nguyen CK, Sbarski I. Thermomechanical Properties and Fracture Toughness Improvement of Thermosetting Vinyl Ester Using Liquid Metal and Graphene Nanoplatelets. Polymers (Basel) 2022; 14:polym14245397. [PMID: 36559762 PMCID: PMC9783833 DOI: 10.3390/polym14245397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, a eutectic gallium-indium (EGaIn) alloy and graphene nanoplatelets (GnPs) were employed as reinforcements for a comonomer vinyl ester (cVE) resin at different weight fractions up to 2% via a direct polymerization process. First, the effect of EGaIn on the curing kinetics of cVE was evaluated. The thermal and mechanical properties, and the fracture toughness of two types of cVE composites consisting of EGaIn and GnPs were then studied. The results showed that sub-micron sized EGaIn (≤1 wt.%) could promote the curing reaction of cVE without changing the curing mechanism. However, with further increases in EGaIn loading between 1 and 2 wt.%, the curing reaction rate tends to decrease. Both EGaIn and GnPs showed a significant enhancement in strengthening and toughening the cVE matrix with the presence of filler loading up to 1 wt.%. EGaIn was more effective than GnPs in promoting the flexural and impact strength. An increase of up to 50% and 32% were recorded for these mechanical properties, when EGaln was used, as compared to 46%, and 18% for GnPs, respectively. In contrast, the GnPs/cVE composites exhibited a greater improvement in the fracture toughness and fracture energy by up to 50% and 56% in comparison with those of the EGaIn/cVE ones by up to 32% and 39%, respectively. Furthermore, the stiffness of both the EgaIn/cVE and GnPs/cVE composites showed a significant improvement with an increase of up to 1.76 and 1.83 times in the normalized storage modulus, respectively, while the glass transition temperature (Tg) values remained relatively constant. This work highlights the potential of EGaIn being employed as a filler in creating high-performance thermoset composites, which facilitates its widening applications in many structural and engineering fields, where both higher toughness and stiffness are required.
Collapse
Affiliation(s)
- Thanh Kim Mai Dang
- School of Engineering, Swinburne University of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia
| | - Mostafa Nikzad
- School of Engineering, Swinburne University of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia
- Correspondence:
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Syed Masood
- School of Engineering, Swinburne University of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia
| | - Chung Kim Nguyen
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Igor Sbarski
- School of Engineering, Swinburne University of Technology, P.O. Box 218, Melbourne, VIC 3122, Australia
| |
Collapse
|
14
|
Suchintita Das R, Tiwari BK, Chemat F, Garcia-Vaquero M. Impact of ultrasound processing on alternative protein systems: Protein extraction, nutritional effects and associated challenges. ULTRASONICS SONOCHEMISTRY 2022; 91:106234. [PMID: 36435088 PMCID: PMC9685360 DOI: 10.1016/j.ultsonch.2022.106234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Proteins from alternative sources including terrestrial and aquatic plants, microbes and insects are being increasingly explored to combat the dietary, environmental and ethical challenges linked primarily to conventional sources of protein, mainly meat and dairy proteins. Ultrasound (US) technologies have emerged as a clean, green and efficient methods for the extraction of proteins from alternative sources compared to conventional methods. However, the application of US can also lead to modifications of the proteins extracted from alternative sources, including changes in their nutritional quality (protein content, amino acid composition, protein digestibility, anti-nutritional factors) and allergenicity, as well as damage of the compounds associated with an increased degradation resulting from extreme US processing conditions. This work aims to summarise the main advances in US equipment currently available to date, including the main US parameters and their effects on the extraction of protein from alternative sources, as well as the studies available on the effects of US processing on the nutritional value, allergenicity and degradation damage of these alternative protein ingredients. The main research gaps identified in this work and future challenges associated to the widespread application of US and their scale-up to industry operations are also covered in detail.
Collapse
Affiliation(s)
- Rahel Suchintita Das
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; TEAGASC, Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Farid Chemat
- GREEN Team Extraction, UMR408, INRA, Université D'Avignon et des Pays de Vaucluse, Avignon Cedex, France
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Hoo DY, Low ZL, Low DYS, Tang SY, Manickam S, Tan KW, Ban ZH. Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. ULTRASONICS SONOCHEMISTRY 2022; 90:106176. [PMID: 36174272 PMCID: PMC9519792 DOI: 10.1016/j.ultsonch.2022.106176] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 05/17/2023]
Abstract
With rising consumer demand for natural products, a greener and cleaner technology, i.e., ultrasound-assisted extraction, has received immense attention given its effective and rapid isolation for nanocellulose compared to conventional methods. Nevertheless, the application of ultrasound on a commercial scale is limited due to the challenges associated with process optimization, high energy requirement, difficulty in equipment design and process scale-up, safety and regulatory issues. This review aims to narrow the research gap by placing the current research activities into perspectives and highlighting the diversified applications, significant roles, and potentials of ultrasound to ease future developments. In recent years, enhancements have been reported with ultrasound assistance, including a reduction in extraction duration, minimization of the reliance on harmful chemicals, and, most importantly, improved yield and properties of nanocellulose. An extensive review of the strengths and weaknesses of ultrasound-assisted treatments has also been considered. Essentially, the cavitation phenomena enhance the extraction efficiency through an increased mass transfer rate between the substrate and solvent due to the implosion of microbubbles. Optimization of process parameters such as ultrasonic intensity, duration, and frequency have indicated their significance for improved efficiency.
Collapse
Affiliation(s)
- Do Yee Hoo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Zhen Li Low
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Darren Yi Sern Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Khang Wei Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia.
| | - Zhen Hong Ban
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
16
|
Li W, Wu Y, Martin GJ, Ashokkumar M. Turbulence-dependent reversible liquid-gel transition of micellar casein-stabilised emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Carpenter J, Pinjari DV, Kumar Saharan V, Pandit AB. Critical Review on Hydrodynamic Cavitation as an Intensifying Homogenizing Technique for Oil-in-Water Emulsification: Theoretical Insight, Current Status, and Future Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jitendra Carpenter
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| | - Dipak V. Pinjari
- Department of Fibers and Textile Processing Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| | - Virendra Kumar Saharan
- Department of Chemical Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Aniruddha B. Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| |
Collapse
|
18
|
Ozkan B, Altuntas E, Cakir Koc R, Budama-Kilinc Y. Development of piperine nanoemulsions: an alternative topical application for hypopigmentation. Drug Dev Ind Pharm 2022; 48:117-127. [PMID: 35815814 DOI: 10.1080/03639045.2022.2100901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, it was aimed to develop a topical piperine nanoemulsion (P-NE) using an ultrasonic emulsification process to find an alternative treatment option for some hypopigmentation disorders such as vitiligo.Results showed that 150 mg piperine loaded NE with 1:2 oil phase to Smix ratio and manufactured with 20 minutes ultrasonication duration with pre-emulsification step was the most durable formulation with a mean globule size of 216.00 ± 2.65, a PdI value of 0.094 ± 0.02 and a zeta potential value of -27.50 ± 2.48 mV.After three months of storage, the selected P-NE (coded as F3P2) remained kinetically stable without visual changes. This formulation displayed a sustained release pattern with a release of 81.92% ± 3.04% piperine after 72 hours. According to our in vitro activity experiments, it was determined that the P-NE had no toxic effect including dose of 5 mg/mL, and the highest P-NE formulation dose of 5 mg/mL increased tyrosinase activity by 32.77% ± 9.09% and melanogenesis activity by 34.90% ± 0.73%.In conclusion, it was demonstrated that the P-NE formulation may serve as a promising therapy for efficient treatment of vitiligo. Moreover, P-NE formulation may also help in preventing irregular pigmentation and skin cancer, associated with the conventional treatment methods.
Collapse
Affiliation(s)
- Burcu Ozkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Ebru Altuntas
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116, Istanbul, Turkey
| | - Rabia Cakir Koc
- Faculty of Chemical ansd Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Yasemin Budama-Kilinc
- Faculty of Chemical ansd Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey
| |
Collapse
|
19
|
Yao C, Zhao S, Liu L, Liu Z, Chen G. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Dehghanghadikolaei A, Shahbaznezhad M, Abdul Halim B, Sojoudi H. Contactless Method of Emulsion Formation Using Corona Discharge. ACS OMEGA 2022; 7:7045-7056. [PMID: 35252695 PMCID: PMC8892634 DOI: 10.1021/acsomega.1c06765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Electroemulsification methods use electrohydrodynamic (EHD) forces to manipulate fluids and droplets for emulsion formation. Here, a top-down method is presented using a contactless corona discharge for simultaneous emulsion formation and its pumping/collection. The corona discharge forms using a sharp conductive electrode connected to a high-voltage source that ionizes water vapor droplets (formed by a humidifier) and creates an ionic wind (electroconvection), dragging them into an oil medium. The nonuniform electric field induced by the corona discharge also drives the motion of the oil medium via an EHD pumping effect utilizing a modulated bottom electrode geometry. By these two effects, this contactless method enables the immersion of the water droplets into the moving oil medium, continuously forming a water-in-oil (W/O) emulsion. The impact of corona discharge voltage, vertical and horizontal distances between the two electrodes, and depth of the silicone oil on sizes of the formed emulsions is studied. This is a low-cost and contactless process enabling the continuous formation of the W/O emulsions.
Collapse
Affiliation(s)
- Amir Dehghanghadikolaei
- Department of Mechanical,
Industrial, and Manufacturing, The University
of Toledo, Toledo, Ohio 43615, United States
| | - Mohcen Shahbaznezhad
- Department of Electrical Engineering and
Computer Science, The University of Toledo, Toledo, Ohio 43615, United States
| | - Bilal Abdul Halim
- Department of Mechanical,
Industrial, and Manufacturing, The University
of Toledo, Toledo, Ohio 43615, United States
| | - Hossein Sojoudi
- Department of Mechanical,
Industrial, and Manufacturing, The University
of Toledo, Toledo, Ohio 43615, United States
| |
Collapse
|
21
|
Chavan P, Sharma P, Sharma SR, Mittal TC, Jaiswal AK. Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods 2022; 11:122. [PMID: 35010248 PMCID: PMC8750622 DOI: 10.3390/foods11010122] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by reducing loss and controlling spoilage. Among the several non-thermal processing methods, ultrasound technology has shown to be very beneficial. Ultrasound processing, whether used alone or in combination with other methods, improves food quality significantly and is thus considered beneficial. Cutting, freezing, drying, homogenization, foaming and defoaming, filtration, emulsification, and extraction are just a few of the applications for ultrasound in the food business. Ultrasounds can be used to destroy germs and inactivate enzymes without affecting the quality of the food. As a result, ultrasonography is being hailed as a game-changing processing technique for reducing organoleptic and nutritional waste. This review intends to investigate the underlying principles of ultrasonic generation and to improve understanding of their applications in food processing to make ultrasonic generation a safe, viable, and innovative food processing technology, as well as investigate the technology's benefits and downsides. The breadth of ultrasound's application in the industry has also been examined. This will also help researchers and the food sector develop more efficient strategies for frequency-controlled power ultrasound in food processing applications.
Collapse
Affiliation(s)
- Prasad Chavan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144402, India;
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Pallavi Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Sajeev Rattan Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Tarsem Chand Mittal
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin—City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
22
|
Preparation of Stable Phase Change Material Emulsions for Thermal Energy Storage and Thermal Management Applications: A Review. MATERIALS 2021; 15:ma15010121. [PMID: 35009265 PMCID: PMC8746220 DOI: 10.3390/ma15010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
Thermal energy storage (TES) is an important means for the conservation and efficient utilization of excessive and renewable energy. With a much higher thermal storage capacity, latent heat storage (LHS) may be more efficient than sensible heat storage. Phase change materials (PCMs) are the essential storage media for LHS. PCM emulsions have been developed for LHS in flow systems, which act as both heat transfer and thermal storage media with enhanced heat transfer, low pumping power, and high thermal storage capacity. However, two major barriers to the application of PCM emulsions are their instability and high degree of supercooling. To overcome these, various strategies have been attempted, such as the reduction of emulsion droplet size, addition of nucleating agents, and optimization of the formulation. To the best of our knowledge, however, there is still a lack of review articles on fabrication methods for PCM emulsions or their latest applications. This review was to provide an up-to-date and comprehensive summary on the effective strategies and the underlying mechanisms for the preparation of stable PCM emulsions and reduction of supercooling, especially with the organic PCMs of paraffin. It was also to share our insightful perspectives on further development and potential applications of PCM emulsions for efficient energy storage.
Collapse
|
23
|
Zhang R, Luo L, Yang Z, Ashokkumar M, Hemar Y. Formation by high power ultrasound of aggregated emulsions stabilised with milk protein concentrate (MPC70). ULTRASONICS SONOCHEMISTRY 2021; 81:105852. [PMID: 34875554 PMCID: PMC8651996 DOI: 10.1016/j.ultsonch.2021.105852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
In this work, oil-in-water emulsions stabilised by milk protein concentrate (MPC70) were investigated. The MPC70 concentration was kept constant at 5% (close to the protein content found in skim milk) and the oil volume fraction was varied from 20 to 65%. Sonication was performed at 20 kHz and at a constant power of 14.4 W for a total emulsion volume of 10 mL. Under certain oil concentration (≥35%) and sonication times (≥3s) the emulsion aggregated and formed high-viscosity pseudo plastic materials. However, the viscosity behaviour of the emulsion made with 35% oil reverted to that of a liquid if sonicated for longer times (≥15 s). Confocal laser scanning microscopy showed clearly that the oil droplets are aggregated under the sonication conditions and oil concentrations indicated above. An attempt to explain this behaviour through a simple model based on the bridging of oil droplets by the MPC70 particles and, taking into account the oil droplet and MPC70 particle sizes as well as the oil volume fraction, was made. The model fails to describe in details the aggregation behaviour of these emulsions, likely due to the inhomogeneous protein layer, where both free caseins and casein micelles are adsorbed, and to the packing of the oil droplets at concentrations ≤55%. Nonetheless, this work demonstrates the potential of ultrasound processing for the formation of dairy emulsions with tailored textures.
Collapse
Affiliation(s)
- Ruijia Zhang
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand
| | - Lan Luo
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand
| | - Zhi Yang
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand.
| | | | - Yacine Hemar
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
24
|
Li W, Martin GJO, Ashokkumar M. Turbulence-induced formation of emulsion gels. ULTRASONICS SONOCHEMISTRY 2021; 81:105847. [PMID: 34856449 PMCID: PMC8640544 DOI: 10.1016/j.ultsonch.2021.105847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 05/12/2023]
Abstract
Emulsion gels have a wide range of applications. We report on a facile and versatile method to produce stable emulsion gels with tunable rheological properties. Gel formation is triggered by subjecting a mixture containing aqueous colloidal particle (CP) suspensions and water-immiscible liquids to intense turbulence, generated by low frequency (20 kHz) ultrasound or high-pressure homogenization. Through systematic investigations, requisite gel formation criteria are established with respect to both formulation and processing, including ratio/type of liquid pairs, CP properties, and turbulence conditions. Based on the emulsion microstructure and rheological properties, inter-droplet bridging and CP void-filling are proposed as universal stabilization mechanisms. These mechanisms are further linked to droplet-size scaling and sphere close-packing theory, distinctive from existing gel-conferring models. The study thereby provides the foundation for advancing the production of emulsion gels that can be tailored to a wide range of current and emerging applications in the formulation and processing of food, cosmetics or pharmaceutical gels, and in material science.
Collapse
Affiliation(s)
- Wu Li
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Muthupandian Ashokkumar
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| |
Collapse
|
25
|
Meroni D, Djellabi R, Ashokkumar M, Bianchi CL, Boffito DC. Sonoprocessing: From Concepts to Large-Scale Reactors. Chem Rev 2021; 122:3219-3258. [PMID: 34818504 DOI: 10.1021/acs.chemrev.1c00438] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensification of ultrasonic processes for diversified applications, including environmental remediation, extractions, food processes, and synthesis of materials, has received attention from the scientific community and industry. The mechanistic pathways involved in intensification of ultrasonic processes that include the ultrasonic generation of cavitation bubbles, radical formation upon their collapse, and the possibility of fine-tuning operating parameters for specific applications are all well documented in the literature. However, the scale-up of ultrasonic processes with large-scale sonochemical reactors for industrial applications remains a challenge. In this context, this review provides a complete overview of the current understanding of the role of operating parameters and reactor configuration on the sonochemical processes. Experimental and theoretical techniques to characterize the intensity and distribution of cavitation activity within sonoreactors are compared. Classes of laboratory and large-scale sonoreactors are reviewed, highlighting recent advances in batch and flow-through reactors. Finally, examples of large-scale sonoprocessing applications have been reviewed, discussing the major scale-up and sustainability challenges.
Collapse
Affiliation(s)
- Daniela Meroni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Ridha Djellabi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | | | - Claudia L Bianchi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daria C Boffito
- Département de Génie Chimique, C.P. 6079, Polytechnique Montréal, Montréal H3C 3A7, Canada.,Canada Research Chair in Intensified Mechanochemical Processes for Sustainable Biomass Conversion, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec Canada
| |
Collapse
|
26
|
Pang B, Liu H, Zhang K. Recent progress on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles. Adv Colloid Interface Sci 2021; 296:102522. [PMID: 34534752 DOI: 10.1016/j.cis.2021.102522] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/16/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
Pickering emulsions stabilized by micro/nanoparticles have attracted considerable attention owing to their great potential in various applications ranging from cosmetic and food industries to catalysis, tissue engineering and drug delivery. There is a growing demand to design "green" micro/nanoparticles for constructing stable Pickering emulsions. Micro/nanoparticles derived from the naturally occurring polysaccharides including cellulose, chitin, chitosan and starch are capable of assembling at oil/water interfaces and are promising green candidates because of their excellent biodegradability and renewability. The physicochemical properties of the micro/nanoparticles, which are determined by the fabricating approaches and/or post-modification methods, have a significant effect on the characteristics of the final Pickering emulsions and their applications. Herein, recent advances on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles and the construction of functional materials including porous foams, microcapsules and latex particles from these emulsions as templates, are reviewed. In particular, the effects of micro/nanoparticles properties on the characteristics of the Pickering emulsions and their applications are discussed. Furthermore, the obstacles that hinder the practical applications of polysaccharides-based micro/nanoparticles and Pickering emulsions as well as the prospects for the future development, are discussed.
Collapse
|
27
|
Pandey P, Mettu S, Mishra HN, Ashokkumar M, Martin GJ. Multilayer co-encapsulation of probiotics and γ-amino butyric acid (GABA) using ultrasound for functional food applications. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Jiang YS, Zhang SB, Zhang SY, Peng YX. Comparative study of high‐intensity ultrasound and high‐pressure homogenization on physicochemical properties of peanut protein‐stabilized emulsions and emulsion gels. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yu Shan Jiang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Shao Bing Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Shu Yan Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Yun Xuan Peng
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| |
Collapse
|
29
|
Menon P, Anantha Singh TS, Pani N, Nidheesh PV. Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater. CHEMOSPHERE 2021; 269:128739. [PMID: 33131740 DOI: 10.1016/j.chemosphere.2020.128739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The intricacy in the treatment of effluents from the textile sector attracts the researchers since 20th century. Dye intermediate manufacturing industries are responsible for producing the toxic pollutants such as nitro-aromatics, benzene, toluene, phenol, heavy metals etc. with intense colour. The present study focuses on the performance of combined Electro-Fenton (EF) and sonication for the removal of ammoniacal nitrogen and COD from dye intermediate manufacturing wastewater. Batch experiments of EF were performed using graphite electrodes and sonication was applied to the EF treated wastewater to enhance the treatment performance. A number of experiments were executed to discover the influence of pH, applied voltage, Fenton catalyst dosage and time of electrolysis on the removal efficiency of EF batch process was scrutinized. The pH was varied between 2 and 4, applied voltage from 1 to 4V, Fenton catalyst dosage between 50 and 200 mg L-1 and time between 15 and 180 min. At optimum condition i.e. pH 3, applied voltage 3V, Fenton catalyst dosage of 100 mg L-1and 120 min electrolysis time, the percentage removal obtained for ammoniacal nitrogen and COD were 59.4% and 79.2% respectively. The removal efficiency was increased to 65.5% for ammoniacal nitrogen and 85.4% for COD after applying sonication to the EF treated wastewater. The removal of ammoniacal nitrogen and COD can be achieved in a scientific and feasible way by combining EF process with sonication.
Collapse
Affiliation(s)
- Poornima Menon
- Department of Civil Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, 382007, India
| | - T S Anantha Singh
- Department of Civil Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, 382007, India; Department of Civil Engineering, National Institute of Technology Calicut, India.
| | - Nibedita Pani
- Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, 382007, India
| | - P V Nidheesh
- CSIR, National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
30
|
Li Y, Jiang K, Cao H, Yuan M, Ye T, Xu F. Establishment of a standardized dietary model for nanoparticles oral exposure studies. Food Sci Nutr 2021; 9:1441-1451. [PMID: 33747458 PMCID: PMC7958543 DOI: 10.1002/fsn3.2112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/27/2020] [Accepted: 12/26/2020] [Indexed: 01/24/2023] Open
Abstract
Food matrices could affect the physicochemical properties of nanoparticles (NPs) and define the biological effects of NPs via oral exposure compared with the pristine NPs. We established a standardized dietary model based on Chinese dietary reference intakes and Chinese dietary guidelines to mimic the exposure of NPs in real life and to evaluate further the biological effect and toxicity of NPs via oral exposure compared with current models. The standardized dietary model prepared from the primary emulsion was dried into powder using spray drying compared with commercial food powder and then was reconstituted compared with the fresh sample. The average particle size (295.59 nm), potential (-23.78 mV), viscosity (0.04 pa s), and colors (L*, a*, b* = 84.13, -0.116, 8.908) were measured and characterized of the fresh sample. The flowability (repose angle = 37.28° and slide angle = 36.75°), moisture (2.68%), colors (L*, a*, b* = 94.16, -0.27, 3.01), and bulk density (0.45 g/ml) were compared with commercial food powder. The size (310.75 nm), potential (-23.98 mV), and viscosity (0.04 pa s) of reconstituted model were similar to the fresh sample. Results demonstrated that the model was satisfy the characterizations of easy to fabrication, good stability, small particle size, narrow particle size distribution, strong practicability, and good reproducibility similar to most physiological food state and will be used to evaluate NPs' safety.
Collapse
Affiliation(s)
- Yan Li
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Kun Jiang
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Hui Cao
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Min Yuan
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Tai Ye
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Fei Xu
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
31
|
Yatipanthalawa B, Li W, Hill DRA, Trifunovic Z, Ashokkumar M, Scales PJ, Martin GJO. Interplay between interfacial behaviour, cell structure and shear enables biphasic lipid extraction from whole diatom cells (Navicula sp.). J Colloid Interface Sci 2021; 589:65-76. [PMID: 33450461 DOI: 10.1016/j.jcis.2020.12.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS Bacillariophyceae (i.e., diatoms) are an important class of algae with potential use in the production of proteins and lipids including long-chain ω-3 polyunsaturated fatty acids. Biphasic extraction of microalgae lipids using water-immiscible solvents such as hexane, can avoid the excessive energy required to distil solvents from water, but generally requires energy-intensive rupture of the cells. The unique cell structure and surface chemistry of diatoms compared to other microalgae species might allow biphasic lipid extraction without prior cell rupture. EXPERIMENTS The kinetics of biphasic lipid extraction from intact Navicula sp. cells was investigated during low-shear and high-shear mixing, and with prior or simultaneous application of ultrasound (20 kHz at 0.57 W/mL). Dynamic interfacial tension measurements and electron microscopic analysis were used to investigate lipid extraction in relation to interfacial behaviour and cell structure. RESULTS High yields (>80%) of intracellular lipids were extracted from intact cells over the course of hours upon low-shear contacting with hexane. The cells associated with and stabilised the hexane-water interface, allowing hexane to infiltrate pores in the frustule component of the cell walls and access the intracellular lipids. It was shown that mucilaginous extracellular polymeric substances (EPS) bound to the cell walls acted as a barrier to solvent penetration into the cells. This EPS could be removed by prior ultrasonication. Biphasic extraction was greatly accelerated by shear applied by rotor-stator mixing or ultrasound. High-shear could remove mucilaginous EPS from the cell surfaces to facilitate direct contact of the cell surface with hexane and produced smaller emulsion droplets with increased surface area. The combination of high-shear in the presence of hexane resulted in the in-situ rupture of the cells, which greatly accelerated lipid extraction and allowed high yields of neutral lipid (>95%) to be recovered from freshly harvested cells within less than 5 min. The study demonstrated the ability of shear to enable simultaneous cell rupture and lipid extraction from a diatom alga based on its cell structure and interfacial behaviour.
Collapse
Affiliation(s)
- Bhagya Yatipanthalawa
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Wu Li
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| | - David R A Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Zlatan Trifunovic
- Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia.
| | - Muthupandian Ashokkumar
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| | - Peter J Scales
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
32
|
Yan T, Ma Z, Liu J, Yin N, Lei S, Zhang X, Li X, Zhang Y, Kong J. Thermoresponsive GenisteinNLC-dexamethasone-moxifloxacin multi drug delivery system in lens capsule bag to prevent complications after cataract surgery. Sci Rep 2021; 11:181. [PMID: 33420301 PMCID: PMC7794611 DOI: 10.1038/s41598-020-80476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Cataract surgery is the most common intraocular procedure. To decrease postsurgical inflammation, prevent infection and reduce the incidence of secondary cataract, we built a temperature-sensitive drug delivery system carrying dexamethasone, moxifloxacin and genistein nanostructured lipid carrier (GenNLC) modified by mPEG-PLA based on F127/F68 as hydrogel. Characterizations and release profiles of the drug delivery system were studied. In vitro functions were detected by CCK-8 test, immunofluorescence, wound-healing assay, real time-PCR and western blotting. The size of GenNLCs was 39.47 ± 0.69 nm in average with surface charges of - 4.32 ± 0.84 mV. The hydrogel gelation temperature and time were 32 °C, 20 s with a viscosity, hardness, adhesiveness and stringiness of 6.135 Pa.s, 54.0 g, 22.0 g, and 3.24 mm, respectively. Transmittance of the gel-release medium was above 90% (93.44 ± 0.33% to 100%) at range of 430 nm to 800 nm. Moxifloxacin released completely within 10 days. Fifty percent of dexamethasone released at a constant rate in the first week, and then released sustainably with a tapering down rate until day 30. Genistein released slowly but persistently with a cumulative release of 63% at day 40. The thermoresponsive hydrogel inhibited the proliferation, migration and epithelial-mesenchymal transition of SRA 01/04 cells, which were confirmed by testing CCK-8, wound-healing assay, western blot, real time-PCR (RT-PCR) and immunofluorescence. These results support this intracameral thermoresponsive in situ multi-drug delivery system with programmed release amounts and release profiles to cut down the need of eye drops for preventing inflammation or infection and to reduce posterior capsular opacification following cataract surgery.
Collapse
Affiliation(s)
- Tingyu Yan
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Zhongxu Ma
- grid.265021.20000 0000 9792 1228Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, No. 4 Gansu Rd, Heping District, Tianjin, 300020 China
| | - Jingjing Liu
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Na Yin
- grid.412561.50000 0000 8645 4345Department of Pharmaceutics, Shenyang Pharmaceutical University, No.103 Wen Hua Road, Shenyang, 110016 China
| | - Shizhen Lei
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Xinxin Zhang
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Xuedong Li
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Yu Zhang
- grid.412561.50000 0000 8645 4345Department of Pharmaceutics, Shenyang Pharmaceutical University, No.103 Wen Hua Road, Shenyang, 110016 China
| | - Jun Kong
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| |
Collapse
|
33
|
Fan B, Wan J, Liu Y, Tian WW, Thang SH. Functionalization of liquid metal nanoparticles via the RAFT process. Polym Chem 2021. [DOI: 10.1039/d1py00257k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proper design and selection of RAFT agents allow the preparation of eutectic gallium–indium (EGaIn) based liquid metal nanoparticles with grafted polymers.
Collapse
Affiliation(s)
- Bo Fan
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Jing Wan
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Yiyi Liu
- Department of Material Science and Engineering
- Monash University
- Clayton
- Australia
| | | | - San H. Thang
- School of Chemistry
- Monash University
- Clayton
- Australia
| |
Collapse
|
34
|
Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Wu S, Li G, Xue Y, Ashokkumar M, Zhao H, Liu D, Zhou P, Sun Y, Hemar Y. Solubilisation of micellar casein powders by high-power ultrasound. ULTRASONICS SONOCHEMISTRY 2020; 67:105131. [PMID: 32339869 DOI: 10.1016/j.ultsonch.2020.105131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
High protein milk ingredients, such as micellar casein powder (MCP), exhibit poor solubility upon reconstitution in water, particularly after long-time storage. In this study, ultrasonication (20 kHz, power density of 0.75 W/ml) was used to improve the solubility of aged MCP powders. For all the MCP powders (concentration varying from 0.5 to 5%, and storage of MCP at 50 °C for up to 10 days) it was found that short time ultrasonication (2.5 min) reduced the size of the protein particles from >30 μm to ∼0.1 μm, as measured by light scattering. This resulted in an improvement of solubility (>95%) for all the MCP powders. Cryo-electron microscopy and small x-ray angle scattering showed that the MCP powders dissolved into particles with morphologies and internal structure similar to native casein micelles in bovine milk. SDS-PAGE and RP-HLPC showed that ultrasonication did not affect the molecular weight of the individual casein molecules. Compared to overhead stirring using a 4-blade stirrer, ultrasonication required less than 10 times the drawn electrical energy density to achieve a particle size 10 times smaller.
Collapse
Affiliation(s)
- Sinong Wu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guantian Li
- School of Chemical Sciences, The University of Auckland, New Zealand
| | - Yu Xue
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | | | - Haibo Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dasong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yang Sun
- School of Food Science and Technology, and School of Chemical Engineering, Hubei University of Arts and Science, Hubei, Xiangyang 441053, China
| | - Yacine Hemar
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
36
|
Calvo F, Gómez JM, Ricardez-Sandoval L, Alvarez O. Integrated design of emulsified cosmetic products: A review. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Ferreira MRA, Daniels R, Soares LAL. Development and evaluation of Classical and Pickering emulsions containing crude or fractionated extracts of Libidibia ferrea pods. Drug Dev Ind Pharm 2020; 46:1185-1198. [PMID: 32536225 DOI: 10.1080/03639045.2020.1782422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The development of medicinal plants for clinical use represents an important direction in biomedical research, despite the technological difficulties.Significance: The aim of this study was to compare pharmaceutical characteristics and in vitro release of Classical and Pickering emulsions containing crude or fractionated extracts of Libidibia ferrea.Methods: After evaluating the extract's solubility in formulation, a dispersion of hydroxypropyl methylcellulose (HPMC) was prepared in water. For Pickering emulsions, the aqueous phase was HPMC and the oil phase was Miglyol® 812; for Classical emulsions, water with Tween® 20 and Miglyol® 812 with Span® 80 were used for aqueous and oil phases, respectively. Crude or fractionated extracts were added to the aqueous phase (5% w/v). Both phases were heated (40 °C); then, the oil phase was poured into the aqueous phase and homogenized using an Ultra-Turrax. Emulsions were characterized for 90 days by pH, polyphenol content, phytomarker content, macroscopic characteristics, droplet size, and zeta potential.Results: These formulations displayed satisfactory stability for 90 days when stored at 25 °C. Regarding the investigation of rheological properties, Pickering emulsions displayed higher viscosity with lesser deformation than Classical emulsions. Moreover, the emulsions displayed similar in vitro release behavior.Conclusion: Based on the results of present study, the Pickering emulsions were obtainable and displayed higher stability than Classical emulsions. Additionally, maintenance of system integrity points to promising systems for delivery of active pharmaceutical ingredients in the internal phase, despite the complex chemical mixture added to the external phase.
Collapse
Affiliation(s)
- Magda Rhayanny Assunção Ferreira
- Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Pharmaceutical Sciences (PPgCF), Federal University of Pernambuco, Recife, Brazil
| | - Rolf Daniels
- Pharmaceutical Technology, University of Tübingen, Tübingen, Germany
| | - Luiz Alberto Lira Soares
- Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Pharmaceutical Sciences (PPgCF), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
38
|
Investigation the Stability of Water in Oil Biofuel Emulsions Using Sunflower Oil. CHEMENGINEERING 2020. [DOI: 10.3390/chemengineering4020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Targets to reduce CO2 emissions by 75% and NOx emissions by 90% by 2050 in aviation have been set by The Advisory Council for Aviation Research and Innovation in Europe. Sustainable fuels, e.g., emulsified biofuel, have demonstrated promise in reducing emissions and greenhouse gases. The aim of this project is to investigate the stability of a water in oil emulsion using sunflower oil. The primary objective is to achieve an emulsion which is stable for at least 4 days, and the secondary objective is to investigate how altering the emulsification parameter values of the surfactant hydrophilic-lipophilic balance (HLB), energy density and sonotrode depth in an ultrasonication procedure can impact the stability. The stability of each emulsion was measured over a period of 14 days. The main outcome is that two of the 14 emulsions made remained stable for at least 14 days using a surfactant HLB of five, which proved to be the optimum value from those tested. The results also show that, by using the sonotrode in a higher starting position, emulsions achieved a greater stability. Furthermore, over-processing of the emulsion was determined, with the point of over-processing lying between an energy density of 75 and 200 W.s/mL.
Collapse
|
39
|
|
40
|
Taha A, Ahmed E, Hu T, Xu X, Pan S, Hu H. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. ULTRASONICS SONOCHEMISTRY 2019; 58:104627. [PMID: 31450289 DOI: 10.1016/j.ultsonch.2019.104627] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 05/15/2023]
Abstract
In this study, high intensity ultrasound (HIU) was used to produce food protein stabilized emulsions under different ionic strengths (0, 25, 50, 100, 200 and 300 mM NaCl). Five plant and animal food proteins, whey protein isolate (WPI), soy protein isolate (SPI), bovine gelatin, peanut protein isolate (PPI) and corn zein were selected as protein emulsifiers. PPI and zein could not form emulsions using ultrasound emulsification at all ionic strengths (from 0 to 300 mM NaCl). However, ultrasound could induce stable emulsions using SPI, WPI and gelatin as emulsifiers. Moreover, different ionic strengths and protein types influenced the physicochemical properties of HIU induced emulsions obviously. It was found that the droplet sizes of gelatin emulsions were lower than those of SPI and WPI emulsions at salt concentrations of 300 mM NaCl. Furthermore, gelatin emulsions had better stability against environmental stresses (salt and temperature) than that of SPI and WPI emulsions. Moreover, the adsorbed protein (%) at the oil/water interface of SPI emulsions was higher than those of WPI and gelatin emulsions. However, the adsorbed protein amount of all proteins stabilized emulsions increased significantly after salt addition. The absolute ζ-potential values decreased with the increase of salt concentrations. The microrheology results indicated that the SPI emulsions formed a gel-like structure at high salt concentrations (>50 mM NaCl) as SPI emulsions exhibited higher elasticity than WPI and gelatin emulsions. In conclusion, the ultrasound as a green emulsification technique could be used to fabricate emulsions stabilized by plant and animal proteins.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Eman Ahmed
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Tan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China.
| |
Collapse
|
41
|
Alliod O, Almouazen E, Nemer G, Fessi H, Charcosset C. Comparison of Three Processes for Parenteral Nanoemulsion Production: Ultrasounds, Microfluidizer, and Premix Membrane Emulsification. J Pharm Sci 2019; 108:2708-2717. [DOI: 10.1016/j.xphs.2019.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
42
|
Taha A, Hu T, Zhang Z, Bakry AM, Khalifa I, Pan S, Hu H. Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. ULTRASONICS SONOCHEMISTRY 2018; 49:283-293. [PMID: 30172463 DOI: 10.1016/j.ultsonch.2018.08.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/07/2018] [Accepted: 08/16/2018] [Indexed: 05/09/2023]
Abstract
The effects of different ultrasound emulsification conditions (20 kHz at 50-55 W cm-2, 40% amplitude for 2, 6, 12 or 18 min) on the physicochemical properties of soybean protein isolate-stabilized emulsions containing medium chain triglycerides (MCT), and long chain triglycerides (LCTs, palm, soybean and rapeseed oils) were investigated. It was found that MCT oil emulsions had the minimum droplet size (d4,3) of 0.5 ± 0.0 µm after ultrasound emulsification for 18 min. Moreover, results indicated that MCT oil emulsions had better emulsion stability (using distilled water as a water phase at neutral pH and room temperature) and higher adsorbed protein amounts at their interface than the LCTs emulsions. However, the absolute zeta (ζ)-potential values of MCT oil emulsions were the lowest among all the oil-in-water emulsions. Interestingly, the particle size of palm oil emulsion decreased after heat treatment at 90 °C for 30 min. In conclusion, high intensity ultrasound (HIU) could be considered as a useful emulsification technology to produce emulsions stabilized by soy protein isolate. However, the physicochemical properties of emulsions were different based on the types of oils as well as HIU time.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China; Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Tan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Zhuo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Amr M Bakry
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Ibrahim Khalifa
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China.
| |
Collapse
|
43
|
Roas-Escalona N, Williams YO, Cruz-Barrios E, Toro-Mendoza J. Intertwining Roles of the Disperse Phase Properties during Emulsification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6480-6488. [PMID: 29758983 DOI: 10.1021/acs.langmuir.8b00396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The combined effect of viscosity ratio, interfacial tension, and disperse phase density on the process of droplet formation during emulsification was evaluated. For that aim, emulsification by ultrasonication of oil/water systems with viscosity ratios between 1 and 600, with and without surfactant was performed. The time evolution of the average droplet size was estimated by dynamic light scattering measurements. For viscosity ratios between 1 and 200 in the presence of surfactant, our results partly reproduce those of the intriguing U-type reported in the literature. Beyond that range, the droplet size decreases, as the viscosity ratio rises. For surfactant-free systems, the size is slightly affected by the increase in viscosity. This complex scenario is analyzed in terms of both the individual and intertwined roles of interfacial tension, viscosity, and density ratios: (1) if the interfacial tension dominates, the droplet rupturing process is independent of its internal properties, and inversely, (2) if the interfacial tension is low, the internal properties play a major role in the rupturing of the droplet. Finally, we identified a scenario in which the retarded addition of surfactant leads to emulsions with a stability similar to those with the surfactant added at the beginning, saving energy and time.
Collapse
Affiliation(s)
- Nelmary Roas-Escalona
- Centro de Estudios Interdisciplinarios de la Fisica , Instituto Venezolano de Investigaciones Cientificas , Caracas , Venezuela
| | - Yhan O'Neil Williams
- Centro de Estudios Interdisciplinarios de la Fisica , Instituto Venezolano de Investigaciones Cientificas , Caracas , Venezuela
| | - Eliandreina Cruz-Barrios
- Centro de Estudios Interdisciplinarios de la Fisica , Instituto Venezolano de Investigaciones Cientificas , Caracas , Venezuela
| | - Jhoan Toro-Mendoza
- Centro de Estudios Interdisciplinarios de la Fisica , Instituto Venezolano de Investigaciones Cientificas , Caracas , Venezuela
| |
Collapse
|