1
|
Cuadrado C, Cen-Pacheco F, Daranas AH. Computationally Assisted Analysis of NMR Chemical Shifts as a Tool in Conformational Analysis. Org Lett 2024; 26:6529-6534. [PMID: 38888989 PMCID: PMC11320654 DOI: 10.1021/acs.orglett.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
A key to understanding the properties of functional molecules is to determine their conformation in solution. A conformational analysis procedure that relies on quantum mechanical calculations and the widely used DP4+ probability was evaluated to decipher the structural information encoded in NMR chemical shifts. The results underscore the potential utility of using NMR chemical shifts in advancing conformational analysis studies of complex molecules in solution.
Collapse
Affiliation(s)
- Cristina Cuadrado
- Instituto
de Productos Naturales y Agrobiología del CSIC (IPNA-CSIC), La Laguna, 38206 Tenerife, Spain
| | - Francisco Cen-Pacheco
- Faculty
of Bioanalysis, Iturbide s/n, Veracruz University, 91700 Veracruz, Veracruz, México
| | - Antonio Hernández Daranas
- Instituto
de Productos Naturales y Agrobiología del CSIC (IPNA-CSIC), La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
2
|
Sobornova VV, Belov KV, Krestyaninov MA, Khodov IA. Influence of Solvent Polarity on the Conformer Ratio of Bicalutamide in Saturated Solutions: Insights from NOESY NMR Analysis and Quantum-Chemical Calculations. Int J Mol Sci 2024; 25:8254. [PMID: 39125824 PMCID: PMC11311660 DOI: 10.3390/ijms25158254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The study presents a thorough and detailed analysis of bicalutamide's structural and conformational properties. Quantum chemical calculations were employed to explore the conformational properties of the molecule, identifying significant energy differences between conformers. Analysis revealed that hydrogen bonds stabilise the conformers, with notable variations in torsion angles. Conformers were classified into 'closed' and 'open' types based on the relative orientation of the cyclic fragments. NOE spectroscopy in different solvents (CDCl3 and DMSO-d6) was used to study the conformational preferences of the molecule. NOESY experiments provided the predominance of 'closed' conformers in non-polar solvents and a significant presence of 'open' conformers in polar solvents. The proportions of open conformers were 22.7 ± 3.7% in CDCl3 and 59.8 ± 6.2% in DMSO-d6, while closed conformers accounted for 77.3 ± 3.7% and 40.2 ± 6.2%, respectively. This comprehensive study underscores the solvent environment's impact on its structural behaviour. The findings significantly contribute to a deeper understanding of conformational dynamics, stimulating further exploration in drug development.
Collapse
Affiliation(s)
| | | | | | - Ilya A. Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia
| |
Collapse
|
3
|
Odeyemi I, Douglas TA, Igie NF, Hargrove JA, Hamilton G, Bradley BB, Thai C, Le B, Unjia M, Wicherts D, Ferneyhough Z, Pillai A, Koirala S, Hagge LM, Polara H, Trievel RC, Fick RJ, Stelling AL. An optimized purification protocol for enzymatically synthesized S-adenosyl-L-methionine (SAM) for applications in solution state infrared spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123816. [PMID: 38198991 DOI: 10.1016/j.saa.2023.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
S-adenosyl-L-methionine (SAM) is an abundant biomolecule used by methyltransferases to regulate a wide range of essential cellular processes such as gene expression, cell signaling, protein functions, and metabolism. Despite considerable effort, there remain many specificity challenges associated with designing small molecule inhibitors for methyltransferases, most of which exhibit off-target effects. Interestingly, NMR evidence suggests that SAM undergoes conformeric exchange between several states when free in solution. Infrared spectroscopy can detect different conformers of molecules if present in appreciable populations. When SAM is noncovalently bound within enzyme active sites, the nature and the number of different conformations of the molecule are likely to be altered from when it is free in solution. If there are unique structures or different numbers of conformers between different methyltransferase active sites, solution-state information may provide promising structural leads to increase inhibitor specificity for a particular methyltransferase. Toward this goal, frequencies measured in SAM's infrared spectra must be assigned to the motions of specific atoms via isotope incorporation at discrete positions. The incorporation of isotopes into SAM's structure can be accomplished via an established enzymatic synthesis using isotopically labeled precursors. However, published protocols produced an intense and highly variable IR signal which overlapped with many of the signals from SAM rendering comparison between isotopes challenging. We observed this intense absorption to be from co-purifying salts and the SAM counterion, producing a strong, broad signal at 1100 cm-1. Here, we report a revised SAM purification protocol that mitigates the contaminating salts and present the first IR spectra of isotopically labeled CD3-SAM. These results provide a foundation for isotopic labeling experiments of SAM that will define which atoms participate in individual molecular vibrations, as a means to detect specific molecular conformations.
Collapse
Affiliation(s)
- Isaiah Odeyemi
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Teri A Douglas
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Nosakhare F Igie
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - James A Hargrove
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Grace Hamilton
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Brianna B Bradley
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Cathy Thai
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Brendan Le
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Maitri Unjia
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Dylan Wicherts
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Zackery Ferneyhough
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Anjali Pillai
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Shailendra Koirala
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Laurel M Hagge
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Himanshu Polara
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Raymond C Trievel
- University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, 48109, MI, USA
| | - Robert J Fick
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Allison L Stelling
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA.
| |
Collapse
|
4
|
Dorst KM, Widmalm G. Conformational Preferences at the Glycosidic Linkage of Saccharides in Solution as Deduced from NMR Experiments and MD Simulations: Comparison to Crystal Structures. Chemistry 2024; 30:e202304047. [PMID: 38180821 DOI: 10.1002/chem.202304047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Glycans are central to information content and regulation in biological systems. These carbohydrate molecules are active either as oligo- or polysaccharides, often in the form of glycoconjugates. The monosaccharide entities are joined by glycosidic linkages and stereochemical arrangements are of utmost importance in determining conformation and flexibility of saccharides. The conformational preferences and population distributions at the glycosidic torsion angles φ and ψ have been investigated for O-methyl glycosides of three disaccharides where the substitution takes place at a secondary alcohol, viz., in α-l-Fucp-(1→3)-β-d-Glcp-OMe, α-l-Fucp-(1→3)-α-d-Galp-OMe and α-d-Glcp-(1→4)-α-d-Galp-OMe, corresponding to disaccharide structural elements present in bacterial polysaccharides. Stereochemical differences at or adjacent to the glycosidic linkage were explored by solution state NMR spectroscopy using one-dimensional 1 H,1 H-NOESY NMR experiments to obtain transglycosidic proton-proton distances and one- and two-dimensional heteronuclear NMR experiments to obtain 3 JCH transglycosidic coupling constants related to torsion angles φ and ψ. Computed effective proton-proton distances from molecular dynamics (MD) simulations showed excellent agreement to experimentally derived distances for the α-(1→3)-linked disaccharides and revealed that for the bimodal distribution at the ψ torsion angle for the α-(1→4)-linked disaccharide experiment and simulation were at variance with each other, calling for further force field developments. The MD simulations disclosed a highly intricate inter-residue hydrogen bonding pattern for the α-(1→4)-linked disaccharide, including a nonconventional hydrogen bond between H5' in the glucosyl residue and O3 in the galactosyl residue, supported by a large downfield 1 H NMR chemical shift displacement compared to α-d-Glcp-OMe. Comparison of population distributions of the glycosidic torsion angles φ and ψ in the disaccharide entities to those of corresponding crystal structures highlighted the potential importance of solvation on the preferred conformation.
Collapse
Affiliation(s)
- Kevin M Dorst
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| |
Collapse
|
5
|
Khodov IA, Belov KV, Huster D, Scheidt HA. Conformational State of Fenamates at the Membrane Interface: A MAS NOESY Study. MEMBRANES 2023; 13:607. [PMID: 37367811 DOI: 10.3390/membranes13060607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
The present work analyzes the 1H NOESY MAS NMR spectra of three fenamates (mefenamic, tolfenamic, and flufenamic acids) localized in the lipid-water interface of phosphatidyloleoylphosphatidylcholine (POPC) membranes. The observed cross-peaks in the two-dimensional NMR spectra characterized intramolecular proximities between the hydrogen atoms of the fenamates as well as intermolecular interactions between the fenamates and POPC molecules. The peak amplitude normalization for an improved cross-relaxation (PANIC) approach, the isolated spin-pair approximation (ISPA) model, and the two-position exchange model were used to calculate the interproton distances indicative of specific conformations of the fenamates. The results showed that the proportions of the A+C and B+D conformer groups of mefenamic and tolfenamic acids in the presence of POPC were comparable within the experimental error and amounted to 47.8%/52.2% and 47.7%/52.3%, respectively. In contrast, these proportions for the flufenamic acid conformers differed and amounted to 56.6%/43.4%. This allowed us to conclude that when they bind to the POPC model lipid membrane, fenamate molecules change their conformational equilibria.
Collapse
Affiliation(s)
- Ilya A Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Konstantin V Belov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
| |
Collapse
|
6
|
Khodov IA, Belov KV, Krestyaninov MA, Dyshin AA, Kiselev MG. Investigation of the Spatial Structure of Flufenamic Acid in Supercritical Carbon Dioxide Media via 2D NOESY. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041524. [PMID: 36837153 PMCID: PMC9961892 DOI: 10.3390/ma16041524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 05/13/2023]
Abstract
The search for new forms of already known drug compounds is an urgent problem of high relevance as more potent drugs with fewer side effects are needed. The trifluoromethyl group in flufenamic acid renders its chemical structure differently from other fenamates. This modification is responsible for a large number of conformational polymorphs. Therefore, flufenamic acid is a promising structural modification of well-known drug molecules. An effective approach in this field is micronization, employing "green" supercritical fluid technologies. This research raises some key questions to be answered on how to control polymorphic forms during the micronization of drug compounds. The results presented in this work demonstrate the ability of two-dimensional nuclear Overhauser effect spectroscopy to determine conformational preferences of small molecular weight drug compounds in solutions and fluids, which can be used to predict the polymorphic form during the micronization. Quantitative analysis was carried out to identify the conformational preferences of flufenamic acid molecules in dimethyl sulfoxide-d6 medium at 25 °C and 0.1 MPa, and in mixed solvent medium containing supercritical carbon dioxide at 45 °C and 9 MPa. The data presented allows predictions of the flufenamic acid conformational preferences of poorly soluble drug compounds to obtain new micronized forms.
Collapse
|
7
|
Belov KV, Batista de Carvalho LAE, Dyshin AA, Efimov SV, Khodov IA. The Role of Hidden Conformers in Determination of Conformational Preferences of Mefenamic Acid by NOESY Spectroscopy. Pharmaceutics 2022; 14:2276. [PMID: 36365095 PMCID: PMC9696638 DOI: 10.3390/pharmaceutics14112276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/25/2023] Open
Abstract
Mefenamic acid has been used as a non-steroidal anti-inflammatory drug for a long time. However, its practical use is quite limited due to a number of side effects on the intestinal organs. Conformational polymorphism provides mefenamic acid with unique properties regarding possible modifications obtained during the micronization process, which can improve pharmacokinetics and minimize side effects. Micronization can be performed by decompression of supercritical fluids; methods such as rapid expansion of the supercritical solution have proven their efficiency. However, this group of methods is poorly applicable for compounds with low solubility, and the modification of the method using a pharmaceutically suitable co-solvent may be useful. In our case, addition of only 2 mol% dimethyl sulfoxide increased the solubility remarkably. Information on the conformational state may be critically important for carrying out micronization. In this work, structural analysis and estimate of conformational preferences of mefenamic acid in dimethyl sulfoxide-d6 (at 25 °C and 0.1 MPa) and in a mixed solvent supercritical carbon dioxide + dimethyl sulfoxide-d6 (45 °C, 9 MPa) were performed based on nuclear Overhauser effect spectroscopy. Results show changes in the conformation fractions depending on the medium used. The importance of allowing for hidden conformers in estimating the conformational state was demonstrated in the analysis. Obtained results may be useful for improving micronization parameters.
Collapse
Affiliation(s)
- Konstantin V. Belov
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | | | - Alexey A. Dyshin
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Sergey V. Efimov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Ilya A. Khodov
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| |
Collapse
|
8
|
Hanževački M, Croft AK, Jäger CM. Activation of Glycyl Radical Enzymes─Multiscale Modeling Insights into Catalysis and Radical Control in a Pyruvate Formate-Lyase-Activating Enzyme. J Chem Inf Model 2022; 62:3401-3414. [PMID: 35771966 PMCID: PMC9326890 DOI: 10.1021/acs.jcim.2c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) playing a pivotal role in the metabolism of strict and facultative anaerobes. Its activation is carried out by a PFL-activating enzyme, a member of the radical S-adenosylmethionine (rSAM) superfamily of metalloenzymes, which introduces a glycyl radical into the Gly radical domain of PFL. The activation mechanism is still not fully understood and is structurally based on a complex with a short model peptide of PFL. Here, we present extensive molecular dynamics simulations in combination with quantum mechanics/molecular mechanics (QM/MM)-based kinetic and thermodynamic reaction evaluations of a more complete activation model comprising the 49 amino acid long C-terminus region of PFL. We reveal the benefits and pitfalls of the current activation model, providing evidence that the bound peptide conformation does not resemble the bound protein-protein complex conformation with PFL, with implications for the activation process. Substitution of the central glycine with (S)- and (R)-alanine showed excellent binding of (R)-alanine over unstable binding of (S)-alanine. Radical stabilization calculations indicate that a higher radical stability of the glycyl radical might not be the sole origin of the evolutionary development of GREs. QM/MM-derived radical formation kinetics further demonstrate feasible activation barriers for both peptide and C-terminus activation, demonstrating why the crystalized model peptide system is an excellent inhibitory system for natural activation. This new evidence supports the theory that GREs converged on glycyl radical formation due to the better conformational accessibility of the glycine radical loop, rather than the highest radical stability of the formed peptide radicals.
Collapse
Affiliation(s)
- Marko Hanževački
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Anna K Croft
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
9
|
Tsai YH, Amichetti M, Zanardi MM, Grimson R, Daranas AH, Sarotti AM. ML- J-DP4: An Integrated Quantum Mechanics-Machine Learning Approach for Ultrafast NMR Structural Elucidation. Org Lett 2022; 24:7487-7491. [PMID: 35508069 DOI: 10.1021/acs.orglett.2c01251] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new tool, ML-J-DP4, provides an efficient and accurate method for determining the most likely structure of complex molecules within minutes using standard computational resources. The workflow involves combining fast Karplus-type J calculations with NMR chemical shifts predictions at the cheapest HF/STO-3G level enhanced using machine learning (ML), all embedded in the J-DP4 formalism. Our ML provides accurate predictions, which compare favorably alongside with other ML methods.
Collapse
Affiliation(s)
- Yi-Hsuan Tsai
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Milagros Amichetti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - María Marta Zanardi
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, S2002QEO Rosario, Argentina
| | - Rafael Grimson
- Instituto de Investigación e Ingeniería Ambiental (IIIA), Universidad Nacional de San Martín (UNSAM) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1650, Argentina
| | - Antonio Hernandez Daranas
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC), La Laguna, 38206 Tenerife, Spain
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|
10
|
Belov KV, Dyshin AA, Kiselev MG, Krestyaninov MA, Sobornova VV, Khodov IA. Determination of the Spatial Structure of Lidocaine in SC-CO2 by the 2D NOESY Method. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121080145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Burns DC, Reynolds WF. Minimizing the risk of deducing wrong natural product structures from NMR data. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:500-533. [PMID: 33855734 DOI: 10.1002/mrc.4933] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/12/2023]
Abstract
There continues to be a disturbing number of natural products reported in the literature whose structures are incorrect. At least in part, this reflects the fact that many natural product chemists have limited formal nuclear magnetic resonance training. Gaps in training and lack of awareness regarding the challenges and ambiguities associated with two-dimensional nuclear magnetic resonance data interpretation can easily lead to errors in structure elucidation. The purpose of this tutorial is to point out some of these issues, highlight the kinds of errors that have been made and provide specific advice on how to avoid these missteps such that the risk of reporting a wrong structure is minimized.
Collapse
Affiliation(s)
- Darcy C Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - William F Reynolds
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Del Vigo EA, Stortz CA, Marino C. Experimental and theoretical study of the O3/O4 regioselectivity of glycosylation reactions of glucopyranosyl acceptors. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Marcarino MO, Zanardi MM, Cicetti S, Sarotti AM. NMR Calculations with Quantum Methods: Development of New Tools for Structural Elucidation and Beyond. Acc Chem Res 2020; 53:1922-1932. [PMID: 32794691 DOI: 10.1021/acs.accounts.0c00365] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Structural elucidation is an important and challenging stage in the discovery of new organic molecules. Single-crystal X-ray analysis provides the most unquestionable results, though in practice the availability of suitable crystals limits its broad use. On the other hand, NMR spectroscopy has become the leading and universal technique to accomplish the task. Despite continuous advances in the field, the misinterpretation of NMR data is commonplace, evidenced by the large number of erroneous structures being published in top journals. Quantum calculations of NMR chemical shifts and scalar coupling constants emerged as ideal complements to facilitate the elucidation process when experimental NMR data is inconclusive. Since seminal reports demonstrated that affordable DFT methods provide NMR predictions accurate enough to differentiate among closely related isomers, the discipline has experienced substantial growth. The impact has been felt in different areas, and nowadays the results of such calculations are routinely seen in high impact literature.This Account describes our investigations in the field of quantum NMR calculations, focusing on the development of tools for structural elucidation and practical applications. We pioneered the use of artificial intelligence methods in the development of novel strategies of structural validation. Our first generation of trained artificial neural networks (ANNs) showed excellent ability to identify mistakes at the atom connectivity level, whereas the use of multidimensional pattern recognition pushed the performance to the stereochemical limit. In a conceptually different approach, we developed DP4+, an updated version of the DP4 probability used to determine the most likely structure among two or more candidates when one set of experimental data is available. Increasing the level of theory in NMR calculations and including unscaled data in the formalism improved the performance of the method, further validated to settle the configuration of challenging motifs such as spiroepoxides or Mosher's derivatives. One of the limitations of DP4+ is related to the relatively large computational cost involved in obtaining DFT-optimized geometries, which led to the development of a fast variant including the valuable information provided by coupling constants (J-DP4 method).These tools were explored to suggest the most probable structure of controversial natural or unnatural products originally misassigned, with some predictions further validated by synthesis (as in the case of pseudorubriflordilactone B). The possibility of predicting the structure of a natural product without requiring authentic sample was investigated in collaboration with Prof. Pilli (UNICAMP, Brazil) in the computer-guided total synthesis and stereochemical revisions of several natural products. Despite these advances, there remain considerable challenges, such as the case of configurational assessment of polar systems featuring multiple intramolecular hydrogen bonding interactions because of the poor energy predictions provided by most DFT methods. In our latest work, we tackle this problem by averaging the results provided by randomly generated ensembles, paving the way for a new paradigm in quantum NMR-assisted structural elucidation.
Collapse
Affiliation(s)
- Maribel O. Marcarino
- Instituto de Quı́mica Rosario (CONICET), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Marı́a M. Zanardi
- Instituto de Ingenierı́a Ambiental, Quı́mica y Biotecnologı́a Aplicada (INGEBIO), Facultad de Quı́mica e Ingenierı́a del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, S2002QEO Rosario, Argentina
| | - Soledad Cicetti
- Instituto de Quı́mica Rosario (CONICET), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Ariel M. Sarotti
- Instituto de Quı́mica Rosario (CONICET), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
14
|
Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. PLoS Comput Biol 2020; 16:e1007904. [PMID: 32453784 PMCID: PMC7319350 DOI: 10.1371/journal.pcbi.1007904] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/26/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
S-adenosylmethionine (SAM) is one of the most important enzyme substrates. It is vital for the function of various proteins, including large group of methyltransferases (MTs). Intriguingly, some bacterial and eukaryotic MTs, while catalysing the same reaction, possess significantly different topologies, with the former being a knotted one. Here, we conducted a comprehensive analysis of SAM conformational space and factors that affect its vastness. We investigated SAM in two forms: free in water (via NMR studies and explicit solvent simulations) and bound to proteins (based on all data available in the PDB and on all-atom molecular dynamics simulations in water). We identified structural descriptors—angles which show the major differences in SAM conformation between unknotted and knotted methyltransferases. Moreover, we report that this is caused mainly by a characteristic for knotted MTs compact binding site formed by the knot and the presence of adenine-binding loop. Additionally, we elucidate conformational restrictions imposed on SAM molecules by other protein groups in comparison to conformational space in water. The topology of a folded polypeptide chain has great impact on the resulting protein function and its interaction with ligands. Interestingly, topological constraints appear to affect binding of one of the most ubiquitous substrates in the cell, S-adenosylmethionine (SAM), to its target proteins. Here, we demonstrate how binding sites of specific proteins restrict SAM conformational freedom in comparison to its unbound state, with a special interest in proteins with non-trivial topology, including an exciting group of knotted methyltransferases. Using a vast array of computational methods combined with NMR experiments, we identify key structural features of knotted methyltransferases that impose unorthodox SAM conformations. We compare them with the characteristics of standard, unknotted SAM binding proteins. These results are significant for understanding differences between analogous, yet topologically different enzymes, as well as for future rational drug design.
Collapse
|
15
|
Marcarino MO, Zanardi MM, Sarotti AM. The Risks of Automation: A Study on DFT Energy Miscalculations and Its Consequences in NMR-based Structural Elucidation. Org Lett 2020; 22:3561-3565. [DOI: 10.1021/acs.orglett.0c01001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maribel O. Marcarino
- Instituto de Quı́mica Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, República Argentina
| | - María M. Zanardi
- Facultad de Quı́mica e Ingenierı́a del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, S2002QEO Rosario, Argentina
| | - Ariel M. Sarotti
- Instituto de Quı́mica Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, República Argentina
| |
Collapse
|
16
|
Zanardi MM, Marcarino MO, Sarotti AM. Redefining the Impact of Boltzmann Analysis in the Stereochemical Assignment of Polar and Flexible Molecules by NMR Calculations. Org Lett 2019; 22:52-56. [DOI: 10.1021/acs.orglett.9b03866] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- María M. Zanardi
- Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, S2002QEO Rosario, Argentina
| | - Maribel O. Marcarino
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Ariel M. Sarotti
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
17
|
Suess CJ, Martins FL, Croft AK, Jäger CM. Radical Stabilization Energies for Enzyme Engineering: Tackling the Substrate Scope of the Radical Enzyme QueE. J Chem Inf Model 2019; 59:5111-5125. [PMID: 31730347 DOI: 10.1021/acs.jcim.9b00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental assessment of catalytic reaction mechanisms and profiles of radical enzymes can be severely challenging due to the reactive nature of the intermediates and sensitivity of cofactors such as iron-sulfur clusters. Here, we present an enzyme-directed computational methodology for the assessment of thermodynamic reaction profiles and screening for radical stabilization energies (RSEs) for the assessment of catalytic turnovers in radical enzymes. We have applied this new screening method to the radical S-adenosylmethione enzyme 7-carboxy-7-deazaguanine synthase (QueE), following a detailed molecular dynamics (MD) analysis that clarifies the role of both specific enzyme residues and bound Mg2+, Ca2+, or Na+. The MD simulations provided the basis for a statistical approach to sample different conformational outcomes. RSE calculation at the M06-2X/6-31+G* level of theory provided the most computationally cost-effective assessment of enzyme-based energies, facilitated by an initial triage using semiempirical methods. The impact of intermolecular interactions on RSE was clearly established, and application to the assessment of potential alternative substrates (focusing on radical clock type rearrangements) proposes a selection of carbon-substituted analogues that would react to afford cyclopropylcarbinyl radical intermediates as candidates for catalytic turnover by QueE.
Collapse
Affiliation(s)
- Christian J Suess
- Department of Chemical and Environmental Engineering , The University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Floriane L Martins
- Department of Chemical and Environmental Engineering , The University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Anna K Croft
- Department of Chemical and Environmental Engineering , The University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering , The University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| |
Collapse
|
18
|
Burns DC, Mazzola EP, Reynolds WF. The role of computer-assisted structure elucidation (CASE) programs in the structure elucidation of complex natural products. Nat Prod Rep 2019; 36:919-933. [DOI: 10.1039/c9np00007k] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Computer-assisted structure elucidation can help to determine the structures of complex natural products while minimizing the risk of structure errors.
Collapse
Affiliation(s)
- Darcy C. Burns
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Eugene P. Mazzola
- Department of Chemistry & Biochemistry
- University of Maryland
- College Park
- USA
| | | |
Collapse
|