1
|
Gilad Barzilay Y, Yucknovsky A, Amdursky N. Light-Triggered Reversible Change in the Electronic Structure of MoO 3 Nanosheets via an Excited-State Proton Transfer Mechanism. NANO LETTERS 2024; 24:1936-1943. [PMID: 38289664 PMCID: PMC10870760 DOI: 10.1021/acs.nanolett.3c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Light is an attractive source of energy for regulating stimulus-responsive chemical systems. Here, we use light as a gating source to control the redox state, the localized surface plasmonic resonance (LSPR) peak, and the structure of molybdenum oxide (MoO3) nanosheets, which are important for various applications. However, the light excitation is not that of the MoO3 nanosheets but rather that of pyranine (HPTS) photoacids, which in turn undergo an excited-state proton transfer (ESPT) process. We show that the ESPT process from HPTS to the nanosheets and the intercalation of protons within the MoO3 nanosheets trigger the reduction of the nanosheets and the broadening of the LSPR peak, a process that is reversible, meaning that in the absence of light, the LSPR peak diminishes and the nanosheets return to their oxidized form. We further show that this reversible process is accompanied by a change in the nanosheet size and morphology.
Collapse
Affiliation(s)
- Yuval Gilad Barzilay
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Hu Y, Zhang BY, Haque F, Ren G, Ou JZ. Plasmonic metal oxides and their biological applications. MATERIALS HORIZONS 2022; 9:2288-2324. [PMID: 35770972 DOI: 10.1039/d2mh00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal oxides modified with dopants and defects are an emerging class of novel materials supporting the localized surface plasmon resonance across a wide range of optical wavelengths, which have attracted tremendous research interest particularly in biological applications in the past decade. Compared to conventional noble metal-based plasmonic materials, plasmonic metal oxides are particularly favored for their cost efficiency, flexible plasmonic properties, and improved biocompatibility, which can be important to accelerate their practical implementation. In this review, we first explicate the origin of plasmonics in dopant/defect-enabled metal oxides and their associated tunable localized surface plasmon resonance through the conventional Mie-Gans model. The research progress of dopant incorporation and defect generation in metal oxide hosts, including both in situ and ex situ approaches, is critically discussed. The implementation of plasmonic metal oxides in biological applications in terms of therapy, imaging, and sensing is summarized, in which the uniqueness of dopant/defect-driven plasmonics for inducing novel functionalities is particularly emphasized. This review may provide insightful guidance for developing next-generation plasmonic devices for human health monitoring, diagnosis and therapy.
Collapse
Affiliation(s)
- Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Farjana Haque
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
3
|
Das S, Das T, Das P, Das D. Controlling the lifetime of cucurbit[8]uril based self-abolishing nanozymes. Chem Sci 2022; 13:4050-4057. [PMID: 35440999 PMCID: PMC8985584 DOI: 10.1039/d1sc07203j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Nature has evolved a unique mechanism of self-regulatory feedback loops that help in maintaining an internal cellular environment conducive to growth, healing and metabolism. In biology, enzymes display feedback controlled switchable behaviour to upregulate/downregulate the generation of metabolites as per the need of the cells. To mimic the self-inhibitory nature of certain biological enzymes under laboratory settings, herein, we present a cucurbit[8]uril based pH responsive supramolecular peptide amphiphile (SPA) that assembles into hydrolase mimetic vesicular nanozymes upon addition of alkaline TRIS buffer (activator) but disintegrates gradually owing to the catalytic generation of acidic byproducts (deactivator). The lifetime of these nanozymes could be manipulated in multiple ways, either by varying the amount of catalytic groups on the surface of the vesicles, by changing the acid generating substrate, or by changing the ratio between the activator and the substrate. The self-inhibitory nanozymes displayed highly tunable lifetimes ranging from minutes to hours, controlled and in situ generation of deactivating agents and efficient reproducibility across multiple pH cycles.
Collapse
Affiliation(s)
- Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| | - Tanushree Das
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| | - Priyam Das
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
4
|
Anitha R, Rajarajeswari GR. Selective Detection of Sub-hundred Picomolar Mercuric Ion in Aqueous Systems by Visible Spectrophotometry Using Gripe Water Functionalized Gold Nanoparticles. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
YALING Y, YI H. A Sensitive and Selective Method for Visual Chronometric Detection of Copper(II) Ions Using Clock Reaction. ANAL SCI 2019; 35:159-163. [DOI: 10.2116/analsci.18p345] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yue YALING
- School of National Defence Science & Technology, Southwest University of Science and Technology
| | - He YI
- School of National Defence Science & Technology, Southwest University of Science and Technology
| |
Collapse
|
6
|
Huang W, Wang J, Du J, Deng Y, He Y. Contrary logic pairs and circuits using a visually and colorimetrically detectable redox system consisting of MoO3-x nanodots and 3,3′-diaminobenzidine. Mikrochim Acta 2019; 186:79. [DOI: 10.1007/s00604-018-3190-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
|
7
|
Fabrication of ternary MoS2-polypyrrole-Pd nanotubes as peroxidase mimics with a synergistic effect and their sensitive colorimetric detection of l-cysteine. Anal Chim Acta 2018; 1035:146-153. [DOI: 10.1016/j.aca.2018.06.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022]
|
8
|
Tao Y, Lin J, Zhang Z, Guo Q, Zuo J, Fan C, Lu B. Supersonic gas flow for preparation of ultrafine silicon powders and mechanochemical synthesis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181432. [PMID: 30564425 PMCID: PMC6281941 DOI: 10.1098/rsos.181432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
We report the supersonic gas flow for crush and mechanochemical synthesis. The key instrument parameters for production of supersonic particle flow, such as annular nozzle, expansion angle and length of the accelerating duct, are theoretically designed and optimized. Based on the theoretical results, supersonic gas flow equipment is fabricated. The capacity of the present equipment for production of supersonic particle flow is demonstrated by particle image velocimetry measurement, and the maximum transient velocity of the particles achieves as much as 550 m s-1. Additionally, the present equipment is applied for continuous and physical preparation of ultrafine Si powders with a high scalability and mechanochemical synthesis of TiO2 and TiNx nanopowders at a high production rate.
Collapse
Affiliation(s)
- Yang Tao
- Author for correspondence: Yang Tao e-mail:
| | | | | | | | | | | | | |
Collapse
|
9
|
Xie Z, Ge H, Du J, Duan T, Yang G, He Y. Compartmentalizing Incompatible Tandem Reactions in Pickering Emulsions To Enable Visual Colorimetric Detection of Nitramine Explosives Using a Smartphone. Anal Chem 2018; 90:11665-11670. [DOI: 10.1021/acs.analchem.8b03331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhenyang Xie
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Huilin Ge
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jiayan Du
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Guangcheng Yang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yi He
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
10
|
Du J, Wang J, Huang W, Deng Y, He Y. Visible Light-Activatable Oxidase Mimic of 9-Mesityl-10-Methylacridinium Ion for Colorimetric Detection of Biothiols and Logic Operations. Anal Chem 2018; 90:9959-9965. [DOI: 10.1021/acs.analchem.8b02197] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jiayan Du
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Jinhu Wang
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Wei Huang
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yuequan Deng
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yi He
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| |
Collapse
|
11
|
Du J, Zhao M, Huang W, Deng Y, He Y. Visual colorimetric detection of tin(II) and nitrite using a molybdenum oxide nanomaterial-based three-input logic gate. Anal Bioanal Chem 2018; 410:4519-4526. [DOI: 10.1007/s00216-018-1109-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/01/2018] [Accepted: 04/24/2018] [Indexed: 11/28/2022]
|
12
|
Manivannan S, Seo Y, Kang DK, Kim K. Colorimetric and optical Hg(ii) ion sensor developed with conjugates of M13-bacteriophage and silver nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj04496a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hg(ii) produces an AgHg amalgam on a conjugate of Ag nanoparticles and M13-bacteriophage, which effectively quenches the optical absorption of the Ag nanoparticles.
Collapse
Affiliation(s)
- Shanmugam Manivannan
- Electrochemistry Laboratory for Sensors & Energy (ELSE)
- Incheon National University
- Incheon 22012
- Republic of Korea
| | - Yeji Seo
- Electrochemistry Laboratory for Sensors & Energy (ELSE)
- Incheon National University
- Incheon 22012
- Republic of Korea
| | - Dong-Ku Kang
- Nanobio Laboratory
- Department of Chemistry
- Incheon National University
- Incheon 22012
- Republic of Korea
| | - Kyuwon Kim
- Electrochemistry Laboratory for Sensors & Energy (ELSE)
- Incheon National University
- Incheon 22012
- Republic of Korea
| |
Collapse
|
13
|
Aravind A, Sebastian M, Mathew B. Green silver nanoparticles as a multifunctional sensor for toxic Cd(ii) ions. NEW J CHEM 2018. [DOI: 10.1039/c8nj03696a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles (AgNPs) were synthesized using Allium sativum (AS) extract. The AgNP-AS was able to detect Cd(ii) ions with various techniques such as optical, fluorescence and electrochemical sensing. The limit of detection was found to be 0.277 μM. Silver nanoparticles were able to quantify Cd(ii) ions from environmental samples. The antibacterial activity of AgNP-AS was explored towards waterborne bacteria.
Collapse
Affiliation(s)
- Archana Aravind
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Maria Sebastian
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Beena Mathew
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| |
Collapse
|
14
|
Bang J, Park H, Choi WI, Sung D, Lee JH, Lee KY, Kim S. Sensitive detection of dengue virus NS1 by highly stable affibody-functionalized gold nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj02244e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The anti-NS1 affibody-functionalized gold nanoparticles based ELISA resulted in a 14.2-fold signal amplification performance for dengue NS1 detection.
Collapse
Affiliation(s)
- Jinho Bang
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
- Department of Bioengineering
| | - Heesun Park
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
| | - Won Il Choi
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
| | - Daekyung Sung
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
| | - Jin Hyung Lee
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
| | - Kuen Yong Lee
- Department of Bioengineering
- Hanyang University
- Seoul
- South Korea
| | - Sunghyun Kim
- Korea Institute of Ceramic Engineering and Technology
- Center for Convergence Bioceramic Materials
- Cheongjusi
- South Korea
| |
Collapse
|
15
|
Wang J, Ma G, Huang W, He Y. Visible-light initiated polymerization of dopamine in a neutral environment for surface coating and visual protein detection. Polym Chem 2018. [DOI: 10.1039/c8py01140k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mussel-inspired polydopamine (PDA) coating is a promising avenue for surface modification.
Collapse
Affiliation(s)
- Jinhu Wang
- School of National Defence Science & Technology
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Guolu Ma
- Ministry of Education Key Laboratory of Testing Technology for Manufacturing Process
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Wei Huang
- School of National Defence Science & Technology
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Yi He
- School of National Defence Science & Technology
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| |
Collapse
|
16
|
Zhao M, Tao Y, Huang W, He Y. Reversible pH switchable oxidase-like activities of MnO2 nanosheets for a visual molecular majority logic gate. Phys Chem Chem Phys 2018; 20:28644-28648. [DOI: 10.1039/c8cp05660a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The oxidase-like activities of MnO2 nanosheets are pH switchable and reversible, which are applied for the fabrication of a visual molecular majority logic gate.
Collapse
Affiliation(s)
- Mengxin Zhao
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense Science & Technology, Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Yang Tao
- High Speed Aerodynamics Institute, China Aerodynamic Research and Development Center
- Mianyang
- P. R. China
| | - Wei Huang
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense Science & Technology, Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Yi He
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defense Science & Technology, Southwest University of Science and Technology
- Mianyang
- P. R. China
| |
Collapse
|
17
|
Mandal J, Ghorai P, Brandão P, Pal K, Karmakar P, Saha A. An aminoquinoline based biocompatible fluorescent and colourimetric pH sensor designed for cancer cell discrimination. NEW J CHEM 2018. [DOI: 10.1039/c8nj04753g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, low cost aminoquinoline based pH sensor,HLwas prepared and it works at a low pH range.HLexhibits cell permeability and used as an effective tool for differentiating between normal and cancer cells.
Collapse
Affiliation(s)
- Jayanta Mandal
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Pravat Ghorai
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Paula Brandão
- Department of Chemistry
- CICECO-Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Kunal Pal
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Amrita Saha
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| |
Collapse
|