Bunkan AJC, Srinivasulu G, Amedro D, Vereecken L, Wallington TJ, Crowley JN. Products and mechanism of the OH-initiated photo-oxidation of perfluoro ethyl vinyl ether, C
2F
5OCF[double bond, length as m-dash]CF
2.
Phys Chem Chem Phys 2018;
20:11306-11316. [PMID:
29637965 DOI:
10.1039/c8cp01392f]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The OH-initiated photo-oxidation of perfluoro ethyl vinyl ether (C2F5OCF[double bond, length as m-dash]CF2, PEVE) in air (298 K, 50 and 750 Torr total pressure) was studied in a photochemical reactor using in situ detection of PEVE and its products by Fourier transform IR absorption spectroscopy. The relative rate technique was used to derive the rate coefficient, k1, for the reaction of PEVE with OH as k1 = (2.8 ± 0.3) × 10-12 cm3 molecule-1 s-1. The photo-oxidation of PEVE in the presence of NOx at 1 bar results in formation of C2F5OCFO, FC(O)C(O)F and CF2O in molar yields of 0.50 ± 0.07, 0.46 ± 0.07 and 1.50 ± 0.22, respectively. FC(O)C(O)F and CF2O are formed partially in secondary, most likely heterogeneous processes. At a reduced pressure of 50 Torr, the product distribution is shifted towards formation of FC(O)C(O)F, indicating the important role of collisional quenching of initially formed association complexes, and enabling details of the reaction mechanism to be elucidated. An atmospheric photo-oxidation mechanism for PEVE is presented and the environmental implications of PEVE release and degradation are discussed.
Collapse