1
|
Dai Q, Huang J, Qiu X, Luo X, Wang D, Li Y. A Chiral Sensing System Based on Single Au Nanowire: A General SERS Strategy for Identification of the Enantiomers and Mechanism for Chiral Interaction. Anal Chem 2025; 97:3765-3772. [PMID: 39914878 DOI: 10.1021/acs.analchem.5c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Enantiomers are a widespread phenomenon in chemistry, and the identification, separation, and synthesis of enantiomers were important in the fields of drug screening, disease diagnosis, and environmental monitoring. Herein, a new strategy was presented to recognize enantiomers based on the surface-enhanced Raman scattering (SERS) technique using a single Au nanowire (Au NW) decorated by Ag core-Au satellite nanocomposites as a new platform. The SERS discrimination detection of enantiomers is based on molecular interactions between chiral targets and this chiral Au NW-based nanosensor: the SERS signals of l-nanosensor can be enhanced by d-targets but decreased by l-targets. In contrast, the SERS signals of the d-nanosensor can be enhanced by l-targets but decreased by d-targets. Therefore, a new SERS method can be established for the detection of different enantiomers with high selectivity and sensitivity. A variety of chiral molecules, including glucose, threonine, mandelic acid, phenylalanine, sorbitol, tartaric acid and tryptophan, were successfully identified using this system, and the chiral recognition mechanism of this nanosensor was also explored in depth via the density functional theory (DFT) calculation. Due to the small overall dimension of single Au NW-based nanosensor, this method provides a facile and universal solution for online analysis and noninvasive diagnosis, especially for some confined environment and single-cell analysis.
Collapse
Affiliation(s)
- Qingshan Dai
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Jiarui Huang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Xia Qiu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Xianzhun Luo
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Dongmei Wang
- School of Laboratory Medicine, Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Yongxin Li
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| |
Collapse
|
2
|
Li X, Zhang Y, Shi Z, Wang D, Yang H, Zhang Y, Qin H, Lu W, Chen J, Li Y, Qing G. Water-stable boroxine structure with dynamic covalent bonds. Nat Commun 2024; 15:1207. [PMID: 38331926 PMCID: PMC10853236 DOI: 10.1038/s41467-024-45464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Boroxines are significant structures in the production of covalent organic frameworks, anion receptors, self-healing materials, and others. However, their utilization in aqueous media is a formidable task due to hydrolytic instability. Here we report a water-stable boroxine structure discovered from 2-hydroxyphenylboronic acid. We find that, under ambient environments, 2-hydroxyphenylboronic acid undergoes spontaneous dehydration to form a dimer with dynamic covalent bonds and aggregation-induced enhanced emission activity. Intriguingly, upon exposure to water, the dimer rapidly transforms into a boroxine structure with excellent pH stability and water-compatible dynamic covalent bonds. Building upon these discoveries, we report the strong binding capacity of boroxines toward fluoride ions in aqueous media, and develop a boroxine-based hydrogel with high acid-base stability and reversible gel-sol transition. This discovery of the water-stable boroxine structure breaks the constraint of boroxines not being applicable in aqueous environments, opening a new era of researches in boroxine chemistry.
Collapse
Affiliation(s)
- Xiaopei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
- Instrumental Analysis Center, School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Yongjie Zhang
- Instrumental Analysis Center, School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Hang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yahui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Junjun Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China.
| |
Collapse
|
3
|
Zheng P, Raj P, Wu L, Mizutani T, Szabo M, Hanson WA, Barman I. Quantitative Detection of Thyroid-Stimulating Hormone in Patient Samples with a Nanomechanical Single-Antibody Spectro-Immunoassay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305110. [PMID: 37752776 PMCID: PMC10922205 DOI: 10.1002/smll.202305110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Functional disorders of the thyroid remain a global challenge and have profound impacts on human health. Serving as the barometer for thyroid function, thyroid-stimulating hormone (TSH) is considered the single most useful test of thyroid function. However, the prevailing TSH immunoassays rely on two types of antibodies in a sandwich format. The requirement of repeated incubation and washing further complicates the issue, making it unable to meet the requirements of the shifting public health landscape that demands rapid, sensitive, and low-cost TSH tests. Herein, a systematic study is performed to investigate the clinical translational potential of a single antibody-based biosensing platform for the TSH test. The biosensing platform leverages Raman spectral variations induced by the interaction between a TSH antigen and a Raman molecule-conjugated TSH antibody. In conjunction with machine learning, it allows TSH concentrations in various patient samples to be predicted with high accuracy and precision, which is robust against substrate-to-substrate, intra-substrate, and day-to-day variations. It is envisioned that the simplicity and generalizability of this single-antibody immunoassay coupled with the demonstrated performance in patient samples pave the way for it to be widely applied in clinical settings for low-cost detection of hormones, other molecular biomarkers, DNA, RNA, and pathogens.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Takayuki Mizutani
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Miklos Szabo
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - William A. Hanson
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
4
|
Choi Y, Jeon CS, Kim KB, Kim HJ, Pyun SH, Park YM. Quantitative detection of dopamine in human serum with surface-enhanced Raman scattering (SERS) of constrained vibrational mode. Talanta 2023; 260:124590. [PMID: 37146455 DOI: 10.1016/j.talanta.2023.124590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Dopamine (DA) is a crucial neurotransmitter involved in the hormonal, nervous, and vascular systems being considered as an index to diagnose neurodegenerative diseases, including Parkinson's and Alzheimer's disease. Herein, we demonstrate the quantitative sensing of DA using the peak shift in surface-enhanced Raman scattering (SERS) of 4-mercaptophenylboronic acid (4-MPBA), resulting from the concentration of DA. To enable the signal enhancement of Raman scattering, Ag nanostructure was built with one-step gas-flow sputtering. 4-MPBA was then introduced using vapor-based deposition, acting as a reporter molecule for bonding with DA. The gradual peak-shift from 1075.6 cm-1 to 1084.7 cm-1 was observed with the increasing concentration of DA from 1 pM to 100nM. The numerical simulation revealed that DA bonding induced a constrained vibrational mode corresponding to 1084.7 cm-1 instead of a C-S-coupled C-ring in-plane bending mode of 4-MPBA corresponding to 1075.6 cm-1. Proposed SERS sensors depicted reliable DA detection in human serum and good selectivity against other analytes, including glucose, creatinine, and uric acid.
Collapse
Affiliation(s)
- Yongheum Choi
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc., Seongnam-si, Gyeonggi-do, 13461, Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea
| | - Hyun-Jong Kim
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Sung Hyun Pyun
- R&D Center, Speclipse Inc., Seongnam-si, Gyeonggi-do, 13461, Republic of Korea.
| | - Young Min Park
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea.
| |
Collapse
|
5
|
Li R, Li L, Zhang Y, Lin X, Guo H, Lin C, Feng J. Construction of a Carcinoembryonic Antigen Surface-Enhanced Raman Spectroscopy (SERS) Aptamer Sensor Based on the Silver Nanorod Array Chip. APPLIED SPECTROSCOPY 2023; 77:170-177. [PMID: 36138574 DOI: 10.1177/00037028221131577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carcinoembryonic antigen (CEA) is a cancer-related tumor marker, which is commonly used for preventive screening, auxiliary diagnosis, and recurrence monitoring. Therefore, it is of great significance to develop a new CEA detection method. In this paper, we developed an SERS aptasensor for CEA based on silver nanorod array chip, thiol aptamer, and 4-mercaptophenylboronic acid (4-MPBA). The silver nanorod array chip modified by CEA thiol aptamer (aptamer-SH) was used as SERS capture substrates. Ag@4-MPBA was used as a surface-enhanced Raman spectroscopy (SERS) tag. This proposed SERS aptasensor could detect CEA down to 0.447 pg·mL-1 with a wide linear range from 1 pg·mL-1 to 100 ng·mL-1 (R2 = 0.9907). The recovery of the standard addition test for CEA in serum was between 97.25% and 102.67%, and the RSD ≤ 2.52% (n = 3). The sensor has the advantages of good specificity, high sensitivity, and a wide linear range. It provides a new method for the detection of CEA in serum.
Collapse
Affiliation(s)
- Rui Li
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Lijun Li
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Yan Zhang
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Xin Lin
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Heyuanxi Guo
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Chubing Lin
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Jun Feng
- School of Medicine, 66514Guangxi University of Science and Technology, Liuzhou, China
| |
Collapse
|
6
|
Zhou S, Hu Z, Zhang Y, Wang D, Gong Z, Fan M. Differentiation and identification structural similar chemicals using SERS Coupled with different chemometric methods:the example of Fluoroquinolones. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Zheng P, Wu L, Raj P, Mizutani T, Szabo M, Hanson WA, Barman I. A Dual-Modal Single-Antibody Plasmonic Spectro-Immunoassay for Detection of Small Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200090. [PMID: 35373504 PMCID: PMC9302383 DOI: 10.1002/smll.202200090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Indexed: 05/03/2023]
Abstract
Small molecules play a pivotal role in regulating physiological processes and serve as biomarkers to uncover pathological conditions and the effects of therapeutic treatments. However, it remains a significant challenge to detect small molecules given the size as compared to macromolecules. Recently, the newly emerging plasmonic immunoassays based on surface-enhanced Raman scattering (SERS) offer great promise to deliver extraordinary sensitivity. Nevertheless, they are limited by the intrinsic SERS intensity fluctuations associated with the SERS uncertainty principle. The single transducer that relies on the intensity change is also prone to false signals. Additionally, the prevailing sandwich immunoassay format proves less effective towards detecting small molecules. To circumvent these critical issues, a dual-modal single-antibody approach that synergizes both the intensity and shift of the peak-based immunoassay with Raman enhancement, coined as the INSPIRE assay, is developed for small molecules detection. With two independent transduction mechanisms, it allows better prediction of analyte concentration and attenuation of signal artifacts, providing a new and robust strategy for molecular analysis. With a proof-of-concept demonstration for detection of free T4 and testosterone in serum matrix, the authors envision that the INSPIRE assay could be expanded for a wide spectrum of applications in biomedical diagnosis, discovery of new biopharmaceuticals, food safety, and environmental monitoring.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Takayuki Mizutani
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Miklos Szabo
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - William A. Hanson
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- To whom the correspondence should be addressed.
| |
Collapse
|
8
|
Zhu C, Liu W, Wang D, Gong Z, Fan M. Boosting bacteria differentiation efficiency with multidimensional surface-enhanced Raman scattering: the example of Bacillus cereus. LUMINESCENCE 2022; 37:1145-1151. [PMID: 35481694 DOI: 10.1002/bio.4268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful tool for constructing biomolecular fingerprints, which play a vital role in differentiation of bacteria. Due to the rather subtle differences in the SERS spectra among different bacteria, artificial intelligence is usually adopted and enormous amounts of spectral data are required to improve the differentiation efficiency. However, in many cases, large volume data acquisition on bacteria is not only technical difficult but labour intensive. It is known that surface modification of SERS nanomaterials can bring additional dimensionality (difference) of the SERS fingerprints. Here in this work, we show that the concept could be used to improve the bacteria differentiation efficiency. Ag NPs were modified with 11-mercaptoundecanoic acid, 11-mercapto-1-undecanol, and 1-dodecanethiol to provide additional dimensionality. The modified NPs then were mixed with cell lysate from different strains of Bacillus cereus (B. cereus). Even by applying a simple PCA process to the resulting SERS spectra data, all the three modified Ag NPs showed superior differentiation results compared with bare Ag NPs, which could only separate Staphylococcus aureus (S. aureus) and B. cereus. It is believed that the multidimensional SERS could find great potential in bacteria differentiation.
Collapse
Affiliation(s)
- Chengye Zhu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Wen Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
9
|
Zhu W, Hutchison JA, Dong M, Li M. Frequency Shift Surface-Enhanced Raman Spectroscopy Sensing: An Ultrasensitive Multiplex Assay for Biomarkers in Human Health. ACS Sens 2021; 6:1704-1716. [PMID: 33939402 DOI: 10.1021/acssensors.1c00393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sensitive and selective detection of biomarkers for human health remains one of the grand challenges of the analytical sciences. Compared to established methods (colorimetric, (chemi) luminescent), surface-enhanced Raman spectroscopy (SERS) is an emerging alternative with enormous potential for ultrasensitive biological detection. Indeed even attomolar (10-18 M) detection limits are possible for SERS due to an orders-of-magnitude boosting of Raman signals at the surface of metallic nanostructures by surface plasmons. However, challenges remain for SERS assays of large biomolecules, as the largest enhancements require the biomarker to enter a "hot spot" nanogap between metal nanostructures. The frequency-shift SERS method has gained popularity in recent years as an alternative assay that overcomes this drawback. It measures frequency shifts in intense SERS peaks of a Raman reporter during binding events on biomolecules (protein coupling, DNA hybridization, etc.) driven by mechanical transduction, charge transfer, or local electric field effects. As such, it retains the excellent multiplexing capability of SERS, with multiple analytes being identifiable by a spectral fingerprint in a single read-out. Meanwhile, like refractive index surface plasmon resonance methods, frequency-shift SERS measures the shift of an intense signal rather than resolving a peak above noise, easing spectroscopic resolution requirements. SERS frequency-shift assays have proved particularly suitable for sensing large, highly charged biomolecules that alter hydrogen-bonding networks upon specific binding. Herein we discuss the frequency-shift SERS method and promising applications in (multiplex) biomarker sensing as well as extensions to ion and gas sensing and much more.
Collapse
Affiliation(s)
- Wenfeng Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - James Andell Hutchison
- School of Chemistry, University of Melbourne, 30 Flemington Road, Parkville 3052, Victoria, Australia
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wang S, Sun B, Feng J, An F, Li N, Wang H, Tian M. Development of affinity between target analytes and substrates in surface enhanced Raman spectroscopy for environmental pollutant detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5657-5670. [PMID: 33226038 DOI: 10.1039/d0ay01760d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Environmental pollution has long been a social concern due to the variety of pollutants and their wide distribution, persistence and being detrimental to health. It is therefore necessary to develop rapid and sensitive strategies to trace and detect these compounds. Among various detection methodologies, surface enhanced Raman spectroscopy (SERS) has become an attractive option as it enables accurate analyte identification, simple sample preparation, rapid detection and ultra-high sensitivity without any interference from water. For SERS detection, an essential yet challenging step is the effective capture of target analytes onto the surface of metal nanostructures with a high intensity of enhanced electromagnetic field. This review has systematically summarized recent advances in developing affinity between targets and the surface of SERS substrates via direct adsorption, hydrophobic functional groups, boronate affinity, metal organic frameworks (MOFs), DNA aptamers and molecularly imprinted polymers (MIPs). At the end of this review, technical limitations and outlook have been provided, with suggestions on optimizing SERS techniques for real-world applications in environmental pollutant detection.
Collapse
Affiliation(s)
- Shiqiang Wang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Junjie Feng
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Fei An
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Na Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Haozhi Wang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
11
|
Xiong Y, Li X, Li M, Qin H, Chen C, Wang D, Wang X, Zheng X, Liu Y, Liang X, Qing G. What Is Hidden Behind Schiff Base Hydrolysis? Dynamic Covalent Chemistry for the Precise Capture of Sialylated Glycans. J Am Chem Soc 2020; 142:7627-7637. [DOI: 10.1021/jacs.0c01970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Xiuling Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Cheng Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xue Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xintong Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
12
|
Yun BJ, Koh WG. Highly-sensitive SERS-based immunoassay platform prepared on silver nanoparticle-decorated electrospun polymeric fibers. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Qin X, Zhang Z, Shao H, Zhang R, Chen L, Yang X. Boronate affinity material-based sensors for recognition and detection of glycoproteins. Analyst 2020; 145:7511-7527. [DOI: 10.1039/d0an01410a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review comprehensively presents the current overview and development potential of BAMs-based sensors for glycoprotein recognition and detection.
Collapse
Affiliation(s)
- Xiaoxiao Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Research Centre for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| |
Collapse
|
14
|
Xia J, Liu Y, Ran M, Lu W, Bi L, Wang Q, Lu D, Cao X. The simultaneous detection of the squamous cell carcinoma antigen and cancer antigen 125 in the cervical cancer serum using nano-Ag polydopamine nanospheres in an SERS-based lateral flow immunoassay. RSC Adv 2020; 10:29156-29170. [PMID: 35521095 PMCID: PMC9055935 DOI: 10.1039/d0ra05207h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
The accurate analysis of tumor related biomarkers is extremely critical in the diagnosis of the early stage cervical cancer. Herein, we designed a novel and inexpensive surface-enhanced Raman scattering-based lateral flow assay (SERS-based LFA) strip with a single test line, which was applied for the rapid and sensitive quantitative simultaneous analysis of SCCA and CA125 in serum samples from patients with cervical cancer. In the presence of target antigens, the monoclonal antibody-coupled and Raman reporter-labeled nano-Ag polydopamine nanospheres (PDA@Ag-NPs) aggregated on the test line modified by the polyclonal antibody to form a double-antibody sandwich structure. The finite difference time domain simulation demonstrated that large number of “hot spots” was generated among the nanogaps of aggregated PDA@AgNPs, which resulted in a huge enhancement of the signal of the Raman reporters. Accordingly, the limit of detection was determined to be 7.156 pg mL−1 for SCCA and 7.182 pg mL−1 for CA125 in phosphate buffer and 8.093 pg mL−1 for SCCA and 7.370 pg mL−1 for CA125 in human serum, revealing high sensitivity of this SERS-based LFA strip. Significantly, the detection of SCCA and CA125 using the SERS-based LFA was observed to have high specificity and reproducibility, and the whole detection was completed within 20 min. Furthermore, the SERS-based LFA and enzyme-linked immunosorbent assay were also employed in serum samples obtained from patients with cervical cancer, cervical intraepithelial neoplasia and healthy subjects, and perfect agreement existed between both the methods. Thus, clinically, the developed SERS-based LFA strip has strong potential for the simultaneous detection of multiple cancer biomarkers in serum. Based on SERS-based lateral flow immunoassay, nano-Ag polydopamine nanospheres was used for detecting squamous cell carcinoma antigen and cancer antigen 125 simultaneously in cervical cancer serum.![]()
Collapse
Affiliation(s)
- Ji Xia
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| | - Yifan Liu
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| | - Menglin Ran
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen
- PR China
| | - Liyan Bi
- Transformative Otology and Neuroscience Center
- College of Special Education
- Binzhou Medical University
- Yantai 264003
- PR China
| | - Qian Wang
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| | - Dan Lu
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| | - Xiaowei Cao
- Department of Obstetrics and Gynecology
- College of Clinical Medicine
- Yangzhou University
- Yangzhou
- PR China
| |
Collapse
|
15
|
Demirtaş Ö, Doğanay D, Öztürk İM, Ünalan HE, Bek A. Facile preparation of nanoparticle based SERS substrates for trace molecule detection. Phys Chem Chem Phys 2020; 22:21139-21146. [PMID: 32926013 DOI: 10.1039/d0cp01866j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we demonstrate that a polished Si wafer surface can be converted to possess strong surface-enhanced Raman scattering (SERS) activity by spray coating of polyol synthesized colloidal silver nanoparticles (AgNPs) at as low as 1% surface coverage. The SERS activity assays of substrate surfaces prepared with different production procedures (spray and spin coating) at different surface coverages are realized using population statistics. The resulting Raman enhancement factors (EFs) are discussed with the help of distance-dependent electromagnetic simulations for single particles and dimers. Statistics on the SERS effect and the corresponding EF calculations show that polyol synthesized AgNPs exhibit extremely strong SERS activity with EFs up to 108 at as low as 1% surface coverage. We discuss in this work that this is possible due to the distinct properties of polyol synthesized AgNPs such as atomically flat surfaces, sharp edges and corners naturally occurring in this synthesis method, which favor strong plasmonic activity. The method can be generalized to convert virtually any surface into a SERS substrate.
Collapse
Affiliation(s)
- Özge Demirtaş
- Micro and Nanotechnology Program, Middle East Technical University, Ankara 06800, Turkey.
| | | | | | | | | |
Collapse
|
16
|
Xie D, Chang YN, Xing G, Zhao L, Li M, Zhao Y. Exploring the Interaction of Fullerenol with Key Digestive Proteases Using Raman-Based Frequency-Shift Sensing and Molecular Simulation Analysis. ACS APPLIED BIO MATERIALS 2019; 2:2946-2954. [DOI: 10.1021/acsabm.9b00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dan Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B, Yuquan Road, Shijingshan District, Beijing 100049, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B, Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
17
|
Zhang X, Chai L, Nie S, Lv C, Wang Q, Li Z. Facile synthesis of boronic acid-decorated carbon nanodots as optical nanoprobes for glycoprotein sensing. Analyst 2019; 144:1975-1981. [PMID: 30694263 DOI: 10.1039/c8an02192a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we proposed new nitrogen-doped boronic acid-decorated carbon nanodots (CNDs) for the recognition and detection of glycoproteins. These doped, decorated CNDs were obtained by a one-step hydrothermal carbonization method using phenylboronic acid and ethylenediamine as precursors. Compared to traditional synthesized and then functionalized nanoscale sensing systems, this method is more facile and efficient. The as-prepared nitrogen-doped CNDs possessed a quasi-spherical morphology and a high quantum yield of approximately 14.5%. The added glycoproteins (taking horseradish peroxidase as a model protein) can selectively induce the assembly and fluorescence quenching of CNDs through the formation of cyclic boronate esters, because the boronic acid groups on the CND surfaces can covalently interact with cis-diol-containing glycoproteins. These fluorescence responses can be used to properly quantify horseradish peroxidase in the range of 3.3-333.3 μg mL-1 with a detection limit of 0.52 μg mL-1, and the selectivity assay with functionalized CNDs was further investigated using various proteins with different quantities of glycosylation sites as well as using smaller molecules. The results show that the nanosensing system possesses favorable selectivity. Due to its simplicity and effectiveness, the system has great application prospects as a practical platform for glycoprotein sensing.
Collapse
Affiliation(s)
- Xianfeng Zhang
- School of Material and Chemical Engineering, Bengbu University, Bengbu 233030, P. R. China.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang J, Dong Y, Zhu W, Xie D, Zhao Y, Yang D, Li M. Ultrasensitive Detection of Circulating Tumor DNA of Lung Cancer via an Enzymatically Amplified SERS-Based Frequency Shift Assay. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18145-18152. [PMID: 31050289 DOI: 10.1021/acsami.9b02953] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Circulating tumor DNA (ctDNA) is a promising noninvasive biomarker for the early diagnosis of cancers. However, it is challenging for accurate and sensitive detection of pico-to-femtomolar serum concentration of ctDNA, especially in the presence of its analogues that produce strong background noise. Herein, a DNA-rN1-DNA-mediated surface-enhanced Raman scattering frequency shift assay is developed, which enables sensitive detection of ctDNA with one single base pair mutation (KARS G12D mutation) from the normal ones (KARS G12D normal) of lung cancer. This sensing platform features in both the designed hairpin DNA-rN1-DNA probe for specific ctDNA recognition and the employed RNase HII enzyme that specifically hydrolyzes the DNA-rN1-DNA/ctDNA hybrid and thus allows ctDNA recycling in the system to realize signal amplification. The detection system shows sub-femtomolar-level sensitivity in the phosphate-buffered saline solution and is demonstrated to function well in both fetal bovine serum and human physiological media. In particular, the sensitive assay of ctDNA in serum samples from lung cancer patients is achieved, suggesting its high potential applications in clinical settings for early diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuhang Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Wenfeng Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Dan Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
19
|
Sun X, Jian Y, Wang H, Ge S, Yan M, Yu J. Ultrasensitive Microfluidic Paper-Based Electrochemical Biosensor Based on Molecularly Imprinted Film and Boronate Affinity Sandwich Assay for Glycoprotein Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16198-16206. [PMID: 30892007 DOI: 10.1021/acsami.9b02005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we proposed a strategy that combined molecularly imprinted polymers (MIPs) and hybridization chain reaction into microfluidic paper-based analytical devices for ultrasensitive detection of target glycoprotein ovalbumin (OVA). During the fabrication, Au nanorods with a large surface area and superior conductibility were grown on paper cellulosic fiber as a matrix to introduce a boronate affinity sandwich assay. The composite of MIPs including 4-mercaptophenylboronic acid (MPBA) was able to capture target glycoprotein OVA. SiO2@Au nanocomposites labeled MPBA and cerium dioxide (CeO2)-modified nicked DNA double-strand polymers (SiO2@Au/dsDNA/CeO2) as a signal tag were captured into the surface of the electrode in the presence of OVA. An electrochemical signal was generated by using nanoceria as redox-active catalytic amplifiers in the presence of 1-naphthol in electrochemical assays. As a result, the electrochemical assay was fabricated and could be applied in the detection of OVA in the wide linear range of 1 pg/mL to 1000 ng/mL with a relatively low detection limit of 0.87 pg/mL (S/N = 3). The results indicated that the proposed platform possessed potential applications in clinical diagnosis and other related fields.
Collapse
Affiliation(s)
- Xiaolu Sun
- Shandong Collaborative Innovation Center of Technology and Equipements for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research , University of Jinan , Jinan 250022 , P.R. China
- School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Yannan Jian
- Shandong Collaborative Innovation Center of Technology and Equipements for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research , University of Jinan , Jinan 250022 , P.R. China
- School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - He Wang
- Shandong Collaborative Innovation Center of Technology and Equipements for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research , University of Jinan , Jinan 250022 , P.R. China
- School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Shenguang Ge
- Shandong Collaborative Innovation Center of Technology and Equipements for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research , University of Jinan , Jinan 250022 , P.R. China
| | - Mei Yan
- School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| |
Collapse
|
20
|
Jeon SJ, Choi C, Ju JM, Lee S, Park JH, Kim JH. Tuning the response selectivity of graphene oxide fluorescence by organometallic complexation for neurotransmitter detection. NANOSCALE 2019; 11:5254-5264. [PMID: 30864583 DOI: 10.1039/c9nr00643e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is of great interest to design nanomaterial biosensors that can selectively detect target molecules without the use of fragile and expensive antibodies. Here, we report a chemical approach to modulate the response selectivity of graphene oxide (GO) fluorescence for neurotransmitters, in order to design an optical biosensor for the selective detection of dopamine without using antibodies. To this end, GO was functionalized with six different amino acids, followed by the immobilization of seven metal ions, resulting in the production of forty-two different GO nanohybrids (denoted GO-AA-MI derivatives). The fluorescence response of GO-AA-MI derivatives to dopamine, norepinephrine, and epinephrine was modulated by varying the type of amino acids and metal ions introduced. Tyrosine-modified GO with Fe2+ ions (GO-Y-Fe) exhibited selective quenching of its fluorescence in the presence of dopamine whereas lysine-modified GO with Au3+ ions (GO-K-Au) showed a selective increase in fluorescence upon addition of norepinephrine. The GO-Y-Fe sensor developed was able to differentiate dopamine from similar structures of norepinephrine and epinephrine, as well as abundant interferents such as ascorbic acid and uric acid, without the use of antibodies. In addition, the GO-Y-Fe sensor successfully detected dopamine secreted from living neuron cells in a rapid and simple manner.
Collapse
Affiliation(s)
- Su-Ji Jeon
- Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
21
|
Zou Q, Li X, Xue T, Mo S, Su Q, Zheng J. Sensitive and Selective Detection of Mercury Ions in Aqueous Media Using an Oligonucleotide-functionalized Nanosensor and SERS Chip. ANAL SCI 2018; 35:493-498. [PMID: 30298820 DOI: 10.2116/analsci.18p381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of Hg2+ ions was reported, based on poly-thymine (T) aptamer/2-naphthalenethiol (2-NT)-modified gold nanoparticles (AuNPs), which was an oligonucleotide-functionalized nanosensor and SERS chip. 2-NT was used as a Raman reporter, and T aptamer could form a T-Hg2+-T structure with Hg2+ ions making an SERS nanosensor absorbed to the SERS chip. The optimum concentrations of DNA and 2-NT were obtained. An average of 960 DNA molecules attached to each AuNP were measured. The limit of detection (LOD) was 1.0 ppt (1.0 × 10-12 g/mL), which is far below the limit of 10.0 ppb for drinking water, stipulated by the World Health Organization. The sensor has the advantages of low detection cost, a simple sample pretreatment, a green solution and reducing false positives. Furthermore, the nanosensor was used for the determination of trace Hg2+ in the water of a lake; a reliable result was obtained accurately.
Collapse
Affiliation(s)
- Qiang Zou
- Department of Marine Environmental Science and Technology, School of Marine Science and Technology, Tianjin University.,School of Microelectronics, Tianjin University.,Xuanhuai School of Innovation and Entrepreneurship, Tianjin University
| | - Xin Li
- Department of Marine Environmental Science and Technology, School of Marine Science and Technology, Tianjin University
| | - Tao Xue
- College of Material Science and Engineering, Tianjin University
| | - Shentong Mo
- School of Microelectronics, Tianjin University
| | - Qi Su
- School of Microelectronics, Tianjin University
| | - Jia Zheng
- School of Microelectronics, Tianjin University
| |
Collapse
|