1
|
Yan W, Liu Y, Bai Y, Chen Y, Zhou H, Ahmad W. Intelligent MEMS Sensor Based on an Oxidized Medium-Entropy Alloy (FeCoNi) for H 2 and CO Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49474-49483. [PMID: 39231248 DOI: 10.1021/acsami.4c07782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In this paper, we present the design and evaluation of an intelligent MEMS sensor employing the oxidized medium-entropy alloy (O-MEA) of FeCoNi as the gas-sensing material. Due to the specific catalytic exothermic reaction of the O-MEA on H2/CO, the sensor shows great selectivity for H2 and CO at 150 °C of the integrated microheater in the MEMS device, with the theoretical detection limit of 0.3 ppm for H2 and 0.29 ppm for CO. The MEMS heater, capable of instantaneous temperature changes in pulse operation mode, offers a novel approach for thermal modulation of the sensor, which is crucial for the adsorption and reaction of H2/CO molecules on the sensing layer surface. Consequently, we investigate the gas-sensing capabilities of the sensor under pulse heating modes (PHMs) of the MEMS heater and then propose the gas-sensing mechanism. The results indicate that PHMs significantly not only reduce the operating temperature and power consumption but also enhance the sensor's functionality by providing multivariable response signals, paving the way for intelligent gas detection. Based on the high selectivity to H2 and CO, transforming the transient sensing curves into two-dimensional images via Gramian Angular Field (GAF) model and subsequent modeling using a convolutional neural network (CNN) algorithm, we have realized efficient and intelligent recognition of H2 and CO. This work provides insight for the development of low-power, high-performance MEMS gas sensors and further intelligence of individual MEMS sensors.
Collapse
Affiliation(s)
- Wenjun Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yun Liu
- Faculty of Information, Liaoning University, Shenyang 110036, China
| | - Yan Bai
- Faculty of Information, Liaoning University, Shenyang 110036, China
| | - Yulong Chen
- Industrialization Center of Micro & Nano ICs and Devices, Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Houpan Zhou
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Waqar Ahmad
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou 324000, China
| |
Collapse
|
2
|
Saeed M, Marwani HM, Shahzad U, Asiri AM, Rahman MM. Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications. CHEM REC 2024; 24:e202300106. [PMID: 37249417 DOI: 10.1002/tcr.202300106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.
Collapse
Affiliation(s)
- Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Potyrailo RA, Scherer B, Cheng B, Nayeri M, Shan S, Crowder J, St-Pierre R, Brewer J, Ruffalo R. First-Order Individual Gas Sensors as Next Generation Reliable Analytical Instruments. APPLIED SPECTROSCOPY 2023; 77:860-872. [PMID: 37604114 DOI: 10.1177/00037028231186821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
It is conventionally expected that the performance of existing gas sensors may degrade in the field compared to laboratory conditions because (i) a sensor may lose its accuracy in the presence of chemical interferences and (ii) variations of ambient conditions over time may induce sensor-response fluctuations (i.e., drift). Breaking this status quo in poor sensor performance requires understanding the origins of design principles of existing sensors and bringing new principles to sensor designs. Existing gas sensors are single-output (e.g., resistance, electrical current, light intensity, etc.) sensors, also known as zero-order sensors (Karl Booksh and Bruce R. Kowalski, Analytical Chemistry, DOI: 10.1021/ac00087a718). Any zero-order sensor is undesirably affected by variable chemical background and sensor drift that cannot be distinguished from the response to an analyte. To address these limitations, we are developing multivariable gas sensors with independent responses, which are first-order analytical instruments. Here, we demonstrate self-correction against drift in two types of first-order gas sensors that operate in different portions of the electromagnetic spectrum. Our radiofrequency sensors utilize dielectric excitation of semiconducting metal oxide materials on the shoulder of their dielectric relaxation peak and achieve self-correction of the baseline drift by operation at several frequencies. Our photonic sensors utilize nanostructured sensing materials inspired by Morpho butterflies and achieve self-correction of the baseline drift by operation at several wavelengths. These principles of self-correction for drift effects in first-order sensors open opportunities for diverse emerging monitoring applications that cannot afford frequent periodic maintenance that is typical of traditional analytical instruments.
Collapse
Affiliation(s)
| | | | | | | | - Shiyao Shan
- General Electric Research, Niskayuna, NY, USA
| | | | | | | | | |
Collapse
|
4
|
Liu R, Ko CC. Molecularly Imprinted Polymer-Based Luminescent Chemosensors. BIOSENSORS 2023; 13:295. [PMID: 36832061 PMCID: PMC9953969 DOI: 10.3390/bios13020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Molecularly imprinted polymer (MIP)-based luminescent chemosensors combine the advantages of the highly specific molecular recognition of the imprinting sites and the high sensitivity with the luminescence detection. These advantages have drawn great attention during the past two decades. Luminescent molecularly imprinted polymers (luminescent MIPs) towards different targeted analytes are constructed with different strategies, such as the incorporation of luminescent functional monomers, physical entrapment, covalent attachment of luminescent signaling elements on the MIPs, and surface-imprinting polymerization on the luminescent nanomaterials. In this review, we will discuss the design strategies and sensing approaches of luminescent MIP-based chemosensors, as well as their selected applications in biosensing, bioimaging, food safety, and clinical diagnosis. The limitations and prospects for the future development of MIP-based luminescent chemosensors will also be discussed.
Collapse
|
5
|
Guo H, Liu Y, Dong H, Zong W, Chu K, Li W, Fan Z, He G, Miao YE, Parkin IP, Lai F, Liu T. Soluble porous organic cages as homogenizers and electron-acceptors for homogenization of heterogeneous alloy nanoparticle catalysts with enhanced catalytic activity. Sci Bull (Beijing) 2022; 67:2428-2437. [PMID: 36566066 DOI: 10.1016/j.scib.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022]
Abstract
The creation of ultrafine alloy nanoparticles (<5 nm) that can maintain surface activity and avoid aggregation for heterogeneous catalysis has received much attention and is extremely challenging. Here, ultrafine PtRh alloy nanoparticles imprisoned by the cavities of reduced chiral covalent imine cage (PtRh@RCC3) are prepared successfully by an organic molecular cage (OMC) confinement strategy, while the soluble RCC3 can act as a homogenizer to homogenize the heterogeneous PtRh alloy in solution. Moreover, the X-ray absorption near-edge structure (XANES) results show that the RCC3 can act as an electron-acceptor to withdraw electrons from Pt, leading to the formation of higher valence Pt atoms, which is beneficial to improving the catalytic activity for the reduction of 4-nitrophenol. Attributed to the synergistic effect of Pt/Rh atoms and the unique function of the RCC3, the reaction rate constants of Pt1Rh16@RCC3 are 49.6, 8.2, and 5.5 times than those of the Pt1Rh16 bulk, Pt@RCC3 and Rh@RCC3, respectively. This work provides a feasible strategy to homogenize heterogeneous alloy nanoparticle catalysts in solution, showing huge potential for advanced catalytic application.
Collapse
Affiliation(s)
- Hele Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Yali Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China.
| | - Wei Zong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Kaibin Chu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China; Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Weiwei Li
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Zhongli Fan
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Guanjie He
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yue-E Miao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ivan P Parkin
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Feili Lai
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium; Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Yang GG, Ko J, Choi HJ, Kim DH, Han KH, Kim JH, Kim MH, Park C, Jin HM, Kim ID, Kim SO. Multilevel Self-Assembly of Block Copolymers and Polymer Colloids for a Transparent and Sensitive Gas Sensor Platform. ACS NANO 2022; 16:18767-18776. [PMID: 36374261 DOI: 10.1021/acsnano.2c07499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The recent emerging significance of the Internet of Things (IoT) demands sensor devices to be integrated with many different functional structures and devices while conserving their original functionalities. To this end, optical transparency and mechanical flexibility of sensor devices are critical requirements for optimal integration as well as high sensitivity. In this work, a transparent, flexible, and sensitive gas sensor building platform is introduced by using multilevel self-assembly of block copolymers (BCPs) and polystyrene (PS) colloids. For the demonstration of an H2 gas sensor, a hierarchically porous Pd metal mesh structure is obtained by overlaying the two different patterned template structures with synergistic, distinctive characteristic length scales. The hierarchical Pd mesh shows not only high transparency over 90% but also superior sensing performance in terms of response and recovery time owing to enhanced Pd-to-hydride ratio and short H2 diffusion lengths from the enlarged active surface areas. The hierarchical morphology also endows high mechanical flexibility while securing reliable sensing performance even under severe mechanical deformation cycles. Our scalable self-assembly based multiscale nanopatterning offers an intriguing generalized platform for many different multifunctional devices requiring hidden in situ monitoring of environmental signals.
Collapse
Affiliation(s)
- Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | | | - Hee Jae Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | | | - Kyu Hyo Han
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jang Hwan Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Min Hyuk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | | | - Hyeon Min Jin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | | | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
7
|
Capman NSS, Zhen XV, Nelson JT, Chaganti VRSK, Finc RC, Lyden MJ, Williams TL, Freking M, Sherwood GJ, Bühlmann P, Hogan CJ, Koester SJ. Machine Learning-Based Rapid Detection of Volatile Organic Compounds in a Graphene Electronic Nose. ACS NANO 2022; 16:19567-19583. [PMID: 36367841 DOI: 10.1021/acsnano.2c10240] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rapid detection of volatile organic compounds (VOCs) is growing in importance in many sectors. Noninvasive medical diagnoses may be based upon particular combinations of VOCs in human breath; detecting VOCs emitted from environmental hazards such as fungal growth could prevent illness; and waste could be reduced through monitoring of gases produced during food storage. Electronic noses have been applied to such problems, however, a common limitation is in improving selectivity. Graphene is an adaptable material that can be functionalized with many chemical receptors. Here, we use this versatility to demonstrate selective and rapid detection of multiple VOCs at varying concentrations with graphene-based variable capacitor (varactor) arrays. Each array contains 108 sensors functionalized with 36 chemical receptors for cross-selectivity. Multiplexer data acquisition from 108 sensors is accomplished in tens of seconds. While this rapid measurement reduces the signal magnitude, classification using supervised machine learning (Bootstrap Aggregated Random Forest) shows excellent results of 98% accuracy between 5 analytes (ethanol, hexanal, methyl ethyl ketone, toluene, and octane) at 4 concentrations each. With the addition of 1-octene, an analyte highly similar in structure to octane, an accuracy of 89% is achieved. These results demonstrate the important role of the choice of analysis method, particularly in the presence of noisy data. This is an important step toward fully utilizing graphene-based sensor arrays for rapid gas sensing applications from environmental monitoring to disease detection in human breath.
Collapse
Affiliation(s)
- Nyssa S S Capman
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, Minnesota 55455, United States
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Xue V Zhen
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Justin T Nelson
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - V R Saran Kumar Chaganti
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, Minnesota 55455, United States
| | - Raia C Finc
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Michael J Lyden
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Thomas L Williams
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Mike Freking
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Gregory J Sherwood
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Steven J Koester
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Gentili D, Ori G. Reversible assembly of nanoparticles: theory, strategies and computational simulations. NANOSCALE 2022; 14:14385-14432. [PMID: 36169572 DOI: 10.1039/d2nr02640f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The significant advances in synthesis and functionalization have enabled the preparation of high-quality nanoparticles that have found a plethora of successful applications. The unique physicochemical properties of nanoparticles can be manipulated through the control of size, shape, composition, and surface chemistry, but their technological application possibilities can be further expanded by exploiting the properties that emerge from their assembly. The ability to control the assembly of nanoparticles not only is required for many real technological applications, but allows the combination of the intrinsic properties of nanoparticles and opens the way to the exploitation of their complex interplay, giving access to collective properties. Significant advances and knowledge gained over the past few decades on nanoparticle assembly have made it possible to implement a growing number of strategies for reversible assembly of nanoparticles. In addition to being of interest for basic studies, such advances further broaden the range of applications and the possibility of developing innovative devices using nanoparticles. This review focuses on the reversible assembly of nanoparticles and includes the theoretical aspects related to the concept of reversibility, an up-to-date assessment of the experimental approaches applied to this field and the advanced computational schemes that offer key insights into the assembly mechanisms. We aim to provide readers with a comprehensive guide to address the challenges in assembling reversible nanoparticles and promote their applications.
Collapse
Affiliation(s)
- Denis Gentili
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Guido Ori
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Rue du Loess 23, F-67034 Strasbourg, France.
| |
Collapse
|
9
|
Zaytsev V, Ermatov TI, Fedorov FS, Balabin N, Kapralov PO, Bondareva JV, Ignatyeva DO, Khlebtsov BN, Kosolobov SS, Belotelov VI, Nasibulin AG, Gorin DA. Design of an Artificial Opal/Photonic Crystal Interface for Alcohol Intoxication Assessment: Capillary Condensation in Pores and Photonic Materials Work Together. Anal Chem 2022; 94:12305-12313. [PMID: 36027051 DOI: 10.1021/acs.analchem.2c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alcohol intoxication has a dangerous effect on human health and is often associated with a risk of catastrophic injuries and alcohol-related crimes. A demand to address this problem adheres to the design of new sensor systems for the real-time monitoring of exhaled breath. We introduce a new sensor system based on a porous hydrophilic layer of submicron silica particles (SiO2 SMPs) placed on a one-dimensional photonic crystal made of Ta2O5/SiO2 dielectric layers whose operation relies on detecting changes in the position of surface wave resonance during capillary condensation in pores. To make the active layer of SiO2 SMPs, we examine the influence of electrostatic interactions of media, particles, and the surface of the crystal influenced by buoyancy, gravity force, and Stokes drag force in the frame of the dip-coating preparation method. We evaluate the sensing performance toward biomarkers such as acetone, ammonia, ethanol, and isopropanol and test sensor system capabilities for alcohol intoxication assessment. We have found this sensor to respond to all tested analytes in a broad range of concentrations. By processing the sensor signals by principal component analysis, we selectively determined the analytes. We demonstrated the excellent performance of our device for alcohol intoxication assessment in real-time.
Collapse
Affiliation(s)
- Valeriy Zaytsev
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia
| | - Timur I Ermatov
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia
| | - Nikita Balabin
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia
| | - Pavel O Kapralov
- Russian Quantum Centre, 30 bld. 1 Bolshoy Boulevard, Moscow 121205, Russia
| | - Julia V Bondareva
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia
| | - Daria O Ignatyeva
- Russian Quantum Centre, 30 bld. 1 Bolshoy Boulevard, Moscow 121205, Russia.,Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, Moscow 119991, Russia
| | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, 13 Prospekt Entuziastov, Saratov 410049, Russia.,Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Sergey S Kosolobov
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia
| | - Vladimir I Belotelov
- Russian Quantum Centre, 30 bld. 1 Bolshoy Boulevard, Moscow 121205, Russia.,Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, Moscow 119991, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia.,Aalto University, Kemistintie 1, P.O. Box 16100, Aalto 00076, Finland
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia
| |
Collapse
|
10
|
Xie B, Ding B, Mao P, Wang Y, Liu Y, Chen M, Zhou C, Wen HM, Xia S, Han M, Palmer RE, Wang G, Hu J. Metal Nanocluster-Metal Organic Framework-Polymer Hybrid Nanomaterials for Improved Hydrogen Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200634. [PMID: 35435324 DOI: 10.1002/smll.202200634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The development of hydrogen sensors is of paramount importance for timely leak detection and remains a crucial unmet need. Palladium-based materials, well known as hydrogen sensors, still suffer from poisoning and deactivation. Here, a hybrid hydrogen sensor consisting of a Pd nanocluster (NC) film, a metal-organic framework (MOF), and a polymer, are proposed. The polymer coating, as a protection layer, endows the sensor with excellent H2 selectivity and CO-poisoning resistance. The MOF serves as an interface layer between the Pd NC film and the polymer layer, which alters the nature of the interaction with hydrogen and leads to significant sensing performance improvements, owing to the interfacial electronic coupling between Pd NCs and the MOF. The strategy overcomes the shortcomings of retarded response speed and degraded sensitivity induced by the polymer coating of a Pd NC film-polymer hybrid system. This is the first exhibition of a hydrogen-sensing enhancement mechanism achieved by engineering the electronic coupling between Pd and a MOF. The work establishes a deep understanding of the hydrogen-sensing enhancement mechanism at the nanoscale and provides a feasible strategy to engineer next-generation gas-sensing nanodevices with superior sensing figures of merit via hybrid material systems.
Collapse
Affiliation(s)
- Bo Xie
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Bosheng Ding
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Peng Mao
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- Department of Physics, University of Hong Kong, Hong Kong, 999077, China
| | - Ying Wang
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Yini Liu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Minrui Chen
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Changjiang Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Shengjie Xia
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| | - Min Han
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Richard E Palmer
- College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, UK
| | - Guanghou Wang
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China
| |
Collapse
|
11
|
Abstract
Healthcare is undergoing large transformations, and it is imperative to leverage new technologies to support the advent of personalized medicine and disease prevention. It is now well accepted that the levels of certain biological molecules found in blood and other bodily fluids, as well as in exhaled breath, are an indication of the onset of many human diseases and reflect the health status of the person. Blood, urine, sweat, or saliva biomarkers can therefore serve in early diagnosis of diseases such as cancer, but also in monitoring disease progression, detecting metabolic disfunctions, and predicting response to a given therapy. For most point-of-care sensors, the requirement that patients themselves can use and apply them is crucial not only regarding the diagnostic part, but also at the sample collection level. This has stimulated the development of such diagnostic approaches for the non-invasive analysis of disease-relevant analytes. Considering these timely efforts, this review article focuses on novel, sensitive, and selective sensing systems for the detection of different endogenous target biomarkers in bodily fluids as well as in exhaled breath, which are associated with human diseases.
Collapse
|
12
|
Moon HG, Jung Y, Shin B, Lee D, Kim K, Woo DH, Lee S, Kim S, Kang CY, Lee T, Kim C. Identification of Chemical Vapor Mixture Assisted by Artificially Extended Database for Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22031169. [PMID: 35161915 PMCID: PMC8840270 DOI: 10.3390/s22031169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 05/06/2023]
Abstract
A fully integrated sensor array assisted by pattern recognition algorithm has been a primary candidate for the assessment of complex vapor mixtures based on their chemical fingerprints. Diverse prototypes of electronic nose systems consisting of a multisensory device and a post processing engine have been developed. However, their precision and validity in recognizing chemical vapors are often limited by the collected database and applied classifiers. Here, we present a novel way of preparing the database and distinguishing chemical vapor mixtures with small data acquisition for chemical vapors and their mixtures of interest. The database for individual vapor analytes is expanded and the one for their mixtures is prepared in the first-order approximation. Recognition of individual target vapors of NO2, HCHO, and NH3 and their mixtures was evaluated by applying the support vector machine (SVM) classifier in different conditions of temperature and humidity. The suggested method demonstrated the recognition accuracy of 95.24%. The suggested method can pave a way to analyze gas mixtures in a variety of industrial and safety applications.
Collapse
Affiliation(s)
- Hi Gyu Moon
- Center for Ecological Risk Assessment, Korea Institute of Toxicology (KIT), Jinju 52834, Korea; (H.G.M.); (S.K.)
| | - Youngmo Jung
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Beomju Shin
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Donggeun Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Kayoung Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Deok Ha Woo
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Seok Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Sooyeon Kim
- Center for Ecological Risk Assessment, Korea Institute of Toxicology (KIT), Jinju 52834, Korea; (H.G.M.); (S.K.)
| | - Chong-Yun Kang
- Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Taikjin Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
- Correspondence: (T.L.); (C.K.)
| | - Chulki Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
- Correspondence: (T.L.); (C.K.)
| |
Collapse
|
13
|
Shi L, He L, Shangguan L, Zhou Y, Wang B, Zhang L, Yang Y, Teng C, Sun L. Revealing the Phase Segregation and Evolution Dynamics in Binary Nanoalloys via Electron Beam-Assisted Ultrafast Heating and Cooling. ACS NANO 2022; 16:921-929. [PMID: 35023713 DOI: 10.1021/acsnano.1c08500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gas-phase synthesized binary nanoparticles (NPs) possess ultraclean surfaces, which benefit versatile uses in sensors and catalysts. However, precise control of their configuration and properties is still a big challenge because the growth mechanism and phase evolution dynamics in these NPs are very hard to unveil. Here, we report a strategy to investigate the phase evolution dynamics in binary NPs by using e-beam assisted ultrafast local heating and cooling inside a transmission electron microscope. With this strategy, the phase segregation and corresponding shape evolution of PbBi NPs are in situ revealed. It is found that the as-prepared PbBi alloy NPs will transform into heterostructures under e-beam stimulated structural relaxation, leading to the formation of featured Janus configurations with faceted Bi polyhedron parts and intermetallic hemisphere parts. During phase segregation, Pb1Bi1 and Pb7Bi3 phases are captured and identified, and a model of phase and shape evolution of PbBi nanoalloys is developed and contrasted with that of their bulk counterparts. These findings benefit the understanding of the phase dynamics of binary NPs and can provide in-depth information for engineering their structures for practical applications.
Collapse
Affiliation(s)
- Lei Shi
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
- Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou, 215123, P. R. China
| | - Longbing He
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
- Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou, 215123, P. R. China
| | - Lei Shangguan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Yilong Zhou
- Thermo Fisher Shanghai Nanoport, Thermo Fisher Electronic Technology Research and Development (Shanghai) Co., Ltd., Shanghai, 201203, P. R. China
| | - Binjie Wang
- Thermo Fisher Shanghai Nanoport, Thermo Fisher Electronic Technology Research and Development (Shanghai) Co., Ltd., Shanghai, 201203, P. R. China
| | - Lei Zhang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Yufeng Yang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Chunyu Teng
- China Aero-Polytechnology Establishment, Beijing, 100028, P. R. China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
- Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou, 215123, P. R. China
| |
Collapse
|
14
|
Aboudzadeh MA, Kruse J, Sanromán Iglesias M, Cangialosi D, Alegria A, Grzelczak M, Barroso-Bujans F. Gold nanoparticles endowed with low-temperature colloidal stability by cyclic polyethylene glycol in ethanol. SOFT MATTER 2021; 17:7792-7801. [PMID: 34368823 DOI: 10.1039/d1sm00720c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The colloidal stability of metal nanoparticles is tremendously dependent on the thermal behavior of polymer brushes. Neat polyethylene glycol (PEG) presents an unconventional upper critical solution temperature in ethanol, where phase segregation and crystallization coexist. This thermal behavior translated to a PEG brush has serious consequences on the colloidal stability in ethanol of gold nanoparticles (AuNPs) modified with PEG brushes upon cooling. We observed that AuNPs (13 nm diameter) stabilized with conventional linear PEG brushes (Mn = 6 and 11 kg mol-1) in ethanol suffer from reversible phase separation upon a temperature drop over the course of a few hours. However, the use of a polymer brush with cyclic topology as a stabilizer prevents sedimentation, ensuring the colloidal stability in ethanol at -25 °C for, at least, four months. We postulate that temperature-driven collapse of chain brushes promotes the interpenetration of linear chains, causing progressive AuNP sedimentation, a process that is unfavorable for cyclic polymer brushes whose topology prevents chain interpenetration. This study reinforces the notion about the importance of polymer topology on the colloidal stability of AuNPs.
Collapse
Affiliation(s)
- M Ali Aboudzadeh
- Donostia International Physics Center (DIPC), Paseo Manuel Lardizábal 4, 20018 Donostia-San Sebastián, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Lattice expansion and oxygen vacancy of α-Fe 2O 3 during gas sensing. Talanta 2021; 221:121616. [PMID: 33076146 DOI: 10.1016/j.talanta.2020.121616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/20/2022]
Abstract
Identifying the nature of gas-sensing material under the real-time operating condition is very critical for the research and development of gas sensors. In this work, we implement in situ Raman and XRD to investigate the gas-sensing nature of α-Fe2O3 sensing material, which derived from Fe-based metal-organic gel (MOG). The active mode of α-Fe2O3 as gas-sensing material originate from the thermally induced lattice expansion and the changes of surface oxygen vacancy of α-Fe2O3 could be reflected from the further monitored Raman scattering signals during acetone gas sensing. Meanwhile, the prepared α-Fe2O3 gas sensor exhibits excellent gas-sensing performance with high response value (Ra/Rg = 27), rapid response/recovery time (1 s/80 s) for 100 ppm acetone gas, and broad response range (5 - 900 ppm) at 183 °C. Strategies described herein could provide a promising approach to obtain gas-sensing materials with excellent performance and unveil the gas-sensing nature for other metal-oxide-based chemiresistors.
Collapse
|
17
|
Darawsheh MD, Mazarío J, Lopes CW, Giménez-Marqués M, Domine ME, Meira DM, Martínez J, Mínguez Espallargas G, Oña-Burgos P. MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis*. Chemistry 2020; 26:13659-13667. [PMID: 32521073 DOI: 10.1002/chem.202001895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 11/09/2022]
Abstract
Metal-organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous catalyst for hydrogenation of nitroarenes and nitrobenzene coupling with benzaldehyde has been evaluated, proving it to be an efficient and reusable catalyst.
Collapse
Affiliation(s)
- Mohanad D Darawsheh
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Jaime Mazarío
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Christian W Lopes
- Laboratory of Reactivity and Catalysis-Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501970, Porto Alegre, Brazil
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Marcelo E Domine
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Debora M Meira
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA.,Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Jordan Martínez
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Pascual Oña-Burgos
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain.,Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almería, 04120, Spain
| |
Collapse
|
18
|
Potyrailo RA, Brewer J, Cheng B, Carpenter MA, Houlihan N, Kolmakov A. Bio-inspired gas sensing: boosting performance with sensor optimization guided by "machine learning". Faraday Discuss 2020; 223:161-182. [PMID: 32749434 PMCID: PMC7986473 DOI: 10.1039/d0fd00035c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The performance of existing gas sensors often degrades in field conditions because of the loss of measurement accuracy in the presence of interferences. Thus, new sensing approaches are required with improved sensor selectivity. We are developing a new generation of gas sensors, known as multivariable sensors, that have several independent responses for multi-gas detection with a single sensor. In this study, we analyze the capabilities of natural and fabricated photonic three-dimensional (3-D) nanostructures as sensors for the detection of different gaseous species, such as vapors and non-condensable gases. We employed bare Morpho butterfly wing scales to control their gas selectivity with different illumination angles. Next, we chemically functionalized Morpho butterfly wing scales with a fluorinated silane to boost the response of these nanostructures to the vapors of interest and to suppress the response to ambient humidity. Further, we followed our previously developed design rules for sensing nanostructures and fabricated bioinspired inorganic 3-D nanostructures to achieve functionality beyond natural Morpho scales. These fabricated nanostructures have embedded catalytically active gold nanoparticles to operate at high temperatures of ≈300 °C for the detection of gases for solid oxide fuel cell (SOFC) applications. Our performance advances in the detection of multiple gaseous species with specific nanostructure designs were achieved by coupling the spectral responses of these nanostructures with machine learning (a.k.a. multivariate analysis, chemometrics) tools. Our newly acquired knowledge from studies of these natural and fabricated inorganic nanostructures coupled with machine learning data analytics allowed us to advance our design rules for sensing nanostructures toward the required gas selectivity for numerous gas monitoring scenarios at room and high temperatures for industrial, environmental, and other applications.
Collapse
Affiliation(s)
| | - J Brewer
- GE Research, Niskayuna, NY, USA.
| | - B Cheng
- GE Research, Niskayuna, NY, USA.
| | | | - N Houlihan
- SUNY Polytechnic Institute, Albany, NY, USA
| | - A Kolmakov
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
19
|
Liu Q, Zhan Y, Zhang S, Feng S, Wang X, Sun W, Ye J, Zhang Y. "Optical tentacle" of suspended polymer micro-rings on a multicore fiber facet for vapor sensing. OPTICS EXPRESS 2020; 28:11730-11741. [PMID: 32403678 DOI: 10.1364/oe.390145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
We designed a new type of gas sensor, an optical tentacle, made of highly integrated polymer micro-ring resonators in three-dimensional space on the tiny end-facet of a multicore optical fiber. Two pairs of three polymer micro-ring resonators were hung symmetrically on both sides of three suspended micro-waveguides as the sensing units. The micro-waveguides interlace to form a three-layer nested configuration, which makes the multicore optical fiber a "tentacle" for vapors of volatile organic compounds. Both experiments and theoretical simulation confirmed that the symmetrical coupling of multiple pairs of rings with the micro-waveguide had better resonance than the single ring setup. This is because the symmetrical light modes in the waveguides couple with the rings separately. All the optical micro-components were fabricated by the two-photon lithography technology on the end facet of multicore optical fiber. The optical tentacle shows good sensitivity and reversibility. This approach can also be adopted for sensor array design on a chip. Furthermore, optical sensors that can sense vapors with multiple constituents may be achieved in the future by adding selective sensitive materials to or on the surface of the rings.
Collapse
|
20
|
Wang G, Li Y, Cai Z, Dou X. A Colorimetric Artificial Olfactory System for Airborne Improvised Explosive Identification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907043. [PMID: 31995260 DOI: 10.1002/adma.201907043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/04/2020] [Indexed: 06/10/2023]
Abstract
The detection of ultralow or nonvolatile target analytes remains a significant challenge for artificial olfactory systems even after decades of development, which severely limits their widespread application. To overcome this challenge, an artificial olfactory system based on a colorimetric hydrogel array is constructed for the first time as a universal representative. As an effective extension of conventional artificial olfactory systems that integrates the merits of its predecessors, the proposed system accurately mimics olfactory mucosa and specific odorant binding proteins using hydrogels endowed with specific colorimetric reagents for the detection of hypochlorite, chlorate, perchlorate, urea, and nitrate. Therefore, the proposed system is capable of detecting and discriminating between these five airborne improvised explosive microparticulates with a detection limit as low as 39.4 pg. Additionally, the system demonstrates good reusability over ten cycles, rapid response time of ≈0.2 s, and excellent discrimination properties, despite significant variation. This proof-of-concept study on colorimetric artificial olfactory systems yields a novel strategy for the direct and discriminative detection of nonvolatile airborne microparticulates.
Collapse
Affiliation(s)
- Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yushu Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Zhenzhen Cai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Kim S, Jung HS, Kim DH, Kim SH, Park SG. 3D nanoporous plasmonic chips for extremely sensitive NO 2 detection. Analyst 2019; 144:7162-7167. [PMID: 31710050 DOI: 10.1039/c9an01697j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detection of toxic gas molecules using the surface-enhanced Raman spectroscopy (SERS) technique is very challenging due to the low affinity of gas molecules. Here, we report extremely sensitive SERS-based NO2 gas sensors based on 3D nanoporous Au nanostructures with a high affinity for NO2 gas molecules and high density of hotspots.
Collapse
Affiliation(s)
- Sunho Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| | - Ho Sang Jung
- Advanced Nano-Surface Department (ANSD), Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea.
| | - Dong-Ho Kim
- Advanced Nano-Surface Department (ANSD), Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| | - Sung-Gyu Park
- Advanced Nano-Surface Department (ANSD), Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea.
| |
Collapse
|
22
|
Gao H, Liu H, Zhang R, Lu Z. Structure Evolution of Binary Ligands on Nanoparticles Triggered by Competition between Adsorption Reaction and Phase Separation. J Phys Chem B 2019; 123:10311-10321. [PMID: 31710227 DOI: 10.1021/acs.jpcb.9b09338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ligand shell of a nanoparticle (NP) determines most of the interfacial properties through its composition and structure. Despite widespread study over the years, the factors impacting the ligand shell structures, especially the effects of ligand-adsorption kinetics in solution, are still not clear and even conflict with each other. We have developed an adsorption-migration reaction model to study the dynamic evolution processes of binary ligands on NP surfaces during adsorption reaction. Apparent dependence of the structure of ligand shells on ligand-adsorption and phase-separation rates has been found, which induces the formation of different shell patterns, including Janus, patchy, stripe, and island patterns. The formation process of these patterns accords with different reaction kinetic pathways, depending on the nature of ligands. Further screening the role of the NPs' curvature reveals that it can indirectly influence the ligand-adsorption and phase-separation kinetics. As the NPs' curvature increases, an accelerated ligand-adsorption and phase-separation process on NPs will happen, resulting in the preferential formation of more ordered Janus or stripe patterns. These results suggest that controlling the reaction kinetics is key to effectively regulating the composition and morphology of binary ligands on NPs. They also provide principles for guiding the experimental studies to fabricate novel NPs with a functional surface for use in broad nanoscience fields.
Collapse
|
23
|
Huang T, Sheng G, Manchanda P, Emwas AH, Lai Z, Nunes SP, Peinemann KV. Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for high-performance low-temperature catalysis. SCIENCE ADVANCES 2019; 5:eaax6976. [PMID: 31701005 PMCID: PMC6824859 DOI: 10.1126/sciadv.aax6976] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/16/2019] [Indexed: 06/01/2023]
Abstract
The synthesis of support materials with suitable coordination sites and confined structures for the controlled growth of ultrasmall metal nanoparticles is of great importance in heterogeneous catalysis. Here, by rational design of a cross-linked β-cyclodextrin polymer network (CPN), various metal nanoparticles (palladium, silver, platinum, gold, and rhodium) of subnanometer size (<1 nm) and narrow size distribution are formed via a mild and facile procedure. The presence of the metal coordination sites and the network structure are key to the successful synthesis and stabilization of the ultrasmall metal nanoparticles. The as-prepared CPN, loaded with palladium nanoparticles, is used as a heterogeneous catalyst and shows outstanding catalytic performance in the hydrogenation of nitro compounds and Suzuki-Miyaura coupling reaction under mild conditions. The CPN support works synergistically with the metal nanoparticles, achieving high catalytic activity and selectivity. In addition, the catalytic activity of the formed catalyst is controllable.
Collapse
Affiliation(s)
- Tiefan Huang
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Advanced Membrane and Porous Materials Center, 23955-6900 Thuwal, Saudi Arabia
| | - Guan Sheng
- King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| | - Priyanka Manchanda
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Advanced Membrane and Porous Materials Center, 23955-6900 Thuwal, Saudi Arabia
| | - Abdul H. Emwas
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia
| | - Zhiping Lai
- King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| | - Suzana Pereira Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Advanced Membrane and Porous Materials Center, 23955-6900 Thuwal, Saudi Arabia
| | - Klaus-Viktor Peinemann
- King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
24
|
Zhao X, Guo J, Xiao T, Zhang Y, Yan Y, Grzybowski BA. Charged Metal Nanoparticles for Chemoelectronic Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804864. [PMID: 30687979 DOI: 10.1002/adma.201804864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Although metal nanoparticles (NPs) stabilized with self-assembled monolayers (SAMs) of various organic ligands have proven useful in applications ranging from chemical sensing, to bionanotechnology, to plasmonics and energy conversion, they have not been widely considered as suitable building blocks of electronic circuitry, largely because metals screen electric fields and prevent electrically tunable conductivity. However, when metal nanoparticles a few nanometers in size are stabilized by charged ligands and placed under bias, the counterions surrounding the NPs can redistribute and establish local electric fields that feed back into the electronic currents passing through the nanoparticles' metallic cores. Herein, the manner in which the interplay between counterion gradients and electron flows can be controlled by using different types of SAMs is discussed. This can give rise to a new class of nanoparticle-based "chemoelectronic" logic circuits capable of sensing, processing, and ultimately reporting various chemical signals.
Collapse
Affiliation(s)
- Xing Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jiahui Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuchun Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Bartosz A Grzybowski
- IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, South Korea
| |
Collapse
|
25
|
Classification of Tea Aromas Using Multi-Nanoparticle Based Chemiresistor Arrays. SENSORS 2019; 19:s19112547. [PMID: 31167394 PMCID: PMC6603602 DOI: 10.3390/s19112547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/03/2022]
Abstract
Nanoparticle based chemical sensor arrays with four types of organo-functionalized gold nanoparticles (AuNPs) were introduced to classify 35 different teas, including black teas, green teas, and herbal teas. Integrated sensor arrays were made using microfabrication methods including photolithography and lift-off processing. Different types of nanoparticle solutions were drop-cast on separate active regions of each sensor chip. Sensor responses, expressed as the ratio of resistance change to baseline resistance (ΔR/R0), were used as input data to discriminate different aromas by statistical analysis using multivariate techniques and machine learning algorithms. With five-fold cross validation, linear discriminant analysis (LDA) gave 99% accuracy for classification of all 35 teas, and 98% and 100% accuracy for separate datasets of herbal teas, and black and green teas, respectively. We find that classification accuracy improves significantly by using multiple types of nanoparticles compared to single type nanoparticle arrays. The results suggest a promising approach to monitor the freshness and quality of tea products.
Collapse
|
26
|
Shao C, Chi J, Chen Z, Cai L, Zhao Y. Superwettable colloidal crystal micropatterns on butterfly wing surface for ultrasensitive detection. J Colloid Interface Sci 2019; 546:122-129. [PMID: 30909117 DOI: 10.1016/j.jcis.2019.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
Abstract
HYPOTHESIS Ultrasensitive detections with enrichment approaches based on hydrophilic-hydrophobic patterns have attracted increasing attention in the early diagnosis and treatment of diseases. However, most of these techniques involve complicated micro-fabrications and chemical modifications to achieve their specific pattern substrate wettability. Hence, the development of a simple and effective approach for the construction of new surface wettability techniques for ultrasensitive detection is with great expectations. EXPERIMENTS We present a simple approach to fabricate the superwettable colloidal crystal (CC) micropatterns on superhydrophobic Morpho butterfly wing surface for the ultrasensitive detection. The superwettable CC micropatterns were easily obtained by infiltrating and self-assembling monodispersed silica colloidal nanoparticles on the plasma treated butterfly wing patterns. The analytes could be enriched onto the hydrophilic CC area due to the wettability difference between the hydrophilic CC area and the superhydrophobic substrate. FINDINGS It was demonstrated that the detection limit of thrombin was down to 1.8 × 10-13 mol L-1 based on the fluorophore-labeled aptamer. Moreover, with two-dimensional position codes of these CC micropatterns for different probes, the multiplex detection capability was also demonstrated with great accuracy. As the elimination of complex instruments and chemical modifications, this proposed platform offers a simple strategy for ultrasensitive multiplex detection in practical applications.
Collapse
Affiliation(s)
- Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junjie Chi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
27
|
Chen Z, Fu F, Yu Y, Wang H, Shang Y, Zhao Y. Cardiomyocytes-Actuated Morpho Butterfly Wings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805431. [PMID: 30589122 DOI: 10.1002/adma.201805431] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Morpho butterflies are famous for their wings' brilliant structural colors arising from periodic nanostructures, which show great potential value for fundamental research and practical applications. Here, a novel cellular mechanical visualizable biosensor formed by assembling engineered cardiac tissues on the Morpho butterfly wings is presented. The assembled cardiomyocytes benefit from the periodic parallel nanoridges of the wings and can recover their autonomic beating ability with guided cellular orientation and good contraction performance. As the beating processes are accompanied by the cardiomyocytes' elongation and contraction, the elastic butterfly wing substrate undergoes the same cycle of deformations, which causes corresponding synchronous shifts in their structural colors and photonic bandgaps for self-reporting of the cell mechanics. It is demonstrated that this self-reporting performance can be further improved by adding oriented carbon nanotubes in the nanoridges of the wings for the culture. In addition, taking advantage of the similar size of the cardiomyocyte and a single Morpho wing scale, the investigation of single-cell-level mechanics can be realized by detecting the optical performance of a single scale. These remarkable properties make these butterfly wings ideal platforms for biomedical research.
Collapse
Affiliation(s)
- Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yixuan Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
28
|
Potyrailo RA, Dieringer J, Cotero V, Lee Y, Go S, Schulmerich M, Malmquist G, Castan A, Gebauer K, Pizzi V. Label-free independent quantitation of viable and non-viable cells using a multivariable multi-resonant sensor. Bioelectrochemistry 2019; 125:97-104. [DOI: 10.1016/j.bioelechem.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
29
|
Porta E, Cogliati S, Francisco M, Roldán MV, Mamana N, Grau R, Pellegri N. Stable Colloidal Copper Nanoparticles Functionalized with Siloxane Groups and Their Microbicidal Activity. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-018-01071-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Welearegay TG, Diouani MF, Österlund L, Ionescu F, Belgacem K, Smadhi H, Khaled S, Kidar A, Cindemir U, Laouini D, Ionescu R. Ligand-Capped Ultrapure Metal Nanoparticle Sensors for the Detection of Cutaneous Leishmaniasis Disease in Exhaled Breath. ACS Sens 2018; 3:2532-2540. [PMID: 30403135 DOI: 10.1021/acssensors.8b00759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human cutaneous leishmaniasis, although designated as one of the most neglected tropical diseases, remains underestimated due to its misdiagnosis. The diagnosis is mainly based on the microscopic detection of amastigote forms, isolation of the parasite, or the detection of Leishmania DNA, in addition to its differential clinical characterization; these tools are not always available in routine daily practice, and they are expensive and time-consuming. Here, we present a simple-to-use, noninvasive approach for human cutaneous leishmaniasis diagnosis, which is based on the analysis of volatile organic compounds in exhaled breath with an array of specifically designed chemical gas sensors. The study was realized on a group of n = 28 volunteers diagnosed with human cutaneous leishmaniasis and a group of n = 32 healthy controls, recruited in various sites from Tunisia, an endemic country of the disease. The classification success rate of human cutaneous leishmaniasis patients achieved by our sensors test was 98.2% accuracy, 96.4% sensitivity, and 100% specificity. Remarkably, one of the sensors, based on CuNPs functionalized with 2-mercaptobenzoxazole, yielded 100% accuracy, 100% sensitivity, and 100% specificity for human cutaneous leishmaniasis discrimination. While AuNPs have been the most extensively used in metal nanoparticle-ligand sensing films for breath sensing, our results demonstrate that chemical sensors based on ligand-capped CuNPs also hold great potential for breath volatile organic compounds detection. Additionally, the chemical analysis of the breath samples with gas chromatography coupled to mass spectrometry identified nine putative breath biomarkers for human cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Tesfalem Geremariam Welearegay
- MINOS-EMaS, Department of Electronics, Electrical and Automatic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Mohamed Fethi Diouani
- Institut Pasteur
de Tunis, LR11IPT03, Laboratory of Epidemiology and Veterinary Microbiology
(LEMV), University Tunis El Manar, Tunis-Belvédère 1002, Tunisia
| | - Lars Österlund
- Molecular Fingerprint AB Sweden, Uppsala 75655, Sweden
- The Ångström Laboratory, Division of Solid State Physics, Department of Engineering Sciences, Uppsala University, Uppsala 75121, Sweden
| | - Florina Ionescu
- MINOS-EMaS, Department of Electronics, Electrical and Automatic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Kamel Belgacem
- Institut Pasteur
de Tunis, LR11IPT03, Laboratory of Epidemiology and Veterinary Microbiology
(LEMV), University Tunis El Manar, Tunis-Belvédère 1002, Tunisia
| | - Hanen Smadhi
- Ibn Nafis Pneumology Department, Abderrahman Mami Hospital, Ariana 2080, Tunisia
| | - Samira Khaled
- Parasitology-Mycology Laboratory, Charles Nicolle Hospital, Rue 9 Avril 1938, Tunis 1006, Tunisia
| | - Abdelhamid Kidar
- Regional Hospital Houssine Bouzaiene of Gafsa, Gafsa Douali 2100, Tunisia
| | - Umut Cindemir
- Molecular Fingerprint AB Sweden, Uppsala 75655, Sweden
- The Ångström Laboratory, Division of Solid State Physics, Department of Engineering Sciences, Uppsala University, Uppsala 75121, Sweden
| | - Dhafer Laouini
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), University Tunis El Manar, Tunis-Belvédère 1002, Tunisia
| | - Radu Ionescu
- MINOS-EMaS, Department of Electronics, Electrical and Automatic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
- The Ångström Laboratory, Division of Solid State Physics, Department of Engineering Sciences, Uppsala University, Uppsala 75121, Sweden
| |
Collapse
|
31
|
Raju M, Nair RR, Debnath S, Chatterjee PB. Affinity Directed Surface Functionalization of Two Different Metal Nanoparticles by a Natural Ionophore: Probing and Removal of Hg2+ and Al3+ Ions from Aqueous Solutions. Inorg Chem 2018; 58:1674-1683. [DOI: 10.1021/acs.inorgchem.8b03241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Raju
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Ratish R. Nair
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Pabitra B. Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| |
Collapse
|
32
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
33
|
Szendrei-Temesi K, Jiménez-Solano A, Lotsch BV. Tracking Molecular Diffusion in One-Dimensional Photonic Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803730. [PMID: 30306641 DOI: 10.1002/adma.201803730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Indexed: 06/08/2023]
Abstract
The intuitive use, inexpensive fabrication, and easy readout of colorimetric sensors, including photonic crystal architectures and Fabry-Pérot interference sensors, have made these devices a successful commercial case, and yet, understanding how the diffusion of analytes occurs throughout the structure is a key ingredient for designing the response of these platforms on demand. Herein, the diffusion of amines in a periodic multilayer system composed of two-dimensional nanosheets and dielectric nanoparticles is tracked by a combination of spectroscopic measurements and theoretical modelling. It is demonstrated that diffusion is controlled by the molecular size, with larger molecules showing larger layer swelling and slower diffusion times, which translates into important sensor characteristics such as signal change and saturation time. Since the approach visualizes the analyte impregnation process in a time- and spatially resolved fashion, it directly relates the macroscopic color readout into microscopic processes occurring at the molecular level, thus opening the door to rational sensor design.
Collapse
Affiliation(s)
- Katalin Szendrei-Temesi
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstrasse 5-13, 81377, Munich, Germany
- Nanosystems Initiative Munich (NIM) and Center for Nanoscience, Schellingstraße 4, 80799, Munich, Germany
| | - Alberto Jiménez-Solano
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstrasse 5-13, 81377, Munich, Germany
- Nanosystems Initiative Munich (NIM) and Center for Nanoscience, Schellingstraße 4, 80799, Munich, Germany
| |
Collapse
|
34
|
Guo Y, Sun Y, Wang Y, He H, Zhu Y. Thiol- and alkyne-functionalized copper nanoparticles as electrocatalysts for bisphenol A (BPA) oxidation. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4114-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Broza YY, Vishinkin R, Barash O, Nakhleh MK, Haick H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem Soc Rev 2018; 47:4781-4859. [PMID: 29888356 DOI: 10.1039/c8cs00317c] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article is an overview of the present and ongoing developments in the field of nanomaterial-based sensors for enabling fast, relatively inexpensive and minimally (or non-) invasive diagnostics of health conditions with follow-up by detecting volatile organic compounds (VOCs) excreted from one or combination of human body fluids and tissues (e.g., blood, urine, breath, skin). Part of the review provides a didactic examination of the concepts and approaches related to emerging sensing materials and transduction techniques linked with the VOC-based non-invasive medical evaluations. We also present and discuss diverse characteristics of these innovative sensors, such as their mode of operation, sensitivity, selectivity and response time, as well as the major approaches proposed for enhancing their ability as hybrid sensors to afford multidimensional sensing and information-based sensing. The other parts of the review give an updated compilation of the past and currently available VOC-based sensors for disease diagnostics. This compilation summarizes all VOCs identified in relation to sickness and sampling origin that links these data with advanced nanomaterial-based sensing technologies. Both strength and pitfalls are discussed and criticized, particularly from the perspective of the information and communication era. Further ideas regarding improvement of sensors, sensor arrays, sensing devices and the proposed workflow are also included.
Collapse
Affiliation(s)
- Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | | | | | | | | |
Collapse
|
36
|
Cai P, Yi X, Song H, Lv Y. Cataluminescence sensing of carbon disulfide based on CeO 2 hierarchical hollow microspheres. Anal Bioanal Chem 2018; 410:5113-5122. [PMID: 29943265 DOI: 10.1007/s00216-018-1141-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 01/30/2023]
Abstract
Material morphology-dependent cataluminescence (CTL) sensing characteristic and application are presented in this work. Hierarchical hollow microspheres CeO2 were synthesized via the hydrothermal reaction of glucose and N, N-dimethyl-formamide (Glu-DMF). SEM, XRD, TEM, HRTEM and BET were used to characterize the prepared CeO2 materials. Compared with CeO2 cubics (CeO2 Cubs), CeO2 hierarchical hollow microspheres (CeO2 HMs) show an enhanced CTL response to carbon disulfide. The response and recovery times of CeO2 HMs-based CTL sensor towards carbon disulfide are about 8 s and 20 s, respectively. CeO2 HMs exhibits a linear CTL response to carbon disulfide in the concentration range of 0.50~10 μg•mL-1 with an excellent sensitivity and selectivity. These results suggest that CeO2 HMs will be a highly promising CTL sensing material for the detection and monitoring carbon disulfide. Graphical abstract CeO2 hierarchical hollow microspheres (CeO2 HMs) were synthesized via the hydrothermal reaction of glucose and N, N-dimethyl-formamide (Glu-DMF). Meanwhile, the prepared CeO2 HMs shows commendable CTL response towards carbon disulfide. Due to the excellent analytical performance of designed CeO2 HMs-based sensor for carbon disulfide, it has potential application value in various locations.
Collapse
Affiliation(s)
- Pingyang Cai
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
- Chengdu Hydrology Team, Sichuan Provincial Bureau of Geology, Chengdu, 610072, Sichuan, China
| | - Xiaofeng Yi
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Yi Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
| |
Collapse
|
37
|
Kong L, Yang L, Xin CQ, Zhu SJ, Zhang HH, Zhang MZ, Yang JX, Li L, Zhou HP, Tian YP. A novel flurophore-cyano-carboxylic-Ag microhybrid: Enhanced two photon absorption for two-photon photothermal therapy of HeLa cancer cells by targeting mitochondria. Biosens Bioelectron 2018; 108:14-19. [PMID: 29494883 DOI: 10.1016/j.bios.2018.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/26/2022]
Abstract
In this study, a novel two-photon photothermal therapy (TP-PTT) agent based on an organic-metal microhybrid with surface Plasmon resonance (SPR) enhanced two-photon absorption (TPA) characteristic was designed and synthesized using a fluorescent cyano-carboxylic derivative 2-cyano-3-(9-ethyl-9H-carbazol-3-yl) -acrylic acid (abbreviated as CECZA) and silver nanoparticles through self-assembly process induced by the interfacial coordination interactions between the O/N atom of CECZA and Ag+ion at the surface of Ag nanoparticles. The coordination interactions caused electron transfer from the Ag nanoparticles to CECZA molecules at the excited state, resulting in a decreased fluorescence quantum yield. The interfacial coordination interactions also enhanced the nonlinear optical properties, including 13 times increase in the TPA cross-section (δ). The decreased fluorescence quantum yield and increased two photon absorption caused by the SPR effect led excellent two-photon photothermal conversion, which was beneficial for the TP-PTT effect on HeLa cancer cells.
Collapse
Affiliation(s)
- Lin Kong
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China.
| | - Li Yang
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Chen-Qi Xin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Shu-Juan Zhu
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Hui-Hui Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Ming-Zhu Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Jia-Xiang Yang
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Hong-Ping Zhou
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Yu-Peng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| |
Collapse
|
38
|
Scanlon MD, Smirnov E, Stockmann TJ, Peljo P. Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics. Chem Rev 2018; 118:3722-3751. [DOI: 10.1021/acs.chemrev.7b00595] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Micheál D. Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Evgeny Smirnov
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - T. Jane Stockmann
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, Sorbonne Paris Cité, Paris Diderot University, 15 Rue J.A. Baïf, 75013 Paris, France
| | - Pekka Peljo
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
39
|
Xu S, Bai X, Wang L. Exploration of photothermal sensors based on photothermally responsive materials: a brief review. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00767a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photothermal sensors have emerged as a new type of sensor platform in recent decades and this brief review has summarized different types of photothermally responsive materials and their applications in various fields.
Collapse
Affiliation(s)
- Suying Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xilin Bai
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|