1
|
Yang X, Wang T, Li Y, Hu Y, Wang Y, Xie W. Long-lived carriers-promoted photocatalytic deuteration of halides with D 2O as the deuterium source over Cu doped quantum dots. J Colloid Interface Sci 2025; 678:191-199. [PMID: 39293363 DOI: 10.1016/j.jcis.2024.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
Deuterium labeling is a highly valuable yet challenging subject of research in various scientific fields. Conventional deuteration methods often involve harsh reaction conditions and suffer from limited reactivity and selectivity. Herein, we report a visible light-driven C-X (X = halogen) to C-D (D = deuterium) exchange strategy over copper-doped cadmium sulfide quantum dots (Cu-CdS QDs) under mild conditions, eliminating the need for noble metal catalysts and expensive deuterium sources. The conversion of aryl halides into deuterated products using Cu-CdS QDs reaches up to 99%, which is four times higher than that achieved using pristine CdS QDs. The substantial enhancement in the photocatalytic activity of the QDs can be primarily attributed to the generation of long-lived charge carriers (approximately 6 μs) induced by Cu doping. Mechanistic studies reveal that the Cu dopants considerably retard the recombination of photoinduced carriers by creating intermediate energy levels that serve as hole trapping centers in CdS QDs, thereby improving the electron utilization efficiency in energetically demanding photoreduction reactions. Additionally, the introduction of Cu increases the energy offset between the conduction band of CdS QDs and molecular acceptors, facilitating the electron transfer process. Upon visible light irradiation, a series of aryl halides can be efficiently converted into the desired deuterated compounds using D2O as the deuterium source. This work demonstrates that regulating charge carrier dynamics in ultrasmall QD-based photocatalysts is a promising strategy for promoting organic transformations.
Collapse
Affiliation(s)
- Xian Yang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Teng Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yonglong Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanfang Hu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Du Y, Wang P, Fang Y, Zhu M. Asymmetric Charge Distribution in Atomically Precise Metal Nanoclusters for Boosted CO 2 Reduction Catalysis. CHEMSUSCHEM 2024:e202402085. [PMID: 39472281 DOI: 10.1002/cssc.202402085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Recently, atomically precise metal nanoclusters (NCs) have been widely applied in CO2 reduction reaction (CO2RR), achieving exciting activity and selectivity and revealing structure-performance correlation. However, at present, the efficiency of CO2RR is still unsatisfactory and cannot meet the requirements of practical applications. One of the main reasons is the difficulty in CO2 activation due to the chemical inertness of CO2. Constructing symmetry-breaking active sites is regarded as an effective strategy to promote CO2 activation by modulating electronic and geometric structure of CO2 molecule. In addition, in the subsequent CO2RR process, asymmetric charge distributed sites can break the charge balance in adjacent adsorbed C1 intermediates and suppress electrostatic repulsion between dipoles, benefiting for C-C coupling to generate C2+ products. Although compared to single atoms, metal nanoparticles, and inorganic materials the research on the construction of asymmetric catalytic sites in metal NCs is in a newly-developing stage, the precision, adjustability and diversity of metal NCs structure provide many possibilities to build asymmetric sites. This review summarizes several strategies of construction asymmetric charge distribution in metal NCs for boosting CO2RR, concludes the mechanism investigation paradigm of NCs-based catalysts, and proposes the challenges and opportunities of NCs catalysis.
Collapse
Affiliation(s)
- Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Pei Wang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yi Fang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
3
|
Lim SY, Younis SA, Kim KH, Lee J. The potential utility of dendritic fibrous nanosilica as an adsorbent and a catalyst in carbon capture, utilization, and storage. Chem Soc Rev 2024; 53:9976-10011. [PMID: 39282873 DOI: 10.1039/d4cs00564c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Anthropogenic emissions of greenhouse gases (GHG; e.g., CO2) are regarded as the most critical cause of the current global climate crisis. To combat this issue, a plethora of CO2 capture, utilization, and storage (CCUS) technologies have been proposed and developed based on a number of technical principles (e.g., post-combustion capture, chemical looping, and catalytic conversion). In this light, the potential utility of dendritic fibrous nanosilica (DFNS) materials is recognized for specific CCUS applications (such as adsorptive capture of CO2 and its catalytic conversion into a list of value-added products (e.g., methane, carbon monoxide, and cyclic carbonates)) with the highly tunable properties (e.g., high surface area, pore volume, multifunctional surface, and open pore structure). This review has been organized to offer a comprehensive evaluation of the approaches required for tuning the textural/morphological/surface properties of DFNS (based on multiple synthesis and modification scenarios) toward CCUS applications. It further discusses the effects of such approaches on the properties of DFNS materials in relation to their CCUS performance. This review is thus expected to help develop and implement advanced strategies for DFNS-based CCUS technologies.
Collapse
Affiliation(s)
- Sam Yeol Lim
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea.
- School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
4
|
Zhang X, Yu X, Mendes RG, Matvija P, Melcherts AEM, Sun C, Ye X, Weckhuysen BM, Monai M. Highly Dispersed ZnO Sites in a ZnO/ZrO 2 Catalyst Promote Carbon Dioxide-to-Methanol Conversion. Angew Chem Int Ed Engl 2024:e202416899. [PMID: 39377208 DOI: 10.1002/anie.202416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
ZnO/ZrO2 catalysts have shown better activity in the CO2 hydrogenation to methanol compared with single component counterparts, but the interaction between ZnO and ZrO2 is still poorly understood. In particular, the effect of the ZrO2 support phase (tetragonal vs. monoclinic) was not systematically explored. Here, we have synthesized ZnO/ZrO2 catalysts supported on tetragonal ZrO2 (ZnO/ZrO2-t) and monoclinic ZrO2 (ZnO/ZrO2-m), which resulted in the formation of different ZnOx species, consisting of sub-nanometer ZnO moieties and large-sized ZnO particles, respectively. ZnO/ZrO2-t exhibited a higher methanol selectivity (81 vs. 39 %) and methanol yield (1.25 vs. 0.67 mmol g-1 h-1) compared with ZnO/ZrO2-m. The difference in performance was attributed to the redox state and degree of dispersion of Zn, based on spectroscopy and microscopy results. ZnO/ZrO2-t had a high density of ZnOx-ZrOy sites, which favored the formation of active HCOO* species and enhanced the yield and selectivity of methanol along the formate pathway. Such ZnO clusters were further dispersed on ZrO2-t during catalysis, while larger ZnO particles on ZnO/ZrO2-m remained stable throughout the reaction. This study shows that the phase of ZrO2 supports can be used to control the dispersion of ZnO and the catalyst surface chemistry, and lead to enhanced catalytic performance.
Collapse
Affiliation(s)
- Xibo Zhang
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- State Key Laboratory of Physical Chemistry of Solid Surfaces & Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang Yu
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Rafael G Mendes
- Soft Condensed Matter Group, Debye Institute for Nanomaterials Science, Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
| | - Peter Matvija
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000 Praha 8, Czech Republic
| | - Angela E M Melcherts
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Chunning Sun
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Xinwei Ye
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Matteo Monai
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
5
|
Aktary M, Alghamdi HS, Ajeebi AM, AlZahrani AS, Sanhoob MA, Aziz MA, Nasiruzzaman Shaikh M. Hydrogenation of CO 2 into Value-added Chemicals Using Solid-Supported Catalysts. Chem Asian J 2024; 19:e202301007. [PMID: 38311592 DOI: 10.1002/asia.202301007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Reducing CO2 emissions is an urgent global priority. In this context, several mitigation strategies, including CO2 tax and stringent legislation, have been adopted to halt the deterioration of the natural environment. Also, carbon recycling procedures undoubtedly help reduce net emissions into the atmosphere, enhancing sustainability. Utilizing Earth's abundant CO2 to produce high-potential green chemicals and light fuels opens new avenues for the chemical industry. In this context, many attempts have been devoted to converting CO2 as a feedstock into various value-added chemicals, such as CH4, lower methanol, light olefins, gasoline, and higher hydrocarbons, for numerous applications involving various catalytic reactions. Although several CO2-conversion methods have been used, including electrochemical, photochemical, and biological approaches, the hydrogenation method allows the reaction to be tuned to produce the targeted compound without significantly altering infrastructure. This review discusses the numerous hydrogenation routes and their challenges, such as catalyst design, operation, and the combined art of structure-activity relationships for the various product formations.
Collapse
Affiliation(s)
- Mahbuba Aktary
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Huda S Alghamdi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Afnan M Ajeebi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Atif S AlZahrani
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Mohammed A Sanhoob
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
6
|
Verma R, Singhvi C, Venkatesh A, Polshettiwar V. Defects tune the acidic strength of amorphous aluminosilicates. Nat Commun 2024; 15:6899. [PMID: 39134554 PMCID: PMC11319355 DOI: 10.1038/s41467-024-51233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Crystalline zeolites have high acidity but limited utility due to microporosity, whereas mesoporous amorphous aluminosilicates offer better porosity but lack sufficient acidity. In this work, we investigated defect engineering to fine-tune the acidity of amorphous acidic aluminosilicates (AAS). Here we introduced oxygen vacancies in AAS to synthesize defective acidic aluminosilicates (D-AAS). 1H, 27Al, and 17O solid-state nuclear magnetic resonance (NMR) studies indicated that defects induced localized structural changes around the acidic sites, thereby modifying their acidity. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy studies substantiated that oxygen vacancies alter the chemical environment of Brønsted acidic sites of AAS. The effect of defect creation in AAS on its acidity and catalytic behavior was demonstrated using four different acid-catalyzed reactions namely, styrene oxide ring opening, vesidryl synthesis, Friedel-Crafts alkylation, and jasminaldehyde synthesis. The defects played a role in activating reactants during AAS-catalyzed reactions, enhancing the overall catalytic process. This was supported by in-situ FTIR, which provided insights into the molecular-level reaction mechanism and the role of defects in reactant activation. This study demonstrates defect engineering as a promising approach to fine-tune acidity in amorphous aluminosilicates, bridging the porosity and acidity gaps between mesoporous amorphous aluminosilicates and crystalline zeolites.
Collapse
Affiliation(s)
- Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Charvi Singhvi
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA.
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India.
| |
Collapse
|
7
|
Lasemi N, Wicht T, Bernardi J, Liedl G, Rupprechter G. Defect-Rich CuZn Nanoparticles for Model Catalysis Produced by Femtosecond Laser Ablation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38163-38176. [PMID: 38934369 DOI: 10.1021/acsami.4c07766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Femtosecond laser ablation of Cu0.70Zn0.30 targets in ethanol led to the formation of periodic surface nanostructures and crystalline CuZn alloy nanoparticles with defects, low-coordinated surface sites, and, controlled by the applied laser fluence, different sizes and elemental composition. The Cu/Zn ratio of the nanoparticles was determined by energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and selected area electron diffraction. The CuZn nanoparticles were about 2-3 nm in size, and Cu-rich, varying between 70 and 95%. Increasing the laser fluence from 1.6 to 3.2 J cm-2 yielded larger particles, more stacking fault defects, and repeated nanotwinning, as evident from high-resolution transmission electron microscopy, aided by (inverse) fast Fourier transform analysis. This is due to the higher plasma temperature, leading to increased random collisions/diffusion of primary nanoparticles and their incomplete ordering due to immediate solidification typical of ultrashort pulses. The femtosecond laser-synthesized often nanotwinned CuZn nanoparticles were supported on highly oriented pyrolytic graphite and applied for ethylene hydrogenation, demonstrating their promising potential as model catalysts. Nanoparticles produced at 3.2 J cm-2 exhibited lower catalytic activity than those made at 2.7 J cm-2. Presumably, agglomeration/aggregation of especially 2-3 nm sized nanoparticles, as observed by postreaction analysis, resulted in a decrease in the surface area to volume ratio and thus in the number of low-coordinated active sites.
Collapse
Affiliation(s)
- Niusha Lasemi
- Institute of Materials Chemistry, TU Wien, 1060 Wien, Austria
| | - Thomas Wicht
- Institute of Materials Chemistry, TU Wien, 1060 Wien, Austria
| | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, 1020 Wien, Austria
| | - Gerhard Liedl
- Institute of Production Engineering and Photonic Technologies, TU Wien, 1060 Wien, Austria
| | | |
Collapse
|
8
|
Tyczkowski J, Kierzkowska-Pawlak H. Classical Concept of Semiconductor Heterojunctions in the Approach to Nanohybrid Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37339-37345. [PMID: 38990081 DOI: 10.1021/acsami.4c08595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Recalling the well-established theory of heterojunction formation between two different semiconductors or a semiconductor and a metal can elucidate the remarkable catalytic properties of nanohybrid systems employed in thermal catalysis. Upon the creation of heterojunctions, involved nanoparticles or nanometer-sized thin films, as a result of their dimensions, may become entirely filled with space charges generated from the development of depletion or accumulation regions. This phenomenon dictates the nature of catalytic sites and consequently affects the catalytic activity of such nanohybrids. The following perspective presents this concept and examples of experimental results that substantiate its validity, along with an extremely effective tool, cold plasma deposition, for designing and realizing in a controlled manner the structure of nanohybrids with heterojunctions. This approach will undoubtedly broaden the view of the contemporary "alchemy" of nanocatalysts.
Collapse
Affiliation(s)
- Jacek Tyczkowski
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 93-005 Lodz, Poland
| | - Hanna Kierzkowska-Pawlak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 93-005 Lodz, Poland
| |
Collapse
|
9
|
Martínez-Alonso C, LLorca J. Applicability of the d-Band Model to Predict the Influence of Elastic Strains on the Adsorption Energy of Different Adsorbates onto Pt and PtO 2 Surfaces. ACS OMEGA 2024; 9:29884-29895. [PMID: 39005783 PMCID: PMC11238222 DOI: 10.1021/acsomega.4c03830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
The influence of elastic strains on the adsorption processes of seven adsorbates (H, C, N, O, CO, NO, and H) onto the surface of Pt(111) and PtO2 (110) has been investigated using density functional theory (DFT) simulations. The total adsorption energy was decomposed into mechanical and electronic contributions. Our results indicate that elastic strain in metals affects the adsorption energy by modifying the electronic structure of the surface rather than changing the physical space where the atoms reside after adsorption. In fact, the mechanical contribution to the adsorption energy in Pt was negligible compared to the electronic interaction and independent of the deformation. The mechanical contribution in the case of PtO2 was also independent of the applied strain, but its magnitude was slightly higher due to the ionic bonding between Pt and O atoms in the slab. The variation of the electronic contribution to the adsorption energy in Pt and PtO2 followed the predictions of the d-band model for all adsorbates, expanding its applicability to different adsorbates onto the same surface and to oxides.
Collapse
Affiliation(s)
- Carmen Martínez-Alonso
- IMDEA Materials Institute, C/Eric Kandel 2, Getafe, 28906 Madrid, Spain
- Department of Inorganic Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier LLorca
- IMDEA Materials Institute, C/Eric Kandel 2, Getafe, 28906 Madrid, Spain
- Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid, Spain
| |
Collapse
|
10
|
Nemamcha HE, Vu NN, Tran DS, Boisvert C, Nguyen DD, Nguyen-Tri P. Recent progression in MXene-based catalysts for emerging photocatalytic applications of CO 2 reduction and H 2 production: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172816. [PMID: 38679090 DOI: 10.1016/j.scitotenv.2024.172816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The development of advanced materials for efficient photocatalytic H2 production and CO2 reduction is highly recommended for addressing environmental issues and producing clean energy sources. Specifically, MXenes have emerged as two-dimensional (2D) materials extensively used as high-performance cocatalysts in photocatalyst systems owing to their outstanding features of structure and properties such as high conductivity, large specific surface area, and abundant active sites. Nevertheless, there is a lack of deep and systematic studies concerning the application of these emerging materials for CO2 reduction reaction (CRR) and H2 production (HER). This review first outlines the essential features of MXenes, encompassing the synthesis methods, composition, surface terminations, and electronic properties, which make them highly active as cocatalysts. It then examines the recent progress in MXene-based photocatalysts, emphasizing the synergy achieved by coupling MXenes as co-catalysts with semiconductors, utilizing MXenes as a support for the consistent growth of photocatalysts, leading to finely dispersed nanoparticles, and exploiting MXene as exceptional precursors for creating MXene/metal oxide photocomposite. The roles of engineering surface terminations of MXene cocatalysts, MXene quantum dots (QDs), and distinctive morphologies in MXenes-based photocatalyst systems to enhance photocatalytic activity for both HER and CRR have been explored both experimentally and theoretically using DFT calculations. Challenges and prospects for MXene-based photocatalysts are also addressed. Finally, suggestions for further research and development of effective and economical MXenes/semiconductors strategies are proposed. This comprehensive review article serves as a valuable reference for researchers for applying MXenes in photocatalysis.
Collapse
Affiliation(s)
- Houssam-Eddine Nemamcha
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - D Son Tran
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
| |
Collapse
|
11
|
Liu J, Zhang Y, Peng C. Recent Advances Hydrogenation of Carbon Dioxide to Light Olefins over Iron-Based Catalysts via the Fischer-Tropsch Synthesis. ACS OMEGA 2024; 9:25610-25624. [PMID: 38911759 PMCID: PMC11191082 DOI: 10.1021/acsomega.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
The massive burning of fossil fuels has been important for economic and social development, but the increase in the CO2 concentration has seriously affected environmental sustainability. In industrial and agricultural production, light olefins are one of the most important feedstocks. Therefore, the preparation of light olefins by CO2 hydrogenation has been intensively studied, especially for the development of efficient catalysts and for the application in industrial production. Fe-based catalysts are widely used in Fischer-Tropsch synthesis due to their high stability and activity, and they also exhibit excellent catalytic CO2 hydrogenation to light olefins. This paper systematically summarizes and analyzes the reaction mechanism of Fe-based catalysts, alkali and transition metal modifications, interactions between active sites and carriers, the synthesis process, and the effect of the byproduct H2O on catalyst performance. Meanwhile, the challenges to the development of CO2 hydrogenation for light olefin synthesis are presented, and future development opportunities are envisioned.
Collapse
Affiliation(s)
- Jiangtao Liu
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| | - Yongchun Zhang
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| | - Chong Peng
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| |
Collapse
|
12
|
Jing R, Lu X, Wang J, Xiong J, Qiao Y, Zhang R, Yu Z. CeO 2-Based Frustrated Lewis Pairs via Defective Engineering: Formation Theory, Site Characterization, and Small Molecule Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310926. [PMID: 38239093 DOI: 10.1002/smll.202310926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Indexed: 06/27/2024]
Abstract
Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.
Collapse
Affiliation(s)
- Run Jing
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| | - Jingfei Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
13
|
Liu P, Han J, Chen Y, Yu H, Zhou X, Zhang W. Binding Strengths and Orientations in CO 2 Adsorption on Cationic Scandium Oxides: Governing Factor Revealed by a Combined Infrared Spectroscopy and Theoretical Study. J Phys Chem A 2024; 128:3007-3014. [PMID: 38581407 DOI: 10.1021/acs.jpca.4c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Carbon dioxide (CO2) adsorption is a critical step to curbing carbon emissions from fossil fuel combustion. Among various options, transition metal oxides have received extensive attention as promising CO2 adsorbents due to their affordability and sustainability for large-scale use. Here, the nature of binding interactions between CO2 molecules and cationic scandium oxides of different sizes, i.e., ScO+, Sc2O2+, and Sc3O4+, is investigated by mass-selective infrared photodissociation spectroscopy combined with quantum chemical calculations. The well-accepted electrostatic considerations failed to provide explanations for the trend in the binding strengths and variations in the binding orientations between CO2 and metal sites of cationic scandium oxides. The importance of orbital interactions in the driving forces for CO2 adsorption on cationic scandium oxides was revealed by energy decomposition analyses. A molecular surface property, known as the local electron attachment energy, is introduced to elucidate the binding affinity and orientation-specific reactivity of cationic scandium oxides upon the CO2 attachment. This study not only reveals the governing factor in the binding behaviors of CO2 adsorption on cationic scandium oxides but also serves as an archetype for predicting and rationalizing favorable binding sites and orientations in extended surface-adsorbate systems.
Collapse
Affiliation(s)
- Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jia Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yan Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Haili Yu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
14
|
Hu L, Shi W, Li G, Yang Y, Nie J. Utilizing rubidium chloride as an effective and stable interface modification layer for high-efficiency solar cells. APPLIED OPTICS 2024; 63:1702-1709. [PMID: 38437269 DOI: 10.1364/ao.514424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/27/2024] [Indexed: 03/06/2024]
Abstract
The presence of interface defects between the perovskite layer and the underlying substrate has a significant impact on the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). S n O 2 thin films are employed in PSCs as electron transport layers to achieve high PCE. However, the significant lattice mismatch between S n O 2 and the perovskite material leads to a large number of uncoordinated defects at the interface between perovskite and substrate, resulting in recombination losses at the interface. In this study, rubidium chloride (RbCl) was introduced as the interface modification layer between the perovskite layer and the S n O 2 electron transport layer to enhance the PCE of PSCs. The research showed that the RbCl interface modification layer effectively passivated the under-coordinated defects of Sn ions and optimized the energy level alignment between the perovskite layer and the S n O 2 film. Moreover, the fabricated PSCs exhibited an open-circuit voltage of 1.11 V and a power conversion efficiency of 21.64%. Furthermore, the device maintained 80% of initial efficiency after storage for 30 days in an inert gas environment and 60% of the value after storage for 30 days in ambient air.
Collapse
|
15
|
Miyazaki R, Belthle KS, Tüysüz H, Foppa L, Scheffler M. Materials Genes of CO 2 Hydrogenation on Supported Cobalt Catalysts: An Artificial Intelligence Approach Integrating Theoretical and Experimental Data. J Am Chem Soc 2024; 146:5433-5444. [PMID: 38374731 PMCID: PMC10910553 DOI: 10.1021/jacs.3c12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Designing materials for catalysis is challenging because the performance is governed by an intricate interplay of various multiscale phenomena, such as the chemical reactions on surfaces and the materials' restructuring during the catalytic process. In the case of supported catalysts, the role of the support material can be also crucial. Here, we address this intricacy challenge by a symbolic-regression artificial intelligence (AI) approach. We identify the key physicochemical parameters correlated with the measured performance, out of many offered candidate parameters characterizing the materials, reaction environment, and possibly relevant underlying phenomena. Importantly, these parameters are obtained by both experiments and ab initio simulations. The identified key parameters might be called "materials genes", in analogy to genes in biology: they correlate with the property or function of interest, but the explicit physical relationship is not (necessarily) known. To demonstrate the approach, we investigate the CO2 hydrogenation catalyzed by cobalt nanoparticles supported on silica. Crucially, the silica support is modified with the additive metals magnesium, calcium, titanium, aluminum, or zirconium, which results in six materials with significantly different performances. These systems mimic hydrothermal vents, which might have produced the first organic molecules on Earth. The key parameters correlated with the CH3OH selectivity reflect the reducibility of cobalt species, the adsorption strength of reaction intermediates, and the chemical nature of the additive metal. By using an AI model trained on basic elemental properties of the additive metals (e.g., ionization potential) as physicochemical parameters, new additives are suggested. The predicted CH3OH selectivity of cobalt catalysts supported on silica modified with vanadium and zinc is confirmed by new experiments.
Collapse
Affiliation(s)
- Ray Miyazaki
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, Berlin 14195, Germany
| | - Kendra S Belthle
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Harun Tüysüz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Lucas Foppa
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, Berlin 14195, Germany
| | - Matthias Scheffler
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
16
|
Rhimi B, Zhou M, Yan Z, Cai X, Jiang Z. Cu-Based Materials for Enhanced C 2+ Product Selectivity in Photo-/Electro-Catalytic CO 2 Reduction: Challenges and Prospects. NANO-MICRO LETTERS 2024; 16:64. [PMID: 38175306 PMCID: PMC10766933 DOI: 10.1007/s40820-023-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO2, Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C2+ compounds through C-C coupling process. Herein, the basic principles of photocatalytic CO2 reduction reactions (PCO2RR) and electrocatalytic CO2 reduction reaction (ECO2RR) and the pathways for the generation C2+ products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO2RR and ECO2RR is emphasized. Through a review of recent studies on PCO2RR and ECO2RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C2+ products. Finally, the opportunities and challenges associated with Cu-based materials in the CO2 catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO2 reduction processes in the future.
Collapse
Affiliation(s)
- Baker Rhimi
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zaoxue Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China.
| | - Zhifeng Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
17
|
Hu Q, Huo Q, Qi S, Deng X, Zhuang J, Yu J, Li X, Zhou W, Lv M, Chen X, Wang X, Feng C, Yang H, He C. Unconventional Synthesis of Hierarchically Twinned Copper as Efficient Electrocatalyst for Nitrate-Ammonia Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311375. [PMID: 38085673 DOI: 10.1002/adma.202311375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Twin boundary (TB) engineering provides exciting opportunities to tune the performance levels of metal-based electrocatalysts. However, the controllable construction of TB greatly relies on surfactants, blocking active sites, and electron transfer by surfactants. Here, a surfactant-free and facile strategy is proposed for synthesizing copper (Cu) nanocatalysts with dense hierarchical TB networks (HTBs) by the rapid thermal reductions in metastable CuO nanosheets in H2 . As revealed by in situ transmission electron microscopy, the formation of HTBs is associated with the fragmentation of nanosheets in different directions to generate abundant crystal nuclei and subsequently unconventional crystal growth through the collision and coalescence of nuclei. Impressively, the HTBs endow Cu with excellent electrocatalytic performance for direct nitrate-ammonia conversion, superior to that of Cu with a single-oriented TB and without TB. It is discovered that the HTBs induce the formation of compressive strains, thereby creating a synergistic effect of TBs and strains to efficiently tune the binding energies of Cu with nitrogen intermediates (i.e., NO2 *) and thus promote the tandem reaction process of NO3 - -to-NO2 - and subsequent NO2 - -to-NH3 electrocatalysis. This work demonstrates the crucial role of HTBs for boosting electrocatalysis via the synergistic effect of TBs and strains.
Collapse
Affiliation(s)
- Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qihua Huo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Shuai Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xin Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiapeng Zhuang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiaying Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xuan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Weiliang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Miaoyuan Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xinbao Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xiaodeng Wang
- School of Electronic Information and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing, 400030, P. R. China
| | - Chao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
18
|
Zhu X, Xu H, Liu J, Bi C, Tian J, Zhong K, Wang B, Ding P, Wang X, Chu PK, Xu H, Ding J. Stacking Engineering of Heterojunctions in Half-Metallic Carbon Nitride for Efficient CO 2 Photoreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2307192. [PMID: 38072660 PMCID: PMC10754085 DOI: 10.1002/advs.202307192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Enhancing charge separation in semiconductor photocatalysts is a major challenge for efficient artificial photosynthesis. Herein, a compact heterojunction is designed by embedding half-metallic C(CN)3 (hm-CN) hydrothermally in BiOBr (BOB) as the backbone. The interface between hm-CN and BOB is seamless and formed by covalent bonding to facilitate the transmission of photoinduced electrons from BOB to hm-CN. The transient photocurrents and electrochemical impedance spectra reveal that the modified composite catalyst exhibits a larger electron transfer rate. The photocatalytic activity of hm-CN/BOB increases significantly as indicated by a CO yield that is about four times higher than that of individual components. Density-functional theory calculations verify that the heterojunction improves electron transport and decreases the reaction energy barrier, thus promoting the overall photocatalytic CO2 conversion efficiency. The half-metal nitride coupled semiconductor heterojunctions might have large potential in artificial photosynthesis and related applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Hangmin Xu
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Jinyuan Liu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077P. R. China
| | - Chuanzhou Bi
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Jianfeng Tian
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Kang Zhong
- School of the Environment and Safety Engineering, Institute for Energy ResearchJiangsu UniversityZhenjiang212013P. R. China
| | - Bin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077P. R. China
- School of the Environment and Safety Engineering, Institute for Energy ResearchJiangsu UniversityZhenjiang212013P. R. China
| | - Penghui Ding
- Department of Science and TechnologyLinköping UniversityNorrköpingSE‐601 74Sweden
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077P. R. China
| | - Hui Xu
- School of the Environment and Safety Engineering, Institute for Energy ResearchJiangsu UniversityZhenjiang212013P. R. China
| | - Jianning Ding
- College of Environmental Science and Engineering, Institute of Technology for Carbon NeutralizationYangzhou UniversityYangzhou225009P. R. China
| |
Collapse
|
19
|
Yin H, Sun Z, Liu K, Wibowo AA, Langley J, Zhang C, Saji SE, Kremer F, Golberg D, Nguyen HT, Cox N, Yin Z. Defect engineering enhances plasmonic-hot electrons exploitation for CO 2 reduction over polymeric catalysts. NANOSCALE HORIZONS 2023; 8:1695-1699. [PMID: 37698845 DOI: 10.1039/d3nh00348e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Defect sites present on the surface of catalysts serve a crucial role in different catalytic processes. Herein, we have investigated defect engineering within a hybrid system composed of "soft" polymer catalysts and "hard" metal nanoparticles, employing the disparity in their thermal expansions. Electron paramagnetic resonance, X-ray photoelectron spectroscopy, and mechanistic studies together reveal the formation of new abundant defects and their synergistic integrability with plasmonic enhancement within the hybrid catalyst. These active defects, co-localized with plasmonic Ag nanoparticles, promote the utilization efficiency of hot electrons generated by local plasmons, thereby enhancing the CO2 photoreduction activity while maintaining the high catalytic selectivity.
Collapse
Affiliation(s)
- Hang Yin
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
- Institute for Climate, Energy & Disaster Solutions, Australian National University, ACT 2601, Australia
| | - Zhehao Sun
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Kaili Liu
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Ary Anggara Wibowo
- School of Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julien Langley
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Chao Zhang
- Centre for Materials Science and School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Sandra E Saji
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Felipe Kremer
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT 2601, Australia
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Hieu T Nguyen
- School of Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
- Institute for Climate, Energy & Disaster Solutions, Australian National University, ACT 2601, Australia
| |
Collapse
|
20
|
Yang G, Yang W, Gu H, Fu Y, Wang B, Cai H, Xia J, Zhang N, Liang C, Xing G, Yang S, Chen Y, Huang W. Perovskite-Solar-Cell-Powered Integrated Fuel Conversion and Energy-Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300383. [PMID: 36906920 DOI: 10.1002/adma.202300383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Metal halide hybrid perovskite solar cells (PSCs) have received considerable attention over the past decade owing to their potential for low-cost, solution-processable, earth-abundant, and high-performance superiority, increasing power conversion efficiencies of up to 25.7%. Solar energy conversion into electricity is highly efficient and sustainable, but direct utilization, storage, and poor energy diversity are difficult to achieve, resulting in a potential waste of resources. Considering its convenience and feasibility, converting solar energy into chemical fuels is regarded as a promising pathway for boosting energy diversity and expanding its utilization. In addition, the energy conversion-storage integrated system can efficiently sequentially capture, convert, and store energy in electrochemical energy storage devices. However, a comprehensive overview focusing on PSC-self-driven integrated devices with a discussion of their development and limitations remains lacking. Here, focus is on the development of representative configurations of emerging PSC-based photo-electrochemical devices including self-charging power packs, unassisted solar water splitting/CO2 reduction. The advanced progresses in this field, including configuration design, key parameters, working principles, integration strategies, electrode materials, and their performance evaluations are also summarized. Finally, scientific challenges and future perspectives for ongoing research in this field are presented.
Collapse
Affiliation(s)
- Gege Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Wenhan Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Ying Fu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Junmin Xia
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Nan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330000, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710000, P. R. China
| |
Collapse
|
21
|
Manna K, Kumar R, Sundaresan A, Natarajan S. Fixing CO 2 under Atmospheric Conditions and Dual Functional Heterogeneous Catalysis Employing Cu MOFs: Polymorphism, Single-Crystal-to-Single-Crystal (SCSC) Transformation and Magnetic Studies. Inorg Chem 2023; 62:13738-13756. [PMID: 37586090 DOI: 10.1021/acs.inorgchem.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
New copper compounds, [Cu(C14H8O6)(C10H8N2)(H2O)] (1), [Cu(C14H8O6)(C10H8N2)(H2O)]·(C3H7ON)2 (2), [Cu(C14H8O6)(C10H8N2)(H2O)2]·(C3H7ON) (3), [Cu(C14H8O6)(C10H8N4)] (4), and [Cu(C14H8O6)(C10H8N4)]·(H2O) (5), were prepared employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as the primary ligand and 4,4'-bipyridine (1-3) and 4,4'-azopyridine (4-5) as the secondary ligands. Single-crystal studies indicated that compounds 1-4 have two-dimensional layer structures and compound 5 has a three-dimensional structure. Compounds 1-3 were isolated from the same reaction mixture but by varying the time of reaction. The framework structures of compounds 1-3 are similar and may be considered as polymorphic structures. Compounds 4 and 5 can also be considered polymorphic with a change in dimensionality of the structure. Compounds 1-3 can be formed through a single-crystal-to-single-crystal transformation under a suitable solvent mixture. The Cu center was explored for the Lewis acid-catalyzed cycloaddition reaction of epoxide and CO2 under ambient conditions in a solventless condition and also for the synthesis of propargylamine derivatives by three-component coupling reactions (A3 coupling) in a DCM medium. The Lewis basic functionality of the MOF (-N═N- group) has been explored for the Henry reaction (aldol condensation) in a solventless condition. In all of the catalytic reactions, good yields and recyclability were observed. The magnetic studies indicated that compounds 1 and 4 have antiferromagnetic interactions and compound 5 has ferromagnetic interactions. The present studies illustrated the rich diversity that the copper-containing compounds exhibit in extended framework structures.
Collapse
Affiliation(s)
- Krishna Manna
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012, India
| | - Rahul Kumar
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Athinarayanan Sundaresan
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Yuan Z, Zhu X, Jiang Z. Recent Advances of Constructing Metal/Semiconductor Catalysts Designing for Photocatalytic CO 2 Hydrogenation. Molecules 2023; 28:5693. [PMID: 37570663 PMCID: PMC10419965 DOI: 10.3390/molecules28155693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
With the development of the world economy and the rapid advancement of global industrialization, the demand for energy continues to grow. The significant consumption of fossil fuels, such as oil, coal, and natural gas, has led to excessive carbon dioxide emissions, causing global ecological problems. CO2 hydrogenation technology can convert CO2 into high-value chemicals and is considered one of the potential ways to solve the problem of CO2 emissions. Metal/semiconductor catalysts have shown good activity in carbon dioxide hydrogenation reactions and have attracted widespread attention. Therefore, we summarize the recent research on metal/semiconductor catalysts for photocatalytic CO2 hydrogenation from the design of catalysts to the structure of active sites and mechanistic investigations, and the internal mechanism of the enhanced activity is elaborated to give guidance for the design of highly active catalysts. Finally, based on a good understanding of the above issues, this review looks forward to the development of future CO2 hydrogenation catalysts.
Collapse
Affiliation(s)
- Zhimin Yuan
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xianglin Zhu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
23
|
Masoumi Z, Tayebi M, Tayebi M, Masoumi Lari SA, Sewwandi N, Seo B, Lim CS, Kim HG, Kyung D. Electrocatalytic Reactions for Converting CO 2 to Value-Added Products: Recent Progress and Emerging Trends. Int J Mol Sci 2023; 24:9952. [PMID: 37373100 DOI: 10.3390/ijms24129952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Carbon dioxide (CO2) emissions are an important environmental issue that causes greenhouse and climate change effects on the earth. Nowadays, CO2 has various conversion methods to be a potential carbon resource, such as photocatalytic, electrocatalytic, and photo-electrocatalytic. CO2 conversion into value-added products has many advantages, including facile control of the reaction rate by adjusting the applied voltage and minimal environmental pollution. The development of efficient electrocatalysts and improving their viability with appropriate reactor designs is essential for the commercialization of this environmentally friendly method. In addition, microbial electrosynthesis which utilizes an electroactive bio-film electrode as a catalyst can be considered as another option to reduce CO2. This review highlights the methods which can contribute to the increase in efficiency of carbon dioxide reduction (CO2R) processes through electrode structure with the introduction of various electrolytes such as ionic liquid, sulfate, and bicarbonate electrolytes, with the control of pH and with the control of the operating pressure and temperature of the electrolyzer. It also presents the research status, a fundamental understanding of carbon dioxide reduction reaction (CO2RR) mechanisms, the development of electrochemical CO2R technologies, and challenges and opportunities for future research.
Collapse
Affiliation(s)
- Zohreh Masoumi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Meysam Tayebi
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Mahdi Tayebi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - S Ahmad Masoumi Lari
- Department of Biology, York University, Farquharson Life Sciences Building, Ottawa Rd, Toronto, ON M3J 1P3, Canada
| | - Nethmi Sewwandi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Bongkuk Seo
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Choong-Sun Lim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Hyeon-Gook Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Daeseung Kyung
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| |
Collapse
|
24
|
Wu Z, Su J, Chai N, Cheng S, Wang X, Zhang Z, Liu X, Zhong H, Yang J, Wang Z, Liu J, Li X, Lin H. Periodic Acid Modification of Chemical-Bath Deposited SnO 2 Electron Transport Layers for Perovskite Solar Cells and Mini Modules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300010. [PMID: 37140187 PMCID: PMC10369290 DOI: 10.1002/advs.202300010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/16/2023] [Indexed: 05/05/2023]
Abstract
Chemical bath deposition (CBD) has been demonstrated as a remarkable technology to fabricate high-quality SnO2 electron transport layer (ETL) for large-area perovskite solar cells (PSCs). However, surface defects always exist on the SnO2 film coated by the CBD process, impairing the devices' performance. Here, a facile periodic acid post-treatment (PAPT) method is developed to modify the SnO2 layer. Periodic acid can react with hydroxyl groups on the surface of SnO2 films and oxidize Tin(II) oxide to Tin(IV) oxide. With the help of periodic acid, a better energy level alignment between the SnO2 and perovskite layers is achieved. In addition, the PAPT method inhibits interfacial nonradiative recombination and facilitates charge transportation. Such a multifunctional strategy enables to fabricate PSC with a champion power conversion efficiency (PCE) of 22.25%, which remains 93.32% of its initial efficiency after 3000 h without any encapsulation. Furthermore, 3 × 3 cm2 perovskite mini-modules are presented, achieving a champion efficiency of 18.10%. All these results suggest that the PAPT method is promising for promoting the commercial application of large-area PSCs.
Collapse
Affiliation(s)
- Ziyi Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiazheng Su
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Nianyao Chai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Siyang Cheng
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Luojia Laboratory, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
- School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Xuanyu Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ziling Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xuanling Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Han Zhong
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianfei Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhiping Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Luojia Laboratory, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
- School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Jianbo Liu
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xin Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hong Lin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
25
|
Research Progress of Tungsten Oxide-Based Catalysts in Photocatalytic Reactions. Catalysts 2023. [DOI: 10.3390/catal13030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Photocatalysis technology is a potential solution to solve the problem of environmental pollution and energy shortage, but its wide application is limited by the low efficiency of solar energy conversion. As a non-toxic and inexpensive n-type semiconductor, WO3 can absorb approximately 12% of sunlight which is considered one of the most attractive photocatalytic candidates. However, the narrow light absorption range and the high recombination rate of photogenerated electrons and holes restrict the further development of WO3-based catalysts. Herein, the studies on preparation and modification methods such as doping element, regulating defects and constructing heterojunctions to enlarge the range of excitation light to the visible region and slow down the recombination of carriers on WO3-based catalysts so as to improve their photocatalytic performance are reviewed. The mechanism and application of WO3-based catalysts in the dissociation of water, the degradation of organic pollutants, as well as the hydrogen reduction of N2 and CO2 are emphatically investigated and discussed. It is clear that WO3-based catalysts will play a positive role in the field of future photocatalysis. This paper could also provide guidance for the rational design of other metallic oxide (MOx) catalysts for the increasing conversion efficiency of solar energy.
Collapse
|
26
|
Oxygen vacancy-enhanced catalytic activity of hyaluronic acid covered-biomineralization nanozyme for reactive oxygen species-augmented antitumor therapy. Int J Biol Macromol 2023; 236:124003. [PMID: 36907306 DOI: 10.1016/j.ijbiomac.2023.124003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Insufficient hydrogen peroxide content in tumor cells, unsuitable pH and low efficiency of commonly used metal catalysts severely affect the efficiency of chemodynamic therapy, resulting in unsatisfactory efficacy of chemodynamic therapy alone. For this purpose, we designed a composite nanoplatform capable of targeting tumors and selectively degrading in the tumor microenvironment (TME) to address these issues. In this work, we synthesized Au@Co3O4 nanozyme inspired by crystal defect engineering. The addition of Au determines the formation of oxygen vacancies, accelerates electron transfer, and enhances redox activity, thus significantly enhancing the superoxide dismutase (SOD)-like and catalase (CAT)-like catalytic activities of the nanozyme. Subsequently, we camouflaged the nanozyme using a biomineralized CaCO3 shell to avoid damage to normal tissues by the nanozyme while effectively encapsulating the photosensitizer IR820, and finally the tumor targeting ability of the nanoplatform was enhanced by the modification of hyaluronic acid. Under near-infrared (NIR) light irradiation, the Au@Co3O4@CaCO3/IR820@HA nanoplatform not only visualizes the treatment with multimodal imaging, but also plays a photothermal sensitizing role through various strategies, while enhancing the enzyme catalytic activity, cobalt ion-mediated chemodynamic therapy (CDT) and IR820-mediated photodynamic therapy (PDT), and achieving the synergistic enhancement of reactive oxygen species (ROS) generation.
Collapse
|
27
|
Recent Progress in Surface-Defect Engineering Strategies for Electrocatalysts toward Electrochemical CO2 Reduction: A Review. Catalysts 2023. [DOI: 10.3390/catal13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Climate change, caused by greenhouse gas emissions, is one of the biggest threats to the world. As per the IEA report of 2021, global CO2 emissions amounted to around 31.5 Gt, which increased the atmospheric concentration of CO2 up to 412.5 ppm. Thus, there is an imperative demand for the development of new technologies to convert CO2 into value-added feedstock products such as alcohols, hydrocarbons, carbon monoxide, chemicals, and clean fuels. The intrinsic properties of the catalytic materials are the main factors influencing the efficiency of electrochemical CO2 reduction (CO2-RR) reactions. Additionally, the electroreduction of CO2 is mainly affected by poor selectivity and large overpotential requirements. However, these issues can be overcome by modifying heterogeneous electrocatalysts to control their morphology, size, crystal facets, grain boundaries, and surface defects/vacancies. This article reviews the recent progress in electrochemical CO2 reduction reactions accomplished by surface-defective electrocatalysts and identifies significant research gaps for designing highly efficient electrocatalytic materials.
Collapse
|
28
|
Kawawaki T, Akinaga Y, Yazaki D, Kameko H, Hirayama D, Negishi Y. Promoting Photocatalytic Carbon Dioxide Reduction by Tuning the Properties of Cocatalysts. Chemistry 2023; 29:e202203387. [PMID: 36524615 PMCID: PMC10107262 DOI: 10.1002/chem.202203387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Suppressing the amount of carbon dioxide in the atmosphere is an essential measure toward addressing global warming. Specifically, the photocatalytic CO2 reduction reaction (CRR) is an effective strategy because it affords the conversion of CO2 into useful carbon feedstocks by using sunlight and water. However, the practical application of photocatalyst-promoting CRR (CRR photocatalysts) requires significant improvement of their conversion efficiency. Accordingly, extensive research is being conducted toward improving semiconductor photocatalysts, as well as cocatalysts that are loaded as active sites on the photocatalysts. In this review, we summarize recent research and development trends in the improvement of cocatalysts, which have a significant impact on the catalytic activity and selectivity of photocatalytic CRR. We expect that the advanced knowledge provided on the improvement of cocatalysts for CRR in this review will serve as a general guideline to accelerate the development of highly efficient CRR photocatalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
- Research Institute for Science & TechnologyTokyo University of ScienceShinjuku-kuTokyo162-8601Japan
| | - Yuki Akinaga
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Daichi Yazaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Hinano Kameko
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Daisuke Hirayama
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
- Research Institute for Science & TechnologyTokyo University of ScienceShinjuku-kuTokyo162-8601Japan
| |
Collapse
|
29
|
Mi J, Chen J, Chen X, Liu X, Li J. Recent Status and Developments of Vacancies Modulation in the ABO 3 Perovskites for Catalytic Applications. Chemistry 2023; 29:e202202713. [PMID: 36300867 DOI: 10.1002/chem.202202713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Perovskite oxides (ABO3 ) have attracted comprehensive interest for wide range of functional applications (especially for chemical catalysis) due to their high design flexibility, controllable vacancies sites creation, abundant chemical properties, and stable crystal structure. Herein, the previous research and potential development of ABO3 through adjusting the vacancy at different sites (A-site, B-site, and O-site) to enhance catalytic performance are systematically analyzed and generalized. Briefly, the ABO3 with different vacancies sites prepared by multifarious direct and indirect methods, accompanied with the improved physical-chemical properties, endow them with distinct and intensified development of catalysis application. In addition, the impressive optimization proved by the vacancies sites adjustment over the ABO3 is studied to continuously facilitate the advance in some common catalysis reactions, further expanding to other optimized functional applications. At last, the constructive suggestions for fine regulation and analysis of vacancies sites over ABO3 are also put forward.
Collapse
Affiliation(s)
- Jinxing Mi
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, P. R. China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoping Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoqing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, P. R. China.,School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
30
|
Guzmán J, Urriolabeitia A, Padilla M, García-Orduña P, Polo V, Fernández-Alvarez FJ. Mechanism Insights into the Iridium(III)- and B(C 6F 5) 3-Catalyzed Reduction of CO 2 to the Formaldehyde Level with Tertiary Silanes. Inorg Chem 2022; 61:20216-20221. [PMID: 36472385 PMCID: PMC10468102 DOI: 10.1021/acs.inorgchem.2c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 12/12/2022]
Abstract
The catalytic system [Ir(CF3CO2)(κ2-NSiMe)2] [1; NSiMe = (4-methylpyridin-2-yloxy)dimethylsilyl]/B(C6F5)3 promotes the selective reduction of CO2 with tertiary silanes to the corresponding bis(silyl)acetal. Stoichiometric and catalytic studies evidenced that species [Ir(CF3COO-B(C6F5)3)(κ2-NSiMe)2] (3), [Ir(κ2-NSiMe)2][HB(C6F5)3] (4), and [Ir(HCOO-B(C6F5)3)(κ2-NSiMe)2] (5) are intermediates of the catalytic process. The structure of 3 has been determined by X-ray diffraction methods. Theoretical calculations show that the rate-limiting step for the 1/B(C6F5)3-catalyzed hydrosilylation of CO2 to bis(silyl)acetal is a boron-promoted Si-H bond cleavage via an iridium silylacetal borane adduct.
Collapse
Affiliation(s)
- Jefferson Guzmán
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| | - Asier Urriolabeitia
- Facultad
de Ciencias, Departamento de Química Física, BIFI, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Marina Padilla
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| | - Pilar García-Orduña
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| | - Víctor Polo
- Facultad
de Ciencias, Departamento de Química Física, BIFI, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Francisco J. Fernández-Alvarez
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| |
Collapse
|
31
|
Li Z, Mao C, Pei Q, Duchesne PN, He T, Xia M, Wang J, Wang L, Song R, Jelle AA, Meira DM, Ge Q, Ghuman KK, He L, Zhang X, Ozin GA. Engineered disorder in CO2 photocatalysis. Nat Commun 2022; 13:7205. [DOI: 10.1038/s41467-022-34798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractLight harvesting, separation of charge carriers, and surface reactions are three fundamental steps that are essential for an efficient photocatalyst. Here we show that these steps in the TiO2 can be boosted simultaneously by disorder engineering. A solid-state reduction reaction between sodium and TiO2 forms a core-shell c-TiO2@a-TiO2-x(OH)y heterostructure, comprised of HO-Ti-[O]-Ti surface frustrated Lewis pairs (SFLPs) embedded in an amorphous shell surrounding a crystalline core, which enables a new genre of chemical reactivity. Specifically, these SFLPs heterolytically dissociate dihydrogen at room temperature to form charge-balancing protonated hydroxyl groups and hydrides at unsaturated titanium surface sites, which display high reactivity towards CO2 reduction. This crystalline-amorphous heterostructure also boosts light absorption, charge carrier separation and transfer to SFLPs, while prolonged carrier lifetimes and photothermal heat generation further enhance reactivity. The collective results of this study motivate a general approach for catalytically generating sustainable chemicals and fuels through engineered disorder in heterogeneous CO2 photocatalysts.
Collapse
|
32
|
Ni L, Xiao Y, Zhou X, Jiang Y, Liu Y, Zhang W, Zhang J, Liu Z. Significantly Enhanced Photocatalytic Performance of the g-C 3N 4/Sulfur-Vacancy-Containing Zn 3In 2S 6 Heterostructure for Photocatalytic H 2 and H 2O 2 Generation by Coupling Defects with Heterojunction Engineering. Inorg Chem 2022; 61:19552-19566. [DOI: 10.1021/acs.inorgchem.2c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Linxin Ni
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yan Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Xiangyu Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Wenli Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Zhanchao Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang212003, P. R. China
| |
Collapse
|
33
|
Song X, Yang C, Li X, Wang Z, Pei C, Zhao ZJ, Gong J. On the Role of Hydroxyl Groups on Cu/Al 2O 3 in CO 2 Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiwen Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chengsheng Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xianghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhongyan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| |
Collapse
|
34
|
Recent progress in perovskite solar cells: from device to commercialization. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Metal oxides for the electrocatalytic reduction of carbon dioxide: Mechanism of active sites, composites, interface and defect engineering strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Kim Y, Kim KJ, Song Y, Lee YL, Roh HS, Na K. Highly CO-selective Ni–MgO–CexZr1–xO2 catalyst for efficient low-temperature reverse water–gas shift reaction. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Gao X, Cai P, Wang Z, Lv X, Kawi S. Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions. Top Catal 2022. [DOI: 10.1007/s11244-022-01708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Development of Power-to-X Catalytic Processes for CO2 Valorisation: From the Molecular Level to the Reactor Architecture. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nowadays, global climate change is likely the most compelling problem mankind is facing. In this scenario, decarbonisation of the chemical industry is one of the global challenges that the scientific community needs to address in the immediate future. Catalysis and catalytic processes are called to play a decisive role in the transition to a more sustainable and low-carbon future. This critical review analyses the unique advantages of structured reactors (isothermicity, a wide range of residence times availability, complex geometries) with the multifunctional design of efficient catalysts to synthesise chemicals using CO2 and renewable H2 in a Power-to-X (PTX) strategy. Fine-chemistry synthetic methods and advanced in situ/operando techniques are essential to elucidate the changes of the catalysts during the studied reaction, thus gathering fundamental information about the active species and reaction mechanisms. Such information becomes crucial to refine the catalyst’s formulation and boost the reaction’s performance. On the other hand, reactors architecture allows flow pattern and temperature control, the management of strong thermal effects and the incorporation of specifically designed materials as catalytically active phases are expected to significantly contribute to the advance in the valorisation of CO2 in the form of high added-value products. From a general perspective, this paper aims to update the state of the art in Carbon Capture and Utilisation (CCU) and PTX concepts with emphasis on processes involving the transformation of CO2 into targeted fuels and platform chemicals, combining innovation from the point of view of both structured reactor design and multifunctional catalysts development.
Collapse
|
39
|
Maarisetty D, Mary R, Hang DR, Mohapatra P, Baral SS. The role of material defects in the photocatalytic CO2 reduction: Interfacial properties, thermodynamics, kinetics and mechanism. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Malik AS, Bali H, Czirok F, Szamosvölgyi Á, Halasi G, Efremova A, Šmíd B, Sápi A, Kukovecz Á, Kónya Z. Turning CO2 to CH4 and CO over CeO2 and MCF-17 supported Pt, Ru and Rh nanoclusters – Influence of nanostructure morphology, supporting materials and operating conditions. FUEL 2022. [DOI: 10.1016/j.fuel.2022.124994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
41
|
Xu Z, Huang L, Jiang Y, Li Z, Chen C, He Z, Liu J, Fang Y, Wang K, Zhou G, Liu JM, Gao J. Thermal Annealing-Free SnO 2 for Fully Room-Temperature-Processed Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41037-41044. [PMID: 36044398 DOI: 10.1021/acsami.2c11488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The SnO2 electron transport layer (ETL) for perovskite solar cells (PSCs) has been recognized as one of the most reported protocols due to its processing convenience, high reproducibility, and excellence in device performance. To date, the thermal annealing (TA) process is still an essential step for a high-quality SnO2 ETL to reduce the surface trap density. This however could restrict its processing with high thermal energy input and set a barrier to the easiness of manufacturing such as processing under room-temperature conditions. Herein, we report a thermal annealing-free (TAF) SnO2 ETL by an alternative UV-ozone (UVO) treatment. This technique simultaneously endows the SnO2 ETL with a deeper valence band maximum (EVB) and lower defect density. Furthermore, with this SnO2 ETL, a power conversion efficiency (PCE) of 21.46 and 22.26% was achieved based on MAPbI3 and Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 absorbers, respectively. Importantly, a fully room-temperature-processed (RTP) PSC based on the TAF-SnO2 ETL has been demonstrated with a PCE of 20.88% on a rigid substrate and 15.92% on a flexible substrate, which are the highest values for RTP solar cells.
Collapse
Affiliation(s)
- Zhengjie Xu
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Lanqin Huang
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yue Jiang
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhuoxi Li
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Cong Chen
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong
| | - Zijun He
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jiayan Liu
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yating Fang
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Kai Wang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jun-Ming Liu
- Laboratory of Solid-State Microstructures, Nanjing University, Nanjing 210093, China
| | - Jinwei Gao
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
42
|
Jiang W, Ni C, Zhang L, Shi M, Qu J, Zhou H, Zhang C, Chen R, Wang X, Li C, Li R. Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation. Angew Chem Int Ed Engl 2022; 61:e202207161. [DOI: 10.1002/anie.202207161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Wenchao Jiang
- School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 China
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Chenwei Ni
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Lingcong Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Ming Shi
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jiangshan Qu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Hongpeng Zhou
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Chengbo Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Ruotian Chen
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xiuli Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Can Li
- School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 China
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Rengui Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
43
|
Zhang Y, Qi L. MOF-derived nanoarrays as advanced electrocatalysts for water splitting. NANOSCALE 2022; 14:12196-12218. [PMID: 35968835 DOI: 10.1039/d2nr03411e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing efficient, nanostructured electrocatalysts with the desired compositions and structures is of great significance for improving the efficiency of water splitting toward hydrogen production. In this regard, metal-organic framework (MOF) derived nanoarrays have attracted great attention as promising electrocatalysts because of their diverse compositions and adjustable structures. In this review, the recent progress in MOF-derived nanoarrays for electrochemical water splitting is summarized, highlighting the structural design of the MOF-derived nanoarrays and the electrocatalytic performance of the derived composite carbon materials, oxides, hydroxides, sulfides, and phosphides. In particular, the structure-performance relationships of the MOF-derived nanoarrays and the modulation strategies toward enhanced catalytic activity for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are discussed, providing insights into the development of advanced catalysts for the HER and OER. The challenges and prospects in this promising field for future industrial applications are also addressed.
Collapse
Affiliation(s)
- Yujing Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, China.
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, China.
| |
Collapse
|
44
|
Xiong X, Wang L, He S, Guan S, Li D, Zhang M, Qu X. Vacancy defect-promoted nanomaterials for efficient phototherapy and phototherapy-based multimodal Synergistic Therapy. Front Bioeng Biotechnol 2022; 10:972837. [PMID: 36091444 PMCID: PMC9452887 DOI: 10.3389/fbioe.2022.972837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Phototherapy and multimodal synergistic phototherapy (including synergistic photothermal and photodynamic therapy as well as combined phototherapy and other therapies) are promising to achieve accurate diagnosis and efficient treatment for tumor, providing a novel opportunity to overcome cancer. Notably, various nanomaterials have made significant contributions to phototherapy through both improving therapeutic efficiency and reducing side effects. The most key factor affecting the performance of phototherapeutic nanomaterials is their microstructure which in principle determines their physicochemical properties and the resulting phototherapeutic efficiency. Vacancy defects ubiquitously existing in phototherapeutic nanomaterials have a great influence on their microstructure, and constructing and regulating vacancy defect in phototherapeutic nanomaterials is an essential and effective strategy for modulating their microstructure and improving their phototherapeutic efficacy. Thus, this inspires growing research interest in vacancy engineering strategies and vacancy-engineered nanomaterials for phototherapy. In this review, we summarize the understanding, construction, and application of vacancy defects in phototherapeutic nanomaterials. Starting from the perspective of defect chemistry and engineering, we also review the types, structural features, and properties of vacancy defects in phototherapeutic nanomaterials. Finally, we focus on the representative vacancy defective nanomaterials recently developed through vacancy engineering for phototherapy, and discuss the significant influence and role of vacancy defects on phototherapy and multimodal synergistic phototherapy. Therefore, we sincerely hope that this review can provide a profound understanding and inspiration for the design of advanced phototherapeutic nanomaterials, and significantly promote the development of the efficient therapies against tumor.
Collapse
Affiliation(s)
- Xinyu Xiong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan He
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Dawei Li
- Senior Orthopeadics Department, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingming Zhang
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Xiaozhong Qu
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
TiO2 supported Pd nanoclusters with surface defects toward highly efficient hydrogenation of quinone to hydroquinone under mild conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Chaudhary SD, Rahatade SS, Joshi SS, Mali NA. Reduction of carbon dioxide to dimethylformamide using ruthenium doped Mg/Al hydrotalcites under supercritical conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Neamani S, Moradi L. Loading of g-C 3 N 4 on Core-Shell Magnetic Mesoporous Silica Nanospheres as a Solid Base Catalyst for the Green Synthesis of some Chromene Derivatives under Different Conditions. ChemistryOpen 2022; 11:e202200041. [PMID: 35778825 PMCID: PMC9278101 DOI: 10.1002/open.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/01/2022] [Indexed: 11/17/2022] Open
Abstract
Using heterogeneous basic catalysts has a great importance in chemical reactions because of their advantages (such as easy separation and thermal stability at harsh conditions) over homogeneous catalysts. In this study, magnetic mesoporous silica nanoparticles (mSiO2 ) containing graphitic carbon nitride layers (mSiO2 /g-C3 N4 (x)) were fabricated through a facile process (x signifies the amount of melamine applied during synthesis). Graphitic carbon nitride layers were decorated on mSiO2 by calcination of immobilized melamine (as graphitic carbon nitride precursor) on mSiO2 in the last step of catalyst synthesis. The structure of the prepared catalysts was confirmed using XRD, BET, FESEM, EDX, elemental mapping and TEM methods. The catalytic efficiency of the so-obtained solid base composite was investigated for the synthesis of some dihydropyranochromenes and spiro-dihydropyranochromenes under thermal and microwave conditions. Using mSiO2 /g-C3 N4 (x) led to high yields under green conditions and in short reaction times and without a decrease in catalytic activity after four consecutive cycles.
Collapse
Affiliation(s)
- Shekofeh Neamani
- Department of Organic ChemistryFaculty of ChemistryUniversity of KashanP.O. Box 8731753153Kashan, I. R.Iran
| | - Leila Moradi
- Department of Organic ChemistryFaculty of ChemistryUniversity of KashanP.O. Box 8731753153Kashan, I. R.Iran
| |
Collapse
|
48
|
Hiragond CB, Powar NS, Lee J, In SI. Single-Atom Catalysts (SACs) for Photocatalytic CO 2 Reduction with H 2 O: Activity, Product Selectivity, Stability, and Surface Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201428. [PMID: 35695355 DOI: 10.1002/smll.202201428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, single-atom catalysts (SACs) have attracted the interest of researchers owing to their suitability for various catalytic applications. For instance, their optoelectronic features, site-specific activity, and cost-effectiveness make SACs ideal for photocatalytic CO2 reduction. The activity, product selectivity, and photostability of SACs depend on various factors such as the nature of the metal/support material, the interaction between the metal atoms and support, light-harvesting ability, charge separation behavior, CO2 adsorption ability, active sites, and defects. Consequently, it is necessary to investigate these factors in depth to elucidate the working principle(s) of SACs for catalytic applications. Herein, the recent progress in the development of SACs for photocatalytic CO2 reduction with H2 O is reviewed. First, a brief overview of CO2 photoreduction and SACs for CO2 conversion is provided. Several synthesis strategies and useful techniques for characterizing SACs employed in heterogeneous catalysis are then described. Next, the challenges of SACs for photocatalytic CO2 reduction and related optimization strategies, in terms of activity, product selectivity, and stability, are explored. The progress in the development of noble metal- and transition metal-based SACs and dual-SACs for photocatalytic CO2 reduction is discussed. Finally, the prospects of SACs for CO2 reduction are considered.
Collapse
Affiliation(s)
- Chaitanya B Hiragond
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Niket S Powar
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Junho Lee
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Su-Il In
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
49
|
Jiang W, Ni C, Zhang L, Shi M, Qu J, Zhou H, Zhang C, Chen R, Wang X, Li C, Li R. Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenchao Jiang
- University of Science and Technology of China School of Chemistry and Materials Science CHINA
| | - Chenwei Ni
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy CHINA
| | - Lingcong Zhang
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy CHINA
| | - Ming Shi
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy CHINA
| | - Jiangshan Qu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy CHINA
| | - Hongpeng Zhou
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy CHINA
| | - Chengbo Zhang
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy CHINA
| | - Ruotian Chen
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy CHINA
| | - Xiuli Wang
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy CHINA
| | - Can Li
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy CHINA
| | - Rengui Li
- Dalian Institute of Chemical Physics Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis Zhongshan Road 457. 116023 Dalian CHINA
| |
Collapse
|
50
|
Wei W, Wei Z, Li R, Li Z, Shi R, Ouyang S, Qi Y, Philips DL, Yuan H. Subsurface oxygen defects electronically interacting with active sites on In 2O 3 for enhanced photothermocatalytic CO 2 reduction. Nat Commun 2022; 13:3199. [PMID: 35680908 PMCID: PMC9184511 DOI: 10.1038/s41467-022-30958-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Oxygen defects play an important role in many catalytic reactions. Increasing surface oxygen defects can be done through reduction treatment. However, excessive reduction blocks electron channels and deactivates the catalyst surface due to electron-trapped effects by subsurface oxygen defects. How to effectively extract electrons from subsurface oxygen defects which cannot directly interact with reactants is challenging and remains elusive. Here, we report a metallic In-embedded In2O3 nanoflake catalyst over which the turnover frequency of CO2 reduction into CO increases by a factor of 866 (7615 h-1) and 376 (2990 h-1) at the same light intensity and reaction temperature, respectively, compared to In2O3. Under electron-delocalization effect of O-In-(O)Vo-In-In structural units at the interface, the electrons in the subsurface oxygen defects are extracted and gather at surface active sites. This improves the electronic coupling with CO2 and stabilizes intermediate. The study opens up new insights for exquisite electronic manipulation of oxygen defects.
Collapse
Affiliation(s)
- Weiqin Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhen Wei
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ruizhe Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Shuxin Ouyang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Yuhang Qi
- Chemical Engineering Institute, Hebei University of Technology, 300131, Tianjin, China
| | - David Lee Philips
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|