1
|
Lai Q, Mason AH, Agarwal A, Edenfield WC, Zhang X, Kobayashi T, Kratish Y, Marks TJ. Rapid Polyolefin Hydrogenolysis by a Single-Site Organo-Tantalum Catalyst on a Super-Acidic Support: Structure and Mechanism. Angew Chem Int Ed Engl 2023; 62:e202312546. [PMID: 37948306 DOI: 10.1002/anie.202312546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 11/12/2023]
Abstract
The novel electrophilic organo-tantalum catalyst AlS/TaNpx (1) (Np=neopentyl) is prepared by chemisorption of the alkylidene Np3 Ta=CHt Bu onto highly Brønsted acidic sulfated alumina (AlS). The proposed catalyst structure is supported by EXAFS, XANES, ICP, DRIFTS, elemental analysis, and SSNMR measurements and is in good agreement with DFT analysis. Catalyst 1 is highly effective for the hydrogenolysis of diverse linear and branched hydrocarbons, ranging from C2 to polyolefins. To the best of our knowledge, 1 exhibits one of the highest polyolefin hydrogenolysis activities (9,800 (CH2 units) ⋅ mol(Ta)-1 ⋅ h-1 at 200 °C/17 atm H2 ) reported to date in the peer-reviewed literature. Unlike the AlS/ZrNp2 analog, the Ta catalyst is more thermally stable and offers multiple potential C-C bond activation pathways. For hydrogenolysis, AlS/TaNpx is effective for a wide variety of pre- and post-consumer polyolefin plastics and is not significantly deactivated by standard polyolefin additives at typical industrial concentrations.
Collapse
Affiliation(s)
- Qingheng Lai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Alexander H Mason
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Amol Agarwal
- Department of Materials Science & Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL-60208-3113, USA
| | - Wilson C Edenfield
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Xinrui Zhang
- Department of Materials Science & Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL-60208-3113, USA
| | - Takeshi Kobayashi
- U.S. DOE Ames National Laboratory, IOWA State University, Ames, IA50011-3020, USA
| | - Yosi Kratish
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| |
Collapse
|
2
|
Jaroszewicz MJ, Altenhof AR, Schurko RW, Frydman L. An automated multi-order phase correction routine for processing ultra-wideline NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107528. [PMID: 37632988 DOI: 10.1016/j.jmr.2023.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Efficient acquisition of wideline solid-state nuclear magnetic resonance (NMR) spectra with patterns affected by large inhomogeneous broadening is accomplished with the use of broadband pulse sequences. These specialized pulse sequences often use frequency-swept pulses, which feature time-dependent phase and amplitude modulations that in turn deliver broad and uniform excitation across large spectral bandwidths. However, the resulting NMR spectra are often affected by complex frequency-dependent phase dispersions, owing to the interplay between the frequency-swept excitations and anisotropic resonance frequencies. Such phase distortions necessitate the use of multi-order non-linear corrections in order to obtain absorptive, distortion-free patterns with uniform phasing. Performing such corrections is often challenging due to the complex interdependence of the linear and non-linear phase contributions, and how these may affect the NMR signal. Hence, processing of these data usually involves calculating the spectra in magnitude mode wherein the phase information is discarded. Herein, we present a fully automated phasing routine that is capable of processing and phase correcting such wideline NMR spectra. Its performance is corroborated via processing of NMR data acquired using both the WURST-CPMG (Wideband, Uniform-Rate, Smooth Truncation with Carr-Purcell Meiboom-Gill acquisition) and BRAIN-CP (BRoadband Adiabatic Inversion Cross Polarization) pulse sequences for a variety of nuclei (i.e., 119Sn, 195Pt, 35Cl, 87Rb, and 14N). Based on both simulated and experimental NMR datasets, it is demonstrated that automatic phase corrections up to and including second order can be readily achieved without a priori information regarding the nature of the phase-distorted NMR datasets, and independently of the exact manner in which time-domain NMR data are collected and subsequently processed. In addition, it is shown that NMR spectra acquired at both single and multiple transmitter frequencies that are processed with this automated phasing routine have improved signal-to-noise properties than those processed with conventional magnitude calculations, along with powder patterns that better match those of ideal NMR spectra, even for datasets possessing low signal-to-noise ratios and/or affected by spectral artifacts.
Collapse
Affiliation(s)
- Michael J Jaroszewicz
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot 7610001, Israel.
| | - Adam R Altenhof
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot 7610001, Israel; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
3
|
Wagner M, Pigliapochi R, Di Tullio V, Catalano J, Zumbulyadis N, Centeno SA, Wang X, Chen K, Hung I, Gan Z, Dworzak MR, Yap GPA, Dybowski C. Multi-technique structural analysis of zinc carboxylates (soaps). Dalton Trans 2023; 52:6152-6165. [PMID: 37073995 PMCID: PMC10167895 DOI: 10.1039/d3dt00184a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/14/2023] [Indexed: 04/20/2023]
Abstract
A series of medium- and long-chain zinc carboxylates (zinc octanoate, zinc nonanoate, zinc decanoate, zinc undecanoate, zinc dodecanoate, zinc pivalate, zinc stearate, zinc palmitate, zinc oleate, and zinc azelate) was analyzed by ultra-high-field 67Zn NMR spectroscopy up to 35.2 T, as well as 13C NMR and FTIR spectroscopy. We also report the single-crystal X-ray diffraction structures of zinc nonanoate, zinc decanoate, and zinc oleate-the first long-chain carboxylate single-crystals to be reported for zinc. The NMR and X-ray diffraction data suggest that the carboxylates exist in three distinct geometric groups, based on structural and spectroscopic parameters. The ssNMR results presented here present a future for dynamic nuclear polarization (DNP)-NMR-based minimally invasive methods for testing artwork for the presence of zinc carboxylates.
Collapse
Affiliation(s)
- Molly Wagner
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
- US Department of Energy, Ames Laboratory, Ames, Iowa 50010, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, USA
| | - Roberta Pigliapochi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
- Department of Scientific Research, The Metropolitan Museum of Art, New York, New York 10028, USA
- Department of Physics, CUNY-City College of New York, New York, NY 10031, USA
| | - Valeria Di Tullio
- Institute of Heritage Science, National Council of Research, Rome, Italy 00016
| | - Jaclyn Catalano
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey, USA
| | - Nicholas Zumbulyadis
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | - Silvia A Centeno
- Department of Scientific Research, The Metropolitan Museum of Art, New York, New York 10028, USA
| | - Xiaoling Wang
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - Kuizhi Chen
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - Ivan Hung
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - Michael R Dworzak
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
4
|
Venkatesh A, Gioffrè D, Atterberry BA, Rochlitz L, Carnahan SL, Wang Z, Menzildjian G, Lesage A, Copéret C, Rossini AJ. Molecular and Electronic Structure of Isolated Platinum Sites Enabled by the Expedient Measurement of 195Pt Chemical Shift Anisotropy. J Am Chem Soc 2022; 144:13511-13525. [PMID: 35861681 DOI: 10.1021/jacs.2c02300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Techniques that can characterize the molecular structures of dilute surface species are required to facilitate the rational synthesis and improvement of Pt-based heterogeneous catalysts. 195Pt solid-state NMR spectroscopy could be an ideal tool for this task because 195Pt isotropic chemical shifts and chemical shift anisotropy (CSA) are highly sensitive probes of the local chemical environment and electronic structure. However, the characterization of Pt surface-sites is complicated by the typical low Pt loadings that are between 0.2 and 5 wt% and broadening of 195Pt solid-state NMR spectra by CSA. Here, we introduce a set of solid-state NMR methods that exploit fast MAS and indirect detection using a sensitive spy nucleus (1H or 31P) to enable the rapid acquisition of 195Pt MAS NMR spectra. We demonstrate that high-resolution wideline 195Pt MAS NMR spectra can be acquired in minutes to a few hours for a series of molecular and single-site Pt species grafted on silica with Pt loading of only 3-5 wt%. Low-power, long-duration, sideband-selective excitation, and saturation pulses are incorporated into t1-noise eliminated dipolar heteronuclear multiple quantum coherence, perfect echo resonance echo saturation pulse double resonance, or J-resolved pulse sequences. The complete 195Pt MAS NMR spectrum is then reconstructed by recording a series of 1D NMR spectra where the offset of the 195Pt pulses is varied in increments of the MAS frequency. Analysis of the 195Pt MAS NMR spectra yields the 195Pt chemical shift tensor parameters. Zeroth order approximation density functional theory calculations accurately predict 195Pt CS tensor parameters. Simple and predictive orbital models relate the CS tensor parameters to the Pt electronic structure and coordination environment. The methodology developed here paves the way for the detailed structural and electronic analysis of dilute platinum surface-sites.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Domenico Gioffrè
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Benjamin A Atterberry
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Scott L Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Zhuoran Wang
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Georges Menzildjian
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Anne Lesage
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Ishizaka Y, Arai N, Matsumoto K, Nagashima H, Takeuchi K, Fukaya N, Yasuda H, Sato K, Choi JC. Bidentate Disilicate Framework for Bis-Grafted Surface Species. Chemistry 2021; 27:12069-12077. [PMID: 34189785 DOI: 10.1002/chem.202101927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/08/2022]
Abstract
Recent advances in surface organometallic chemistry have enabled the detailed characterization of the surface species in single-site heterogeneous catalysts. However, the selective formation of bis-grafted surface species remains challenging because of the heterogeneity of the supporting surface. Herein, we introduce a metal complex bearing bidentate disilicate ligands, -OSi(Ot Bu)2 OSi(Ot Bu)2 O-, as a molecular precursor, which has a silicate framework adjacent to the metal (Pt) center. The grafting of the precursors on silica supports (MCM-41 and CARiACT Q10) proceeded through a substitution reaction on the silicon atoms of the disilicate ligand, which was verified by the detection of isobutene and t BuOH as the elimination products, to selectively yield bis-grafted surface species. The chemical structure of the surface species was characterized by solid-state NMR, and the chemical shift values of the ancillary ligands and 195 Pt nuclei suggested that the bidentate coordination sphere was maintained following grafting.
Collapse
Affiliation(s)
- Yusuke Ishizaka
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Natsumi Arai
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512, Japan
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroki Nagashima
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroyuki Yasuda
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Sato
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
6
|
Venkatesh A, Perras FA, Rossini AJ. Proton-detected solid-state NMR spectroscopy of spin-1/2 nuclei with large chemical shift anisotropy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106983. [PMID: 33964731 DOI: 10.1016/j.jmr.2021.106983] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Constant-time (CT) dipolar heteronuclear multiple quantum coherence (D-HMQC) has previously been demonstrated as a method for proton detection of high-resolution wideline NMR spectra of spin-1/2 nuclei with large chemical shift anisotropy (CSA). However, 1H transverse relaxation and t1-noise often reduce the sensitivity of D-HMQC experiments, preventing the theoretical gains in sensitivity provided by 1H detection from being realized. Here we demonstrate a series of improved pulse sequences for 1H detection of spin-1/2 nuclei under fast MAS, with 195Pt SSNMR experiments on cisplatin as an example. First, a t1-incrementation protocol for D-HMQC dubbed Arbitrary Indirect Dwell (AID) is demonstrated. AID allows the use of arbitrary, rotor asynchronous t1-increments, but removes the constant time period from CT D-HMQC, resulting in improved sensitivity by reducing transverse relaxation losses. Next, we show that short high-power adiabatic pulses (SHAPs), which efficiently invert broad MAS sideband manifolds, can be effectively incorporated into 1H detected symmetry-based resonance echo double resonance (S-REDOR) and t1-noise eliminated (TONE) D-HMQC experiments. The S-REDOR experiments with SHAPs provide approximately double the dipolar dephasing, as compared to experiments with rectangular inversion pulses. We lastly show that sensitivity and resolution can be further enhanced with the use of swept excitation pulses as well as adiabatic magic angle turning (aMAT).
Collapse
Affiliation(s)
- Amrit Venkatesh
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | | | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Liu X, Di Tullio V, Lin YC, De Andrade V, Zhao C, Lin CH, Wagner M, Zumbulyadis N, Dybowski C, Centeno SA, Chen-Wiegart YCK. Nano- to microscale three-dimensional morphology relevant to transport properties in reactive porous composite paint films. Sci Rep 2020; 10:18320. [PMID: 33110102 PMCID: PMC7591493 DOI: 10.1038/s41598-020-75040-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/03/2020] [Indexed: 11/11/2022] Open
Abstract
The quantitative evaluation of the three-dimensional (3D) morphology of porous composite materials is important for understanding mass transport phenomena, which further impact their functionalities and durability. Reactive porous paint materials are composites in nature and widely used in arts and technological applications. In artistic oil paintings, ambient moisture and water and organic solvents used in conservation treatments are known to trigger multiple physical and chemical degradation processes; however, there is no complete physical model that can quantitatively describe their transport in the paint films. In the present study, model oil paints with lead white (2PbCO3·Pb(OH)2) and zinc white (ZnO) pigments, which are frequently found in artistic oil paintings and are associated with the widespread heavy metal soap deterioration, were studied using synchrotron X-ray nano-tomography and unilateral nuclear magnetic resonance. This study aims to establish a relationship among the paints’ compositions, the 3D morphological properties and degradation. This connection is crucial for establishing reliable models that can predict transport properties of solvents used in conservation treatments and of species involved in deterioration reactions, such as soap formation.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Valeria Di Tullio
- Department of Scientific Research, The Metropolitan Museum of Art, New York, NY, 10028, USA.,"Segre-Capitani" Magnetic Resonance Laboratory, Istituto Per I Sistemi Biologi, (ISB) CNR, CNR Area Della Ricerca di Roma 1, Via Salaria Km 29, 300, 00015, Monterotondo, Rome, Italy
| | - Yu-Chung Lin
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Vincent De Andrade
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Chonghang Zhao
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Cheng-Hung Lin
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Molly Wagner
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | | | - Cecil Dybowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Silvia A Centeno
- Department of Scientific Research, The Metropolitan Museum of Art, New York, NY, 10028, USA.
| | - Yu-Chen Karen Chen-Wiegart
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA. .,National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
8
|
Catalano J, Di Tullio V, Wagner M, Zumbulyadis N, Centeno SA, Dybowski C. Review of the use of NMR spectroscopy to investigate structure, reactivity, and dynamics of lead soap formation in paintings. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:798-811. [PMID: 32247290 DOI: 10.1002/mrc.5025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal carboxylate or soap formation is a widespread deterioration problem affecting oil paintings and other works of art bearing oil-based media. Lead soaps are prevalent in traditional oil paintings because lead white was the white pigment most frequently chosen by old masters for the paints and in some cases for the ground preparations, until the development of other white pigments from approximately the middle of the 18th century on, and because of the wide use of lead-tin yellow. In the latter part of the 19th century, lead white began to be replaced by zinc white. The factors that influence soap formation have been the focus of intense study starting in the late 1990s. Since 2014, nuclear magnetic resonance (NMR) studies have contributed a unique perspective on the issue by providing chemical, structural, and dynamic information about the species involved in the process, as well as the effects of environmental conditions such as relative humidity and temperature on the kinetics of the reaction(s). In this review, we explore recent insights into soap formation gained through solid-state NMR and single-sided NMR techniques.
Collapse
Affiliation(s)
- Jaclyn Catalano
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA
| | - Valeria Di Tullio
- Magnetic Resonance Laboratory "Annalaura Segre", ISB-CNR, Rome, Italy
| | - Molly Wagner
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Nicholas Zumbulyadis
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Silvia A Centeno
- Department of Scientific Research, The Metropolitan Museum of Art, New York, NY, USA
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
9
|
New Insights to Characterize Paint Varnishes and to Study Water in Paintings by Nuclear Magnetic Resonance Spectroscopy (NMR). MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paintings are complex multi-layered systems made of organic and inorganic materials. Several factors can affect the degradation of paintings, such as environmental conditions, past restoration works and, finally, the type of painting technique and the art materials used over the centuries. The chemical–physical characterization of paintings is a constant challenge that requires research into and the development of novel analytical methodologies and processes. In recent years, solvents and water-related issues in paintings are attracting more attention, and several studies have been focused on analyzing the interaction between water molecules and the constitutive materials. In this study, recent applications applying different NMR methodologies were shown, highlighting the weakness and the strength of the techniques in analyzing paintings. In particular, the study of water and its diffusive interactions within wall and oil paintings was performed to prove how the portable NMR can be used directly in museums for planning restoration work and to monitor the degradation processes. Furthermore, some preliminary results on the analysis of varnishes and binders, such us linseed oil, shellac, sandarac and colophony resins, were obtained by 1H HR-MAS NMR spectroscopy, highlighting the weakness and strengths of this technique in the field of conservation science.
Collapse
|
10
|
Grätz S, de Olivera Junior M, Gutmann T, Borchardt L. A comprehensive approach for the characterization of porous polymers using 13C and 15N dynamic nuclear polarization NMR spectroscopy. Phys Chem Chem Phys 2020; 22:23307-23314. [DOI: 10.1039/d0cp04010j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNP enhanced solid-state NMR techniques are presented as powerful tools to characterize amorphous porous polymers that are of insoluble nature.
Collapse
Affiliation(s)
- Sven Grätz
- Inorganic Chemistry I
- Ruhr-Universität Bochum Universitätsstrasse 150
- 44780 Bochum
- Germany
| | - Marcos de Olivera Junior
- Technical University Darmstadt
- Institute for Inorganic and Physical Chemistry
- Alarich-Weiss Straße 4
- 64287 Darmstadt
- Germany
| | - Torsten Gutmann
- Technical University Darmstadt
- Institute for Inorganic and Physical Chemistry
- Alarich-Weiss Straße 4
- 64287 Darmstadt
- Germany
| | - Lars Borchardt
- Inorganic Chemistry I
- Ruhr-Universität Bochum Universitätsstrasse 150
- 44780 Bochum
- Germany
| |
Collapse
|
11
|
Altenhof AR, Lindquist AW, Foster LDD, Holmes ST, Schurko RW. On the use of frequency-swept pulses and pulses designed with optimal control theory for the acquisition of ultra-wideline NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106612. [PMID: 31622849 DOI: 10.1016/j.jmr.2019.106612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Frequency-swept (FS) pulses, such as wideband uniform-rate smooth-truncation (WURST) pulses, have found much success for the acquisition of ultra-wideline (UW) solid-state NMR spectra. In this preliminary study, new pulses and pulse sequences are explored in simulation and experimentally for several nuclei exhibiting UWNMR powder patterns under static conditions, including 119Sn (I = 1/2), 195Pt (I = 1/2), 2H (I = 1), and 71Ga (I = 3/2). First, hyperbolic secant (HS) and tanh/tan (THT) pulses are tested and implemented as excitation and refocusing pulses in spin-echo and Carr-Purcell/Meiboom Gill (CPMG)-type sequences, and shown to have comparable performances to analogous WURST pulses. Second, optimal control theory (OCT) is utilized for the design of new Optimal Control Theory Optimized Broadband Excitation and Refocusing (OCTOBER) pulses, using carefully parameterized WURST, THT, and HS pulses as starting points. Some of the new OCTOBER pulses used in spin-echo sequences are capable of efficient broadband excitation and refocusing, in some cases resulting in spectra with increased signal enhancements over those obtained in experiments using conventional FS pulses. Finally, careful consideration of the spin dynamics of several systems, by monitoring of the time evolution of the density matrix via the Liouville-von Neumann equation and analysis of the time-resolved Fourier transforms of the pulses, lends insight into the underlying mechanisms of the FS and OCTOBER pulses. This is crucial for understanding their performance in terms of generating uniformly excited patterns of high signal intensity, and for identifying trends that may offer pathways to generalized parameterization and/or new pulse shapes.
Collapse
Affiliation(s)
- Adam R Altenhof
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32308, United States
| | - Austin W Lindquist
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Lucas D D Foster
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Sean T Holmes
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32308, United States
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32308, United States.
| |
Collapse
|
12
|
Rankin AGM, Trébosc J, Pourpoint F, Amoureux JP, Lafon O. Recent developments in MAS DNP-NMR of materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:116-143. [PMID: 31189121 DOI: 10.1016/j.ssnmr.2019.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/03/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the characterization of the atomic-level structure and dynamics of materials. Nevertheless, the use of this technique is often limited by its lack of sensitivity, which can prevent the observation of surfaces, defects or insensitive isotopes. Dynamic Nuclear Polarization (DNP) has been shown to improve by one to three orders of magnitude the sensitivity of NMR experiments on materials under Magic-Angle Spinning (MAS), at static magnetic field B0 ≥ 5 T, conditions allowing for the acquisition of high-resolution spectra. The field of DNP-NMR spectroscopy of materials has undergone a rapid development in the last ten years, spurred notably by the availability of commercial DNP-NMR systems. We provide here an in-depth overview of MAS DNP-NMR studies of materials at high B0 field. After a historical perspective of DNP of materials, we describe the DNP transfers under MAS, the transport of polarization by spin diffusion and the various contributions to the overall sensitivity of DNP-NMR experiments. We discuss the design of tailored polarizing agents and the sample preparation in the case of materials. We present the DNP-NMR hardware and the influence of key experimental parameters, such as microwave power, magnetic field, temperature and MAS frequency. We give an overview of the isotopes that have been detected by this technique, and the NMR methods that have been combined with DNP. Finally, we show how MAS DNP-NMR has been applied to gain new insights into the structure of organic, hybrid and inorganic materials with applications in fields, such as health, energy, catalysis, optoelectronics etc.
Collapse
Affiliation(s)
- Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231, Paris, France.
| |
Collapse
|
13
|
Chmelka BF. Materializing opportunities for NMR of solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:91-97. [PMID: 31377152 DOI: 10.1016/j.jmr.2019.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 05/04/2023]
Abstract
Advancements in sensitivity and resolution of NMR of solids are opening a bonanza of fundamental and technological opportunities in materials science. Many of these are at the boundaries of related disciplines that provide creative inputs to motivate the development of new methodologies and possibilities for new applications. As Boltzmann limitations are surmounted by dynamic-nuclear-polarization- and laser-enhanced hyperpolarization techniques, the correlative benefits of multidimensional NMR are becoming more and more impactful. Nevertheless, there are limits, and the atomic-level information provided by solid-state NMR will be most useful in combination with state-of-the-art diffraction, microscopy, computational, and materials synthesis methods. Collectively these can be expected to lead to design criteria that will promote discovery of new materials, lead to novel or improved material properties, catalyze new applications, and motivate further methodological advancements.
Collapse
Affiliation(s)
- Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
14
|
Thureau P, Sturniolo S, Zilka M, Ziarelli F, Viel S, Yates JR, Mollica G. Reducing the computational cost of NMR crystallography of organic powders at natural isotopic abundance with the help of 13 C- 13 C dipolar couplings. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:256-264. [PMID: 30735578 DOI: 10.1002/mrc.4848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/22/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Structure determination of functional organic compounds remains a formidable challenge when the sample exists as a powder. Nuclear magnetic resonance crystallography approaches based on the comparison of experimental and Density Functional Theory (DFT)-computed 1 H chemical shifts have already demonstrated great potential for structure determination of organic powders, but limitations still persist. In this study, we discuss the possibility of using 13 C-13 C dipolar couplings quantified on powdered theophylline at natural isotopic abundance with the help of dynamic nuclear polarization, to realize a DFT-free, rapid screening of a pool of structures predicted by ab initio random structure search. We show that although 13 C-13 C dipolar couplings can identify structures possessing long range structural motifs and unit cell parameters close to those of the true structure, it must be complemented with other data to recover information about the presence and the chemical nature of the supramolecular interactions.
Collapse
Affiliation(s)
| | - Simone Sturniolo
- Scientific Computing Department, Rutherford Appleton Laboratory, Chilton, Didcot, UK
| | - Miri Zilka
- Department of Physics, University of Warwick, Coventry, UK
| | - Fabio Ziarelli
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM FR1739, Marseille, France
| | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR, Marseille, France
- Institut Universitaire de France, Paris, France
| | | | | |
Collapse
|
15
|
Bryce DL. New frontiers for solid-state NMR across the periodic table: a snapshot of modern techniques and instrumentation. Dalton Trans 2019; 48:8014-8020. [PMID: 31184347 DOI: 10.1039/c9dt01801h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Selected highlights of the recent literature on solid-state NMR of some of the lesser studied nuclei are provided. The roles of ultrahigh magnetic fields, radiofrequency pulse sequences, dynamic nuclear polarization, isotopic enrichment, and nuclear quadrupole resonance in opening up the periodic table to in-depth study are discussed.
Collapse
Affiliation(s)
- David L Bryce
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, CanadaK1N6N5.
| |
Collapse
|
16
|
Leroy C, Bryce DL. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:160-199. [PMID: 30527135 DOI: 10.1016/j.pnmrs.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
We present a review of recent advances in solid-state nuclear magnetic resonance (SSNMR) studies of exotic nuclei. Exotic nuclei may be spin-1/2 or quadrupolar, and typically have low gyromagnetic ratios, low natural abundances, large quadrupole moments (when I > 1/2), or some combination of these properties, generally resulting in low receptivities and/or prohibitively broad line widths. Some nuclides are little studied for other reasons, also rendering them somewhat exotic. We first discuss some of the recent progress in pulse sequences and hardware development which continues to enable researchers to study new kinds of materials as well as previously unfeasible nuclei. This is followed by a survey of applications to a wide range of exotic nuclei (including e.g., 9Be, 25Mg, 33S, 39K, 43Ca, 47/49Ti, 53Cr, 59Co, 61Ni, 67Zn, 73Ge, 75As, 87Sr, 115In, 119Sn, 121/123Sb, 135/137Ba, 185/187Re, 209Bi), most of them quadrupolar. The scope of the review is the past ten years, i.e., 2007-2017.
Collapse
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
17
|
Li Y, Trébosc J, Hu B, Shen M, Amoureux JP, Lafon O. Indirect detection of broad spectra in solid-state NMR using interleaved DANTE trains. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 294:101-114. [PMID: 30032034 DOI: 10.1016/j.jmr.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
We analyze the performances and the optimization of 1H-{I} HMQC experiments using basic and interleaved DANTE schemes for the indirect detection of nuclei I = 1/2 or 1 exhibiting wide lines dominated by chemical shift anisotropy (CSA) or quadrupole interaction, respectively. These sequences are first described using average Hamiltonian theory. Then, we analyze using numerical simulations (i) the optimal lengths of the DANTE train and the individual pulses, (ii) the robustness of these experiments to offset, and (iii) the optimal choice of the defocusing and refocusing times for both 1H-{I} J- and D-HMQC sequences for 195Pt (I = 1/2) and 14N (I = 1) nuclei subject to large CSA and quadrupole interaction, respectively. These simulations are compared to 1H-{14N} D-HMQC experiments on γ-glycine and L-histidine.HCl at B0 = 18.8 T and MAS frequency of 62.5 kHz. The present study shows that (i) the optimal defocusing and refocusing times do not depend on the chosen DANTE scheme, (ii) the DANTE trains must be applied with the highest rf-field compatible with the probe specifications and the stability of the sample, (iii) the excitation bandwidth along the indirect dimension of HMQC sequence using DANTE trains is inversely proportional to their length, (iv) interleaved DANTE trains increase the excitation bandwidth of these sequences, and (v) dephasing under residual 1H-1H and 1H-I dipolar couplings, as well as 14N second-order quadrupole interaction, during the length of the DANTE scheme attenuate the transfer efficiency.
Collapse
Affiliation(s)
- Yixuan Li
- Univ. Lille, CNRS, UMR 8181-UCCS, Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France; Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Julien Trébosc
- Univ. Lille, CNRS, UMR 8181-UCCS, Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Ming Shen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, UMR 8181-UCCS, Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France; Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China; Bruker France, 34 rue de l'Industrie, F-67166 Wissembourg, France.
| | - Olivier Lafon
- Univ. Lille, CNRS, UMR 8181-UCCS, Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France; Institut Universitaire de France, 1, rue Descartes, 75231 Paris, France.
| |
Collapse
|
18
|
Plainchont B, Berruyer P, Dumez JN, Jannin S, Giraudeau P. Dynamic Nuclear Polarization Opens New Perspectives for NMR Spectroscopy in Analytical Chemistry. Anal Chem 2018; 90:3639-3650. [PMID: 29481058 DOI: 10.1021/acs.analchem.7b05236] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic nuclear polarization (DNP) can boost sensitivity in nuclear magnetic resonance (NMR) experiments by several orders of magnitude. This Feature illustrates how the coupling of DNP with both liquid- and solid-state NMR spectroscopy has the potential to considerably extend the range of applications of NMR in analytical chemistry.
Collapse
Affiliation(s)
- Bertrand Plainchont
- Université de Nantes , CNRS, CEISAM UMR 6230 , 44322 Nantes Cedex 03 , France
| | - Pierrick Berruyer
- Université Claude Bernard Lyon 1, CNRS, ENS de Lyon , Institut des Sciences Analytiques, UMR 5280 , 5 Rue de la Doua , 69100 Villeurbanne , France
| | - Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Univ. Paris Sud, Université Paris-Saclay , 91190 Gif-sur Yvette , France
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CNRS, ENS de Lyon , Institut des Sciences Analytiques, UMR 5280 , 5 Rue de la Doua , 69100 Villeurbanne , France
| | - Patrick Giraudeau
- Université de Nantes , CNRS, CEISAM UMR 6230 , 44322 Nantes Cedex 03 , France.,Institut Universitaire de France , 75005 Paris , France
| |
Collapse
|
19
|
|
20
|
Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:120-195. [PMID: 29157490 DOI: 10.1016/j.pnmrs.2017.06.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, which underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields.
Collapse
Affiliation(s)
- Aany Sofia Lilly Thankamony
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Johannes J Wittmann
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Monu Kaushik
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
| |
Collapse
|
21
|
Copéret C, Liao WC, Gordon CP, Ong TC. Active Sites in Supported Single-Site Catalysts: An NMR Perspective. J Am Chem Soc 2017; 139:10588-10596. [DOI: 10.1021/jacs.6b12981] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Christophe Copéret
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Wei-Chih Liao
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Christopher P. Gordon
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Ta-Chung Ong
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| |
Collapse
|