1
|
Ren Y, Zhu D, Shi T, Song B, Qi J, Zhang L, Yu Y. Composite Foams of the Graphitic Carbon Nitride@Carbon Nanofibrils Conferred a Superamphiphilic Property and Reinforced Thermal Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15122-15130. [PMID: 37828682 DOI: 10.1021/acs.langmuir.3c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Herein, we demonstrated the preparation of novel three-dimensional (3D) superamphiphilic g-C3N4@carbon nanofibers foam (g-C3N4@CNFs) via a two-step approach: liquid nitrogen treatment-freeze-drying; the foams possessed good thermal stability. In this approach, melamine acted as a nitrogen source, and nanofibrillated cellulose (NFCs) functioned as a 3D skeleton. The thermal stability of the as-prepared g-C3N4@CNFs-3 foam was much higher than that of g-C3N4@CNFs-1, as indicated by thermogravimetric data, including an increase of the onset weight loss point (Tonset) by 238.6 °C and an improvement of the maximal weight loss rate (Tmax) by 258.8 °C. The combination of g-C3N4 with CNFs conferred a reduction in the heat release rate (ca. -86%) and the total heat release (ca. -75%). Furthermore, the composition of the hydrophilically oxygenated functional groups and hydrophobic triazine domains in g-C3N4@CNFs rendered it a unique amphiphilic property (contact angle close to 0° within 1.0 s for water and 0° within 12 ms for hexane). A high storage capacity for water and various organic solvents of the superamphiphilic g-C3N4@CNFs foam was found, up to 40-50 times its original weight. The discovery of these superamphiphilic foams is of great significance for the development of superwetting materials and may find their applications in oil emulsion purification and catalyst support fields.
Collapse
Affiliation(s)
- Yanbiao Ren
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong, P. R. China
| | - Dandan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong, P. R. China
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong, P. R. China
| | - Bo Song
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, Shandong, P. R. China
| | - Jingbo Qi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong, P. R. China
| | - Lincai Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong, P. R. China
| | - Yanxin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong, P. R. China
| |
Collapse
|
2
|
Irshad H, Assiri MA, Rafique S, Khan AM, Imran M, Shahzad SA. Triazine based fluorescent sensor for sequential detection of Hg 2+ and L-Cysteine in real samples and application in logic Gate: A combination of Extensive experimental and theoretical analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122934. [PMID: 37270970 DOI: 10.1016/j.saa.2023.122934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Triazine based fluorescent sensor TBT was rationally designed and synthesized to achieve sequential detection of Hg2+ and L-cysteine based on the presence of sulfur moiety and suitable cavity in the molecule. Sensor TBT exhibited excellent sensing potential for the selective detection of Hg2+ ions and L-cysteine (Cys) in real samples. Upon addition of Hg2+ to sensor TBT, enhancement in emission intensity of sensor TBT was observed which was accredited to the presence of sulfur moiety and size of cavity in the sensor. Upon interaction with Hg2+ blockage of intramolecular charge transfer (ICT) along with chelation-enhanced fluorescence (CHEF) resulted in the increase in fluorescence emission intensity of sensor TBT. Further, TBT-Hg2+ complex was employed for the selective detection of Cys through fluorescence quenching mechanism. This was attributed to the significantly stronger interaction of Cys with Hg2+, which resulted in the formation of Cys-Hg2+ complex and subsequently sensor TBT was released from TBT-Hg2+ complex. The nature of interaction between TBT-Hg2+ and Cys-Hg2+ complex was evaluated through 1H NMR titration experimentations. Extensive DFT studies were also carried out which include thermodynamic stability, frontier molecular orbitals (FMO), density of states (DOS), non-covalent interaction (NCI), quantum theory of atom in molecule (QTAIM), electron density differences (EDD) and natural bond orbital (NBO) analyses. All the studies supported the non-covalent type of interaction between analytes and sensor TBT. The limit of detection for Hg2+ ions was found to be as low as 61.9 nM. Sensor TBT was also employed for the quantitative detection of Hg2+ and Cys in real samples. Additionally, logic gate was fabricated by using sequential detection strategy.
Collapse
Affiliation(s)
- Hasher Irshad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia
| | - Sanwa Rafique
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Asad Muhammad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
3
|
Li H, Han B, Ma H, Li R, Hou X, Zhang Y, Wang JJ. A "turn-on" inverse opal photonic crystal fluorescent sensing film for detection of cysteine and its bioimaging of living cells. Mikrochim Acta 2023; 190:49. [PMID: 36630016 DOI: 10.1007/s00604-022-05627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/17/2022] [Indexed: 01/12/2023]
Abstract
A "turn-on" inverse opal photonic crystal fluorescent sensing film infiltrated with a coumarin derivative is reported for the reliable and accurate detection of cysteine in human serum and fluorescence imaging of living cells. The coumarin derivative containing allyl ester specifically reacts with cysteine by ammonolysis to generate a fluorescent product whose emission wavelength is at ~ 535 nm, providing a selective fluorescence detection for cysteine. The emitted fluorescence is significantly enhanced due to the slow photon effect derived from the photonic crystal film. This is because the emission wavelength is overlapped with the blue-band edge of the photonic stopband of the selected inverse opal film. The fluorescence enhancement effect endows the prepared inverse opal film with highly sensitive detection with a limit of detection of 3.23 × 10-9 mol/L and a wide linear detection range of 1 × 10-7 - 1 × 10-3 mol/L. A fast response within 30 s toward cysteine is also achieved due to the three-dimensional interconnected macroporous structure with a high-specific surface area of the inverse opal film. The prepared inverse opal fluorescent sensing film has been successfully applied to the detection of cysteine in human serum and bioimaging of living cells. In the diluted human serum, the recoveries for the detection of cysteine were 97.92 - 107.20%, and the relative standard deviations were 2.61-9.04%, demonstrating the potential applicability of the inverse opal fluorescent sensing film to real sample analysis. The method may provide a universal strategy for constructing various photonic crystal fluorescent sensing films by using different fluorescent probes.
Collapse
Affiliation(s)
- Heng Li
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Bo Han
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Haojie Ma
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Ran Li
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Xueyan Hou
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Yuqi Zhang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.
| | - Ji-Jiang Wang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| |
Collapse
|
4
|
Metias YM, Hosny MM, Ayad MM, Kaji N. High ‐ throughput spectrofluorimetric approach for one-step, sensitive, and green assays of alfuzosin hydrochloride using a 96-well microplate reader: Application to tablet formulations and human urine. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Sohrabi H, Dezhakam E, Khataee A, Nozohouri E, Majidi MR, Mohseni N, Trofimov E, Yoon Y. Recent trends in layered double hydroxides based electrochemical and optical (bio)sensors for screening of emerging pharmaceutical compounds. ENVIRONMENTAL RESEARCH 2022; 211:113068. [PMID: 35283073 DOI: 10.1016/j.envres.2022.113068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The rapid expansion of the human population has given rise to new environmental and biomedical concerns, contributing to different advancements in the pharmaceutical industry. In the field of analytical chemistry over the last few years, layered double hydroxides (LDHs) have drawn significant attention, owing to their extraordinary properties. Furthermore, the novel advancement of LDH-based optical and electrochemical platforms to detect different pharmaceutical materials has acquired substantial attention because of their outstanding specificity, actual-time controlling, and user-friendliness. This review aims to recapitulate advanced LDHs-based optical and electrochemical sensors and biosensors to identify and measure important pharmaceutical compounds, such as anti-depressant, anti-inflammatory, anti-viral, anti-bacterial, anti-cancer, and anti-fungal drugs. Additionally, fundamental parameters, namely interactions between sensor and analyte, design rationale, classification, selectivity, and specificity are considered. Finally, the development of high-efficiency techniques for optical and electrochemical sensors and biosensors is featured to deliver scientists and readers a complete toolbox to identify a broad scope of pharmaceutical substances. Our goals are: (i) to elucidate the characteristics and capabilities of available LDHs for the identification of pharmaceutical compounds; and (ii) to deliver instances of the feasible opportunities that the existing devices have for the developed sensing of pharmaceuticals regarding the protection of ecosystems and human health at the global level.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Ehsan Dezhakam
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation.
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Nazanin Mohseni
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Evgeny Trofimov
- Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
6
|
Liu K, Wei Y, Xu J, Qiu L, Hu S, Wan J, Feng J. A poly(carbazole‐
alt
‐fluorene) π‐conjugated polymer bearing thiophenyl benzimidazole: synthesis, characterization and fluorescence recognition of metal ions and cysteine. POLYM INT 2021. [DOI: 10.1002/pi.6257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kuan Liu
- College of Science, Sichuan Agricultural University Ya'an China
| | - Yuhan Wei
- College of Science, Sichuan Agricultural University Ya'an China
| | - Jinyao Xu
- College of Science, Sichuan Agricultural University Ya'an China
| | - Lingfei Qiu
- College of Science, Sichuan Agricultural University Ya'an China
| | - Shaping Hu
- College of Science, Sichuan Agricultural University Ya'an China
| | - Jiayi Wan
- College of Science, Sichuan Agricultural University Ya'an China
| | - Juhua Feng
- College of Science, Sichuan Agricultural University Ya'an China
| |
Collapse
|
7
|
Recent advances in the development of responsive probes for selective detection of cysteine. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213182] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Recent progress on designing electrospun nanofibers for colorimetric biosensing applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Xiong F, Zhang JY, Du TT, Yang BB, Chen XG, Li L. Ultrasound-promoted specific chiroptical sensing of cysteine in aqueous solution and cells. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Colorimetric Chemosensor for Hg2+ Based on Nuclear Fast Red and a Cationic Polyelectrolyte in Aqueous Solution. J Fluoresc 2020; 30:175-180. [DOI: 10.1007/s10895-019-02482-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/26/2019] [Indexed: 01/07/2023]
|
11
|
Yang B, Li X, An J, Zhang H, Liu M, Cheng Y, Ding B, Li Y. Designing an "Off-On" Fluorescence Sensor Based on Cluster-Based Ca II-Metal-Organic Frameworks for Detection of l-Cysteine in Biological Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9885-9895. [PMID: 31268335 DOI: 10.1021/acs.langmuir.9b01479] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, luminescent metal-organic framework (MOF) materials have attracted considerable attention in fluorescence sensing. In this essay, we prepared a new cluster-based CaII-MOFs {[Ca1.5(μ8-HL1)(DMF)2]·DMF}n (1) with good water dispersibility, excellent photoluminescence properties (FL quantum yield of 20.37%) and great fluorescence stability. Further, it was employed to design as an "off-on" fluorescence sensor for sensitive detection of l-cysteine. This proposed strategy was that fluorescence of CaII-MOFs 1 was quenched for providing a low fluorescence background by the introduction of Pb2+ forming the CaII-MOFs 1/Pb2+ hybrid system. The quenching effect could be ascribed to the static quenching mechanism because of the formation of ground-state complexes and coordination interactions between the free carboxyl of H4L1 ligands of CaII-MOFs 1 and Pb2+. Then, with the addition of l-cysteine into the CaII-MOFs 1/Pb2+ hybrid system, the fluorescence signal was immediately restored. This result was because the Pb2+ was gradually released from the hybrid system by chelation interactions between the -SH groups of l-cysteine and Pb2+. This method received a relative wide linear range varying from 0.05 to 40 μM and a low detection limit of 15 nM for detection of l-cysteine. This proposed strategy was also successfully applied to detect l-cysteine in human serum samples with satisfactory recoveries from 95.9 to 101.5%.
Collapse
Affiliation(s)
- Bin Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Xinshu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Jundan An
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Huimin Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Manman Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Yue Cheng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Yan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| |
Collapse
|
12
|
Fabrication of Fluorescence Turn-off-on Sensor Based on g-C3N4 Quantum Dots and MgFe Layered Double Hydroxide for the Detection of Citrate. J Fluoresc 2019; 29:719-726. [DOI: 10.1007/s10895-019-02391-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
13
|
Super-reinforced photothermal stability of cellulose nanofibrils films by armour-type ordered doping Mg-Al layered double hydroxides. Carbohydr Polym 2019; 212:229-234. [DOI: 10.1016/j.carbpol.2019.01.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 01/01/2023]
|
14
|
Manzoor O, Soleja N, Mohsin M. Nanoscale gizmos - the novel fluorescent probes for monitoring protein activity. Biochem Eng J 2018; 133:83-95. [PMID: 32518506 PMCID: PMC7270366 DOI: 10.1016/j.bej.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/27/2017] [Accepted: 02/06/2018] [Indexed: 11/15/2022]
Abstract
Genetically-encoded FRET, organic dye, QD based sensors. Real-time monitoring of the respective metabolite level at sub cellular level. Spatio temporal resolution of the fluorophores by low intensity light. Monitoring of various metabolite levels in any cell type prokaryotic and eukaryotic as well. Functional analysis of the role of proteases in several diseases.
Nanobiotechnology has emerged inherently as an interdisciplinary field, with collaborations from researchers belonging to diverse backgrounds like molecular biology, materials science and organic chemistry. Till the current times, researchers have been able to design numerous types of nanoscale fluorescent tool kits for monitoring protein–protein interactions through real time cellular imagery in a fluorescence microscope. It is apparent that supplementing any protein of interest with a fluorescence habit traces its function and regulation within a cell. Our review therefore highlights the application of several fluorescent probes such as molecular organic dyes, quantum dots (QD) and fluorescent proteins (FPs) to determine activity state, expression and localization of proteins in live and fixed cells. The focus is on Fluorescence Resonance Energy Transfer (FRET) based nanosensors that have been developed by researchers to visualize and monitor protein dynamics and quantify metabolites of diverse nature. FRET based toolkits permit the resolution of ambiguities that arise due to the rotation of sensor molecules and flexibility of the probe. Achievements of live cell imaging and efficient spatiotemporal resolution however have been possible only with the advent of fluorescence microscopic technology, equipped with precisely sensitive automated softwares.
Collapse
|
15
|
Xu N, Yuan Y, Lan C, Wei W, Meng L, Fan L. A novel dual-emission fluorescent nanohybrid containing silica nanoparticles and gold nanoclusters for ratiometric determination of cysteine based on turn-on fluorescence strategy. NEW J CHEM 2018. [DOI: 10.1039/c8nj01528g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescence sensor SiO2NPs/AuNCs nanohybrid has been used developed for ratiometric visual detection of Cys.
Collapse
Affiliation(s)
- Na Xu
- College of Materials Science and Engineering
- Jilin Institute of Chemical Technology
- Jilin132022
- China
| | - Yaqing Yuan
- College of Materials Science and Engineering
- Jilin Institute of Chemical Technology
- Jilin132022
- China
| | - Chengwu Lan
- College of Materials Science and Engineering
- Jilin Institute of Chemical Technology
- Jilin132022
- China
| | - Wenqi Wei
- College of Materials Science and Engineering
- Jilin Institute of Chemical Technology
- Jilin132022
- China
| | - Lei Meng
- College of Materials Science and Engineering
- Jilin Institute of Chemical Technology
- Jilin132022
- China
- College of Science
| | - Louzhen Fan
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|