1
|
Yadav J, Pushpendra, Samal SK, Achary SN, Naidu BS. Sr 2BiF 7: A New Bismuth-Based Host Material for Lanthanide Ions Doping: Synthesis, Downshifting, and Upconversion Luminescence Properties for Multimode Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51028-51036. [PMID: 39262382 DOI: 10.1021/acsami.4c08301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A new bismuth-based host material, i.e., Sr2BiF7, is explored in this work. Undoped and lanthanide ion-doped Sr2BiF7 nanomaterials are prepared using a simple coprecipitation technique at 120 °C. The undoped nanomaterials exhibit a blue color under 365 nm excitation. The downshifting and upconversion photoluminescent properties of Er and Yb codoped Sr2BiF7 nanomaterials are investigated. The optimum up-conversion luminescence is produced by nanomaterials doped with 5% Yb3+ and 0.2% Er3+. These nanomaterials show blue and magenta colors upon excitation at 365 and 395 nm wavelengths, respectively. Sr2BiF7 material doped with Er3+ shows green emission, while the codoped Er3+, Yb3+ nanomaterials exhibit an orange-red color under 980 nm light. A specific amount of polyvinyl chloride (PVC) is used for producing luminescent ink with these nanoparticles for multimode anticounterfeiting applications. The letters and patterns written with luminescent ink based on Er3+, Yb3+ doped nanomaterials show blue, magenta, and orange-red colors under 365, 395, and 980 nm light, respectively. These results establish that this material can be effectively used as a multimode photoluminescent covert tag to combat counterfeiting.
Collapse
Affiliation(s)
- Jyoti Yadav
- Energy and Environment Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Pushpendra
- Energy and Environment Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Satish Kumar Samal
- Energy and Environment Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Srungarpu N Achary
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Trombay 400085, India
| | - Boddu S Naidu
- Energy and Environment Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| |
Collapse
|
2
|
Nosov VG, Betina AA, Bulatova TS, Guseva PB, Kolesnikov IE, Orlov SN, Panov MS, Ryazantsev MN, Bogachev NA, Skripkin MY, Mereshchenko AS. Effect of Gd 3+, La 3+, Lu 3+ Co-Doping on the Morphology and Luminescent Properties of NaYF 4:Sm 3+ Phosphors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2157. [PMID: 36984038 PMCID: PMC10058261 DOI: 10.3390/ma16062157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The series of luminescent NaYF4:Sm3+ nano- and microcrystalline materials co-doped by La3+, Gd3+, and Lu3+ ions were synthesized by hydrothermal method using rare earth chlorides as the precursors and citric acid as a stabilizing agent. The phase composition of synthesized compounds was studied by PXRD. All synthesized materials except ones with high La3+ content (where LaF3 is formed) have a β-NaYF4 crystalline phase. SEM images demonstrate that all particles have shape of hexagonal prisms. The type and content of doping REE significantly effect on the particle size. Upon 400 nm excitation, phosphors exhibit distinct emission peaks in visible part of the spectrum attributed to 4G5/2→6HJ transitions (J = 5/2-11/2) of Sm3+ ion. Increasing the samarium (III) content results in concentration quenching by dipole-dipole interactions, the optimum Sm3+concentration is found to be of 2%. Co-doping by non-luminescent La3+, Gd3+ and Lu3+ ions leads to an increase in emission intensity. This effect was explained from the Sm3+ local symmetry point of view.
Collapse
Affiliation(s)
- Viktor G. Nosov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Anna A. Betina
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Tatyana S. Bulatova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Polina B. Guseva
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Ilya E. Kolesnikov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Sergey N. Orlov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
- Federal State Unitary Enterprise “Alexandrov Research Institute of Technology”, 72 Koporskoe Shosse, 188540 Sosnovy Bor, Russia
- Institute of Nuclear Industry, Peter the Great St. Petersburg Polytechnic University (SPbSU), 29, Polytechnicheskaya Street, 195251 St. Petersburg, Russia
| | - Maxim S. Panov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
- Center for Biophysical Studies, Saint Petersburg State Chemical Pharmaceutical University, 14 Professor Popov Str., Lit. A, 197022 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia
| | - Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Mikhail Yu Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Li L, Xing F, Zhang X, Hao H, Wang Y. Emission enhancement and color modulation of Tm(Ho)/Yb codoped Gd2(MoO4)3 thin films via the use of multilayered structure. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Ferrera-González J, Francés-Soriano L, Estébanez N, Navarro-Raga E, González-Béjar M, Pérez-Prieto J. NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids. NANOSCALE 2021; 13:10067-10080. [PMID: 34042932 DOI: 10.1039/d1nr00389e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photophysical characterization of upconversion nanoparticles (UCNPs) and nanohybrids (UCNHs) is more challenging than that of down-conversion nanomaterials. Moreover, it is still difficult to gain knowledge about the homogeneity of the sample and colocalization of emissive chromophores and nanoparticles in nanohybrids. Near infrared laser scanning microscopy (NIR-LSM) is a well-known and useful imaging technique, which enables excitation in the NIR region and has been extensively applied to optical fluorescence imaging of organic fluorophores and nanomaterials, such as quantum dots, which exhibit a short-lived emission. NIR-LSM has recently been used to determine the empirical emission lifetime of UCNPs, thus extending its application range to nanomaterials with a long lifetime emission. Here, we review our previous findings and include new measurements and samples to fully address the potential of this technique. NIR-LSM has proved to be extraordinarily useful not only for photophysical characterization of UCNHs consisting of UCNPs capped with a fluorophore to easily visualize the occurrence of the resonance energy transfer process between the UCNH constituents and their homogeneity, but also to assess the colocalization of the fluorophore and the UCNP in the UCNH; all this information can be acquired on the micro-/nano-meter scale by just taking one image.
Collapse
Affiliation(s)
- Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Laura Francés-Soriano
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain. and nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Nestor Estébanez
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Enrique Navarro-Raga
- Servicio Central de Soporte a la Investigación Experimental (SCSIE). University of Valencia, Burjassot, Valencia 46100, Spain
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| |
Collapse
|
5
|
Wang Y, Lu W, Yue D, Wang M, Tian B, Li Q, Hu B, Wang Z, Zhang Y. A strategy to enhance the up-conversion luminescence of nanospherical, rod-like and tube-like NaYF4: Yb3+, Er3+ (Tm3+) by combining with carbon dots. CrystEngComm 2021. [DOI: 10.1039/d0ce01516d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The luminescence enhanced strategy of combining the material with carbon dots to form CDs@NaYF4: Yb3+, Er3+ (Tm3+) composites is effective not only for the cubic- and hexagonal-phase materials but also for those with different morphologies.
Collapse
Affiliation(s)
- Yanyan Wang
- Henan International Joint Laboratory of Rare Earth Composite Materials
- College of Material Engineering
- Henan University of Engineering
- Xinzheng 451191
- P. R. China
| | - Wei Lu
- University Research Facility in Materials Characterization and Device Fabrication
- The Hong Kong Polytechnic University
- P. R. China
| | - Dan Yue
- Henan International Joint Laboratory of Rare Earth Composite Materials
- College of Material Engineering
- Henan University of Engineering
- Xinzheng 451191
- P. R. China
| | - Mengnan Wang
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Boshi Tian
- Henan Key Laboratory of Rare Earth Functional Materials
- Zhoukou Normal University
- Zhoukou 466001
- P. R. China
| | - Qingfeng Li
- Henan Key Laboratory of Rare Earth Functional Materials
- Zhoukou Normal University
- Zhoukou 466001
- P. R. China
| | - Bin Hu
- Henan Key Laboratory of Rare Earth Functional Materials
- Zhoukou Normal University
- Zhoukou 466001
- P. R. China
| | - Zhenling Wang
- Henan International Joint Laboratory of Rare Earth Composite Materials
- College of Material Engineering
- Henan University of Engineering
- Xinzheng 451191
- P. R. China
| | - Yilei Zhang
- Civil & Mechanical Engineering
- University of Canterbury
- Christchurch 8140
- New Zealand
| |
Collapse
|
6
|
Song X, Zhang H, Yan T, Hong T, Zhang S. Controllable Growth and Assembling Strategies Based on Nanomaterials for Targeted and Precise Therapy of Malignant Cancers. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University Linyi Shandong 276005 China
| | - Huairong Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University Linyi Shandong 276005 China
| | - Tao Yan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University Linyi Shandong 276005 China
| | - Tongtong Hong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University Linyi Shandong 276005 China
- Shandong Sino‐Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University Qingdao Shandong 266071 China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University Linyi Shandong 276005 China
| |
Collapse
|
7
|
Hong T, Jiang Y, Yue Z, Song X, Wang Z, Zhang S. Construction of Multicolor Upconversion Nanotheranostic Agent for in-situ Cooperative Photodynamic Therapy for Deep-Seated Malignant Tumors. Front Chem 2020; 8:52. [PMID: 32117878 PMCID: PMC7026389 DOI: 10.3389/fchem.2020.00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
Upconversion nanoparticles (UCNPs)-based photodynamic nanotheranostic agents could address the main drawbacks of photosensitizer molecules (PSs) including instability in aqueous solution and rapid clearance. Due to the relatively weak luminescence intensity of UCNPs and insufficient reactive oxygen species (ROSs), UCNPs-based photodynamic therapy (UCNPs-PDT) was discounted for deep-seated tumors. Thus, we proposed a PSs-modulated sensitizing switch strategy. Indocyanine green (ICG) as an NIR organic dye was proved to effectively enhance the luminescence intensity of UCNPs. Herein, four-color UCNPs were coated with a silica layer which loaded ICG and PSs while the thickness of silica layer was controlled to assist the sensitization function of ICG and activation of PSs. Under the drive of mitochondria-targeting ligand, the prepared nanotheranostic agent would accumulate in the mitochondria where ROSs were in-situ produced and then cell apoptosis was induced. Due to the cooperative PDT and high tissue-penetration depth of NIR laser, the prepared upconversion nanotheranostic agent could achieve significant inhibition on the deep-seated tumors.
Collapse
Affiliation(s)
- Tongtong Hong
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yanxialei Jiang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Zihong Yue
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Xinyue Song
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| |
Collapse
|
8
|
Li P, Chen W, Yan Y, Chen B, Wang Y, Huang X. Laser-Triggered Injectable Gelatin Hydrogels System for Combinatorial Upconversion Fluorescence Imaging and Antitumor Chemophotothermal Therapy. ACS APPLIED BIO MATERIALS 2019; 2:3722-3729. [PMID: 35021345 DOI: 10.1021/acsabm.9b00220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Po Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring North Rd., Beijing 100048, People’s Republic of China
| | - Wei Chen
- Medical and Health Analysis Center, Peking University, Beijing 100191, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100091, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100091, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100091, China
| | - Xiaonan Huang
- Department of Chemistry, Capital Normal University, 105 West Third Ring North Rd., Beijing 100048, People’s Republic of China
| |
Collapse
|
9
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
10
|
Yang Z, Sun Z, Ren Y, Chen X, Zhang W, Zhu X, Mao Z, Shen J, Nie S. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (Review). Mol Med Rep 2019; 20:5-15. [PMID: 31115497 PMCID: PMC6579972 DOI: 10.3892/mmr.2019.10218] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
Nanomaterials play crucial roles in the diagnosis and treatment of diseases. Photothermal and photodynamic therapy, as two minimally invasive therapeutic methods, have promising potential in the diagnosis and prevention of cancer. Recently, many photothermal materials (such as noble metal material, transition metal sulfur oxides, carbon material and upconversion nanomaterial) and photodynamic materials (such as phthalein cyanogen, porphyrins and other dye molecules) have been applied in photothermal therapy (PTT) and photodynamic therapy (PDT). Moreover, as nanomaterials have suitable biocompatibility, these materials have been applied in cancer therapy. In the present review, we summarized the effects of different material types, synthesis methods, material morphologies and surface modifications on the outcomes of cancer therapy. The application of nanomaterials in PTT and PDT was introduced and the advantages and disadvantages of PTT and PDT in the prevention of cancer were discussed. Finally, we discussed the application of nanomaterials in the combination of PTT and PDT in cancer treatment.
Collapse
Affiliation(s)
- Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xin Chen
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xuhui Zhu
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat‑sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
11
|
Majdinasab M, Mitsubayashi K, Marty JL. Optical and Electrochemical Sensors and Biosensors for the Detection of Quinolones. Trends Biotechnol 2019; 37:898-915. [PMID: 30777309 DOI: 10.1016/j.tibtech.2019.01.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
One major concern associated with food safety is related to residual effects of antibiotics that are widely used to treat animals and result in antimicrobial resistance. Among different groups of antibiotic, the use of quinolones in livestock is of major concern due to the significance of these antimicrobial drugs for the treatment of a range of infectious diseases in humans. Therefore, it is desirable to develop reliable methods for the rapid, sensitive, and on-site detection of quinolone residue levels in animal-derived foods to ensure food safety. Sensors and biosensors are promising future platforms for rapid and on-site monitoring of antibiotic residues. In this review, we focus on recent advancements and modern approaches in quinolone sensors and biosensors.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Jean Louis Marty
- Biocapteurs-Analyses-Environnement (BAE), Universite de Perpignan Via Domitia, Perpignan Cedex 66860, France.
| |
Collapse
|
12
|
Zhao H, Zhao L, Wang Z, Xi W, Dibaba ST, Wang S, Shi L, Sun L. Heterogeneous growth of palladium nanocrystals on upconversion nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00317g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Based on the heterogeneous growth of nano-palladium on UCNPs, a new kind of nanocomposite was developed that can be used for dual-imaging guided photothermal therapy. This smart strategy provides new insights for future development of materials based on the multicomponent nanocomposites.
Collapse
Affiliation(s)
- Huijun Zhao
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Lei Zhao
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Zhuo Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Lab of Hainan Province, Hainan University
- Haikou 570228
- China
| | - Wensong Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University
- Shanghai 200444
- China
| | - Solomon Tiruneh Dibaba
- Physics Department, International Centre for Quantum and Molecular Structures, Shanghai University
- Shanghai 200444
- China
| | - Shuhan Wang
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Liyi Shi
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Lining Sun
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
13
|
Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|