1
|
Wrobel EC, Guimarães IDL, Wohnrath K, Oliveira ON. Effects induced by η 6-p-cymene ruthenium(II) complexes on Langmuir monolayers mimicking cancer and healthy cell membranes do not correlate with their toxicity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184332. [PMID: 38740123 DOI: 10.1016/j.bbamem.2024.184332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The mechanism of chemotherapeutic action of Ru-based drugs involves plasma membrane disruption and valuable insights into this process may be gained using cell membrane models. The interactions of a series of cytotoxic η6-p-cymene ruthenium(II) complexes, [Ru(η6-p-cymene)P(3,5-C(CH3)3-C6H3)3Cl2] (1), [Ru(η6-p-cymene)P(3,5-CH3-C6H3)3Cl2] (2), [Ru(η6-p-cymene)P(4-CH3O-3,5-CH3-C6H2)3Cl2] (3), and [Ru(η6-p-cymene)P(4-CH3O-C6H4)3Cl2] (4), were examined using Langmuir monolayers as simplified healthy and cancerous outer leaflet plasma membrane models. The cancerous membrane (CM1 and CM2) models contained either 40 % 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 30 % cholesterol (Chol), 20 % 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 10 % 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS). Meanwhile, the healthy membrane (HM1 and HM2) models were composed of 60 % DPPC or DOPC, 30 % Chol and 10 % DPPE. The complexes affected surface pressure isotherms and decreased compressional moduli of cancerous and healthy membrane models, interacting with the monolayers headgroup and tails according to data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). However, the effects did not correlate with the toxicity of the complexes to cancerous and healthy cells. Multidimensional projection technique showed that the complex (1) induced significant changes in the CM1 and HM1 monolayers, though it had the lowest cytotoxicity against cancer cells and is not toxic to healthy cells. Moreover, the most toxic complexes (2) and (4) were those that least affected CM2 and HM2 monolayers. The findings here support that the ruthenium complexes interact with lipids and cholesterol in cell membrane models, and their cytotoxic activities involve a multifaceted mode of action beyond membrane disruption.
Collapse
Affiliation(s)
- Ellen C Wrobel
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, São Paulo, SP 13560-970, Brazil.
| | | | - Karen Wohnrath
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná 84030-900, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, São Paulo, SP 13560-970, Brazil.
| |
Collapse
|
2
|
Dorairaj DP, Haribabu J, Dharmasivam M, Malekshah RE, Mohamed Subarkhan MK, Echeverria C, Karvembu R. Ru(II)- p-Cymene Complexes of Furoylthiourea Ligands for Anticancer Applications against Breast Cancer Cells. Inorg Chem 2023; 62:11761-11774. [PMID: 37459067 DOI: 10.1021/acs.inorgchem.3c00757] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Half-sandwich Ru(II) complexes containing nitro-substituted furoylthiourea ligands, bearing the general formula [(η6-p-cymene)RuCl2(L)] (1-6) and [(η6-p-cymene)RuCl(L)(PPh3)]+ (7--12), have been synthesized and characterized. In contrast to the spectroscopic data which revealed monodentate coordination of the ligands to the Ru(II) ion via a "S" atom, single crystal X-ray structures revealed an unusual bidentate N, S coordination with the metal center forming a four-membered ring. Interaction studies by absorption, emission, and viscosity measurements revealed intercalation of the Ru(II) complexes with calf thymus (CT) DNA. The complexes showed good interactions with bovine serum albumin (BSA) as well. Further, their cytotoxicity was explored exclusively against breast cancer cells, namely, MCF-7, T47-D, and MDA-MB-231, wherein all of the complexes were found to display more pronounced activity than their ligand counterparts. Complexes 7-12 bearing triphenylphosphine displayed significant cytotoxicity, among which complex 12 showed IC50 values of 0.6 ± 0.9, 0.1 ± 0.8, and 0.1 ± 0.2 μM against MCF-7, T47-D, and MDA-MB-231 cell lines, respectively. The most active complexes were tested for their mode of cell death through staining assays, which confirmed apoptosis. The upregulation of apoptotic inducing and downregulation of apoptotic suppressing proteins as inferred from the western blot analysis also corroborated the apoptotic mode of cell death. The active complexes effectively generated reactive oxygen species (ROS) in MDA-MB-231 cells as analyzed from the 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining. Finally, in vivo studies of the highly active complexes (6 and 12) were performed on the mice model. Histological analyses revealed that treatment with these complexes at high doses of up to 8 mg/kg did not induce any visible damage to the tested organs.
Collapse
Affiliation(s)
| | - Jebiti Haribabu
- Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Mahendiran Dharmasivam
- Department of Chemistry, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mohamed Kasim Mohamed Subarkhan
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310018, P. R. China
| | - Cesar Echeverria
- Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
3
|
Odachowski M, Neven R, Perversi G, Romano D, Slabber CA, Hadiji M, Honing M, Zhao Y, Munro OQ, Blom B. Ionic mononuclear [Fe] and heterodinuclear [Fe,Ru] bis(diphenylphosphino)alkane complexes: Synthesis, spectroscopy, DFT structures, cytotoxicity, and biomolecular interactions. J Inorg Biochem 2023; 242:112156. [PMID: 36801621 DOI: 10.1016/j.jinorgbio.2023.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Iron(II) and Ru(II) half-sandwich compounds encompass some promising pre-clinical anticancer agents whose efficacy may be tuned by structural modification of the coordinated ligands. Here, we combine two such bioactive metal centres in cationic bis(diphenylphosphino)alkane-bridged heterodinuclear [Fe2+, Ru2+] complexes to delineate how ligand structural variations modulate compound cytotoxicity. Specifically, Fe(II) complexes of the type [(η5-C5H5)Fe(CO)2(κ1-PPh2(CH2)nPPh2)]{PF6} (n = 1-5), compounds 1-5, and heterodinuclear [Fe2+, Ru2+] complexes, [(η5-C5H5)Fe(CO)2(μ-PPh2(CH2)nPPh2))(η6-p-cymene)RuCl2]{PF6} (n = 2-5) (compounds 7-10), were synthesized and characterised. The mononuclear complexes were moderately cytotoxic against two ovarian cancer cell lines (A2780 and cisplatin resistant A2780cis) with IC50 values ranging from 2.3 ± 0.5 μM to 9.0 ± 1.4 μM. For 7-10, the cytotoxicity increased with increasing Fe⋅⋅⋅Ru distance, consistent with their DNA affinity. UV-visible spectroscopy suggested the chloride ligands in heterodinuclear 8-10 undergo stepwise substitution by water on the timescale of the DNA interaction experiments, probably affording the species [RuCl(OH2)(η6-p-cymene)(PRPh2)]2+ and [Ru(OH)(OH2)(η6-p-cymene)(PRPh2)]2+ (where PRPh2 has R = [-(CH2)5PPh2-Fe(C5H5)(CO)2]+). One interpretation of the combined DNA-interaction and kinetic data is that the mono(aqua) complex may interact with dsDNA through nucleobase coordination. Heterodinuclear 10 reacts with glutathione (GSH) to form stable mono- and bis(thiolate) adducts, 10-SG and 10-SG2, with no evidence of metal ion reduction (k1 = 1.07 ± 0.17 × 10-1 min-1 and k2 = 6.04 ± 0.59 × 10-3 min-1 at 37 °C). This work highlights the synergistic effect of the Fe2+/Ru2+ centres on both the cytotoxicity and biomolecular interactions of the present heterodinuclear complexes.
Collapse
Affiliation(s)
- Matylda Odachowski
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Robin Neven
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Giuditta Perversi
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Dario Romano
- King Abdullah University of Science and Technology, Department of Chemical Sciences, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cathryn A Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050 Johannesburg, South Africa
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | - Maarten Honing
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Yuandi Zhao
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050 Johannesburg, South Africa.
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands.
| |
Collapse
|
4
|
Cervinka J, Gobbo A, Biancalana L, Markova L, Novohradsky V, Guelfi M, Zacchini S, Kasparkova J, Brabec V, Marchetti F. Ruthenium(II)-Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J Med Chem 2022; 65:10567-10587. [PMID: 35913426 PMCID: PMC9376960 DOI: 10.1021/acs.jmedchem.2c00722] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
While ruthenium arene complexes have been widely investigated
for
their medicinal potential, studies on homologous compounds containing
a tridentate tris(1-pyrazolyl)methane ligand are almost absent in
the literature. Ruthenium(II) complex 1 was obtained
by a modified reported procedure; then, the reactions with a series
of organic molecules (L) in boiling alcohol afforded novel complexes 2–9 in 77–99% yields. Products 2–9 were fully structurally characterized. They are
appreciably soluble in water, where they undergo partial chloride/water
exchange. The antiproliferative activity was determined using a panel
of human cancer cell lines and a noncancerous one, evidencing promising
potency of 1, 7, and 8 and
significant selectivity toward cancer cells. The tested compounds
effectively accumulate in cancer cells, and mitochondria represent
a significant target of biological action. Most notably, data provide
convincing evidence that the mechanism of biological action is mediated
by the inhibiting of mitochondrial calcium intake.
Collapse
Affiliation(s)
- Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biochemistry, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Alberto Gobbo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.,Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Massimo Guelfi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biophysics, Palacky University in Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
5
|
Morais TS, Marques F, Madeira PJA, Robalo MP, Garcia MH. Design and Anticancer Properties of New Water-Soluble Ruthenium–Cyclopentadienyl Complexes. Pharmaceuticals (Basel) 2022; 15:ph15070862. [PMID: 35890160 PMCID: PMC9321894 DOI: 10.3390/ph15070862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Ruthenium complexes are emerging as one of the most promising classes of complexes for cancer therapy. However, their limited aqueous solubility may be the major limitation to their potential clinical application. In view and to contribute to the progress of this field, eight new water-soluble Ru(II) organometallic complexes of general formula [RuCp(mTPPMS)n(L)] [CF3SO3], where mTPPMS = diphenylphosphane-benzene-3-sulfonate, for n = 2, L is an imidazole-based ligand (imidazole, 1-benzylimidazole, 1-butylimidazole, (1-(3-aminopropyl)imidazole), and (1-(4-methoxyphenyl)imidazole)), and for n = 1, L is a bidentate heteroaromatic ligand (2-benzoylpyridine, (di(2-pyridyl)ketone), and (1,2-(2-pyridyl)benzo-[b]thiophene)) were synthesized and characterized. The new complexes were fully characterized by NMR, FT-IR, UV–vis., ESI-HRMS, and cyclic voltammetry, which confirmed all the proposed molecular structures. The antiproliferative potential of the new Ru(II) complexes was evaluated on MDAMB231 breast adenocarcinoma, A2780 ovarian carcinoma, and HT29 colorectal adenocarcinoma cell lines, showing micromolar (MDAMB231 and HT29) and submicromolar (A2780) IC50 values. The interaction of complex 6 with human serum albumin (HSA) and fatty-acid-free human serum albumin (HSAfaf) was evaluated by fluorescence spectroscopy techniques, and the results revealed that the ruthenium complex strongly quenches the intrinsic fluorescence of albumin in both cases.
Collapse
Affiliation(s)
- Tânia S. Morais
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: (T.S.M.); (M.H.G.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Lisboa, Portugal;
| | | | - Maria Paula Robalo
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Maria Helena Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: (T.S.M.); (M.H.G.)
| |
Collapse
|
6
|
Iqbal S, Siddiqui WA, Ashraf A, Tong KK, Aman F, Söhnel T, Jamieson SM, Hanif M, Hartinger CG. Substitution of the chlorido ligand for PPh3 in anticancer organoruthenium complexes of sulfonamide-functionalized pyridine-2-carbothioamides leads to high cytotoxic activity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Swaminathan S, Haribabu J, Balakrishnan N, Vasanthakumar P, Karvembu R. Piano stool Ru(II)-arene complexes having three monodentate legs: A comprehensive review on their development as anticancer therapeutics over the past decade. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Mukherjee A, Koley TS, Chakraborty A, Purkait K, Mukherjee A. Synthesis, Structure and Cytotoxicity of N,N and N,O-Coordinated Ru II Complexes of 3-Aminobenzoate Schiff Bases against Triple-negative Breast Cancer. Chem Asian J 2021; 16:3729-3742. [PMID: 34549886 DOI: 10.1002/asia.202100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
Half-sandwich RuII complexes, [(YZ)RuII (η6 -arene)(X)]+, (YZ=chelating bidentate ligand, X=halide), with N,N and N,O coordination (1-9) show significant antiproliferative activity against the metastatic triple-negative breast carcinoma (MDA-MB-231). 3-aminobenzoic acid or its methyl ester is used in all the ligands while varying the aldehyde for N,N and N,O coordination. In the N,N coordinated complex the coordinated halide(X) is varied for enhancing stability in solution (X=Cl, I). Rapid aquation and halide exchange of the pyridine analogues, 2 and 3, in solution are a major bane towards their antiproliferative activity. Presence of free -COOH group (1 and 4) make complexes hydrophilic and reduces toxicity. The imidazolyl 3-aminobenzoate based N,N coordinated 5 and 6 display better solution stability and efficient antiproliferative activity (IC50 ca. 2.3-2.5 μM) compared to the pyridine based 2 and 3 (IC50 >100 μM) or the N,O coordinated complexes (7-9) (IC50 ca. 7-10 μM). The iodido coordinated, 6, is resistant towards aquation and halide exchange. The N,O coordinated 7-9 underwent instantaneous aquation at pH 7.4 generating monoaquated complexes stable for at least 6 h. Complexes 5 and 6, bind to 9-ethylguanine (9-EtG) showing propensity to interact with DNA bases. The complexes may kill via apoptosis as displayed from the study of 8. The change in coordination mode and the aldehyde affected the solution stability, antiproliferative activity and mechanistic pathways. The N,N coordinated (5 and 6) exhibit arrest in the G2/M phase while the N,O coordinated 8 showed arrest in the G0/G1 phase.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tuhin Subhra Koley
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ayan Chakraborty
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Kallol Purkait
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
9
|
Domínguez-Jurado E, Cimas FJ, Castro-Osma JA, Juan A, Lara-Sánchez A, Rodríguez-Diéguez A, Shafir A, Ocaña A, Alonso-Moreno C. Tuning the Cytotoxicity of Bis-Phosphino-Amines Ruthenium(II) Para-Cymene Complexes for Clinical Development in Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13101559. [PMID: 34683852 PMCID: PMC8539368 DOI: 10.3390/pharmaceutics13101559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Despite some limitations such as long-term side effects or the potential presence of intrinsic or acquired resistance, platinum compounds are key therapeutic components for the treatment of several solid tumors. To overcome these limitations, maintaining the same efficacy, organometallic ruthenium(II) compounds have been proposed as a viable alternative to platinum agents as they have a more favorable toxicity profile and represent an ideal template for both, high-throughput and rational drug design. To support the preclinical development of bis-phoshino-amine ruthenium compounds in the treatment of breast cancer, we carried out chemical modifications in the structure of these derivatives with the aim of designing less toxic and more efficient therapeutic agents. We report new bis-phoshino-amine ligands and the synthesis of their ruthenium counterparts. The novel ligands and compounds were fully characterized, water stability analyzed, and their in vitro cytotoxicity against a panel of tumor cell lines representative of different breast cancer subtypes was evaluated. The mechanism of action of the lead compound of the series was explored. In vivo toxicity was also assessed. The results obtained in this article might pave the way for the clinical development of these compounds in breast cancer therapy.
Collapse
Affiliation(s)
- Elena Domínguez-Jurado
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.D.-J.); (J.A.C.-O.); (A.J.)
- Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Francisco J. Cimas
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain;
| | - José Antonio Castro-Osma
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.D.-J.); (J.A.C.-O.); (A.J.)
- Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Alberto Juan
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.D.-J.); (J.A.C.-O.); (A.J.)
- Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Agustín Lara-Sánchez
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain;
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda de Fuentenueva s/n, 18071 Granada, Spain;
| | - Alexandr Shafir
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain;
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, IdISSC and CIBERONC, 28040 Madrid, Spain
- Correspondence: (A.O.); (C.A.-M.); Tel.: +34-6356-81806 (A.O.); +34-9675-99200 (C.A.-M.)
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.D.-J.); (J.A.C.-O.); (A.J.)
- Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Correspondence: (A.O.); (C.A.-M.); Tel.: +34-6356-81806 (A.O.); +34-9675-99200 (C.A.-M.)
| |
Collapse
|
10
|
Klaimanee E, Nhukeaw T, Saithong S, Ratanaphan A, Phongpaichit S, Tantirungrotechai Y, Leesakul N. Half-sandwich ruthenium (II) p-cymene complexes based on organophosphorus ligands: Structure determination, computational investigation, in vitro antiproliferative effect in breast cancer cells and antimicrobial activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Hosseini-Kharat M, Rahimi R, Alizadeh AM, Zargarian D, Khalighfard S, Mangin LP, Mahigir N, Ayati SH, Momtazi-Borojeni AA. Cytotoxicity, anti-tumor effects and structure-activity relationships of nickel and palladium S,C,S pincer complexes against double and triple-positive and triple-negative breast cancer (TNBC) cells. Bioorg Med Chem Lett 2021; 43:128107. [PMID: 33991624 DOI: 10.1016/j.bmcl.2021.128107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive form of breast cancer. The high rate of metastasis associated with TNBC is attributed to its multidrug resistance, making the treatment of this metastatic condition difficult. The development of metal-based antitumor agents was launched with the discovery of cisplatin, followed by the development of related antitumor drugs such as carboplatin and oxaliplatin. Yet, the severe side effects of this approach represent a limitation for its clinical use. The current search for new metal-based antitumor agents possessing less severe side effects than these platinum-based complexes has focused on various complexes of nickel and palladium, the group 10 congeners of platinum. In this work, we have prepared a series of SCS-type pincer complexes of nickel and palladium featuring a stable meta-phenylene central moiety and two chelating but labile thioamide donor moieties at the peripheries of the ligand. We have demonstrated that the complexes in question, namely L1NiCl, L1NiBr, L1PdCl, L2PdCl, and L3PdCl, are active on the proliferation of estrogen-dependent breast tumor cells (MCF-7 and MC4L2) and triple-negative breast cancer (4 T1). Among the complexes studied, the palladium derivatives were found to be much safer anticancer agents than nickel counterparts; these were thus selected for further investigations for their effects on tumor cell adhesion and migration as well. The results of our studies show that palladium complexes are effective for inhibiting TNBC 4 T1 cells adhesion and migration. Finally, the HOMO and LUMO analysis was used to determine the reactivity and charge transfer within the compounds.
Collapse
Affiliation(s)
- Mahboubeh Hosseini-Kharat
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran; Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran; Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Davit Zargarian
- Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | - Solmaz Khalighfard
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Loïc P Mangin
- Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Nasim Mahigir
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Seyed Hasan Ayati
- Immunology Research Center, Department of Immunology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Immunology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Steel TR, Walsh F, Wieczorek-Błauż A, Hanif M, Hartinger CG. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213890] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Biancalana L, Kostrhunova H, Batchelor LK, Hadiji M, Degano I, Pampaloni G, Zacchini S, Dyson PJ, Brabec V, Marchetti F. Hetero-Bis-Conjugation of Bioactive Molecules to Half-Sandwich Ruthenium(II) and Iridium(III) Complexes Provides Synergic Effects in Cancer Cell Cytotoxicity. Inorg Chem 2021; 60:9529-9541. [PMID: 34156246 DOI: 10.1021/acs.inorgchem.1c00641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four bipyridine-type ligands variably derivatized with two bioactive groups (taken from ethacrynic acid, flurbiprofen, biotin, and benzylpenicillin) were prepared via sequential esterification steps from commercial 2,2'-bipyridine-4,4'-dicarboxylic acid and subsequently coordinated to ruthenium(II) p-cymene and iridium(III) pentamethylcyclopentadienyl scaffolds. The resulting complexes were isolated as nitrate salts in high yields and fully characterized by analytical and spectroscopic methods. NMR and MS studies in aqueous solution and in cell culture medium highlighted a substantial stability of ligand coordination and a slow release of the bioactive fragments in the latter case. The complexes were assessed for their antiproliferative activity on four cancer cell lines, showing cytotoxicity to the low micromolar level (equipotent with cisplatin). Additional biological experiments revealed a multimodal mechanism of action of the investigated compounds, involving DNA metalation and enzyme inhibition. Synergic effects provided by specific combinations of metal and bioactive fragments were identified, pointing toward an optimal ethacrynic acid/flurbiprofen combination for both Ru(II) and Ir(III) complexes.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Lucinda K Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ilaria Degano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
14
|
Nandi PG, Jadi PK, Das K, Prathapa SJ, Mandal BB, Kumar A. Synthesis of NNN Chiral Ruthenium Complexes and Their Cytotoxicity Studies. Inorg Chem 2021; 60:7422-7432. [PMID: 33909427 DOI: 10.1021/acs.inorgchem.1c00698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The synthesis and characterization of chiral pincer-ruthenium complexes of the type (R2NNN)RuCl2 (PPh3) (R = 3-methylbutyl and 3,3-dimethylbutyl) is reported here. The cytotoxicity studies of these complexes were studied and compared with the corresponding activity of achiral complexes. The cytotoxic effect of pincer-ruthenium complexes on human dermal fibroblasts and human tongue carcinoma cells assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay displayed an inhibition of normal and cancer cell growth in a dose-dependent manner. Intracellular reactive oxygen species (ROS) level measurement, lactate dehydrogenase assay, DNA fragmentation, and necrosis studies revealed that treatment with pincer-ruthenium complexes induced a redox imbalance in SAS cells by upregulating ROS generation and caused necrotic cell death by disrupting the cellular membrane integrity.
Collapse
Affiliation(s)
- Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
15
|
Nain‐Perez A, Barbosa LCA, Araujo MH, Martins JPA, Takahashi JA, Oliveira G, Diniz R, Heller L, Hoenke S, Csuk R. Antibacterial and Cytotoxic Activity of Ruthenium‐
p
‐cymene Complexes with 2‐Methylquinolin‐8‐ol Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202100733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amalyn Nain‐Perez
- Department of Chemistry Universidade Federal de Minas Gerais Av. Pres. Antônio Carlos 6627. Campus Pampulha. CEP 31270-901. Belo Horizonte. MG. Brazil
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296, Göteborg Sweden
| | - Luiz C. A. Barbosa
- Department of Chemistry Universidade Federal de Minas Gerais Av. Pres. Antônio Carlos 6627. Campus Pampulha. CEP 31270-901. Belo Horizonte. MG. Brazil
- Department of Chemistry Universidade Federal de Viçosa Av. P. H. Rolfs, s/n, CEP 36570-900 Viçosa, MG Brazil
| | - Maria H. Araujo
- Department of Chemistry Universidade Federal de Minas Gerais Av. Pres. Antônio Carlos 6627. Campus Pampulha. CEP 31270-901. Belo Horizonte. MG. Brazil
| | - João P. A. Martins
- Department of Chemistry Universidade Federal de Minas Gerais Av. Pres. Antônio Carlos 6627. Campus Pampulha. CEP 31270-901. Belo Horizonte. MG. Brazil
| | - Jacqueline A. Takahashi
- Department of Chemistry Universidade Federal de Minas Gerais Av. Pres. Antônio Carlos 6627. Campus Pampulha. CEP 31270-901. Belo Horizonte. MG. Brazil
| | - Geane Oliveira
- Department of Chemistry Universidade Federal de Minas Gerais Av. Pres. Antônio Carlos 6627. Campus Pampulha. CEP 31270-901. Belo Horizonte. MG. Brazil
| | - Renata Diniz
- Department of Chemistry Universidade Federal de Minas Gerais Av. Pres. Antônio Carlos 6627. Campus Pampulha. CEP 31270-901. Belo Horizonte. MG. Brazil
| | - Lucie Heller
- Organic Chemistry Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Str.2. D-06120 Halle (Saale Germany
| | - Sophie Hoenke
- Organic Chemistry Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Str.2. D-06120 Halle (Saale Germany
| | - René Csuk
- Organic Chemistry Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Str.2. D-06120 Halle (Saale Germany
| |
Collapse
|
16
|
Casey KC, Brown AM, Robinson JR. Yttrium and lanthanum bis(phosphine-oxide)methanides: structurally diverse, dynamic, and reactive. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01438a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homoleptic yttrium and lanthanum complexes of bis(phosphineoxide) methanides, RE(HPhL)3 and RE2(HMeL)6, promote the first rare-earth mediated Horner-Wittig and acid-base chemistry consistent with multifunctional reactivity (Lewis-acid/Brønstedbase).
Collapse
|
17
|
Guimarães IDL, Marszaukowski F, Ribeiro R, de Lazaro SR, de Oliveira KM, Batista AA, Castellen P, Wrobel E, Garcia JR, Boeré RT, Wohnrath K. Synthesis and characterization of η6-p-cymene ruthenium(II) complexes containing alkyl- and methoxy-substituted triarylphosphines. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Chen C, Wu F, Ji J, Jia AQ, Zhang QF. Synthesis, structural characterization and catalytic activity of chlororuthenium(II) complexes with substituted Schiff base/phosphine ancillary ligands. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2020. [DOI: 10.1515/znb-2020-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Treatment of [(η
6-p-cymene)RuCl2]2 with one equivalent of chlorodiphenylphosphine in tetrahydrofuran at reflux afforded a neutral complex [(η
6-p-cymene)RuCl2(κ
1-P-PPh2OH)] (1). Similarly, the reaction of [Ru(bpy)2Cl2·2H2O] (bpy = 2,2′-bipyridine) and chlorodiphenylphosphine in methanol gave a cationic complex [Ru(bpy)2Cl(κ
1-P-PPh2OCH3)](PF6) (2), while treatment of [RuCl2(PPh3)3] with [2-(C5H4N)CH=N(CH2)2N(CH3)2] (L1) in tetrahydrofuran at room temperature afforded a ruthenium(II) complex [Ru(PPh3)Cl2(κ
3-N,N,N-L1)] (3). Interaction of the chloro-bridged complex [Ru(CO)2Cl2]
n
with one equivalent of [Ph2P(o-C6H4)CH=N(CH2)2N(CH3)2] (L2) led to the isolation of [Ru(CO)Cl2(κ
3-P,N,N-L2)] (4). The molecular structures of the ruthenium(II) complexes 1–4 have been determined by single-crystal X-ray crystallography. The properties of the ruthenium(II) complex 4 as a hydrogenation catalyst for acetophenone were also tested.
Collapse
Affiliation(s)
- Chong Chen
- Institute of Molecular Engineering and Applied Chemistry , Anhui University of Technology , Ma’anshan , Anhui 243002 , PR China
| | - Fule Wu
- Institute of Molecular Engineering and Applied Chemistry , Anhui University of Technology , Ma’anshan , Anhui 243002 , PR China
| | - Jiao Ji
- Institute of Molecular Engineering and Applied Chemistry , Anhui University of Technology , Ma’anshan , Anhui 243002 , PR China
| | - Ai-Quan Jia
- Institute of Molecular Engineering and Applied Chemistry , Anhui University of Technology , Ma’anshan , Anhui 243002 , PR China
| | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry , Anhui University of Technology , Ma’anshan , Anhui 243002 , PR China
| |
Collapse
|
19
|
Roy S, Mohanty M, Miller RG, Patra SA, Lima S, Banerjee A, Metzler-Nolte N, Sinn E, Kaminsky W, Dinda R. Probing CO Generation through Metal-Assisted Alcohol Dehydrogenation in Metal-2-(arylazo)phenol Complexes Using Isotopic Labeling (Metal = Ru, Ir): Synthesis, Characterization, and Cytotoxicity Studies. Inorg Chem 2020; 59:15526-15540. [PMID: 32993294 DOI: 10.1021/acs.inorgchem.0c02563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reaction of 2-{2-(benzo[1,3]dioxol-5-yl)- diazo}-4-methylphenol (HL) with [Ru(PPh3)3Cl2] in ethanol resulted in the carbonylated ruthenium complex [RuL(PPh3)2(CO)] (1), wherein metal-assisted decarbonylation via in situ ethanol dehydrogenation is observed. When the reaction was performed in acetonitrile, however, the complex [RuL(PPh3)2(CH3CN)] (2) was obtained as the main product, probably by trapping of a common intermediate through coordination of CH3CN to the Ru(II) center. The analogous reaction of HL with [Ir(PPh3)3Cl] in ethanol did not result in ethanol decarbonylation and instead gave the organoiridium hydride complex [IrL(PPh3)2(H)] (3). Unambiguous evidence for the generation of CO via ruthenium-assisted ethanol oxidation is provided by the synthesis of the 13C-labeled complex, [Ru(PPh3)2L(13CO)] (1A) using isotopically labeled ethanol, CH313CH2OH. To summarize all the evidence, a ruthenium-assisted mechanistic pathway for the decarbonylation and generation of alkane via alcohol dehydrogenation is proposed. In addition, the in vitro antiproliferative activity of complexes 1-3 was tested against human cervical (HeLa) and human colorectal adenocarcinoma (HT-29) cell lines. Complexes 1-3 showed impressive cytotoxicity against both HeLa (half-maximal inhibitory concentration (IC50) value of 3.84-4.22 μM) and HT-29 cancer cells (IC50 values between 3.3 and 4.5 μM). Moreover, the complexes were comparatively less toxic to noncancerous NIH-3T3 cells.
Collapse
Affiliation(s)
- Satabdi Roy
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Reece G Miller
- Department of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Nils Metzler-Nolte
- Department of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Ekkehard Sinn
- Department of Chemistry, Western Michigan University, Kalamazoo 49008, Michigan, United States
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
20
|
Plutín AM, Ramos R, Mocelo R, Alvarez A, Castellano EE, Cominetti MR, Oliveira KM, Donizeth de Oliveira T, Silva TE, S. Correa R, Batista AA. Antitumor activity of Pd(II) complexes with N,S or O,S coordination modes of acylthiourea ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Guarra F, Busto N, Guerri A, Marchetti L, Marzo T, García B, Biver T, Gabbiani C. Cytotoxic Ag(I) and Au(I) NHC-carbenes bind DNA and show TrxR inhibition. J Inorg Biochem 2020; 205:110998. [DOI: 10.1016/j.jinorgbio.2020.110998] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/18/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
|
22
|
Yang Y, Guo L, Ge X, Zhu T, Chen W, Zhou H, Zhao L, Liu Z. The Fluorine Effect in Zwitterionic Half-Sandwich Iridium(III) Anticancer Complexes. Inorg Chem 2019; 59:748-758. [DOI: 10.1021/acs.inorgchem.9b03006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yanjing Yang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Teng Zhu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Wenjing Chen
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Huanxing Zhou
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Liping Zhao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
23
|
Biancalana L, Gruchała M, Batchelor LK, Błauż A, Monti A, Pampaloni G, Rychlik B, Dyson PJ, Marchetti F. Conjugating Biotin to Ruthenium(II) Arene Units via Phosphine Ligand Functionalization. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Martyna Gruchała
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Andrzej Błauż
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Andrea Monti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Błażej Rychlik
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
24
|
Wu Y, Chen H, Yang W, Fan Y, Gao L, Su Z, Hu C, Song Z. Asymmetric retro-[1,4]-Brook rearrangement of 3-silyl allyloxysilanes via chirality transfer from silicon to carbon. RSC Adv 2019; 9:26209-26213. [PMID: 35530994 PMCID: PMC9070365 DOI: 10.1039/c9ra05482k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
An asymmetric retro-[1,4]-Brook rearrangement of 3-silyl allyloxysilanes has been developed via Si-to-C chirality transfer. Mechanistic studies reveal that the silyl group migrates with retention of configuration. The stereochemical outcome of the newly formed stereogenic carbon center, which has remained a longstanding question, is also clarified, suggesting a diastereoselective Si to C chirality transfer without loss of enantiomeric excess.
Collapse
Affiliation(s)
- Ya Wu
- Department of Biological and Chemical Engineering, Chongqing University of Education Chongqing 400067 China
| | - Hua Chen
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Wenyu Yang
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Yu Fan
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Lu Gao
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Changwei Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Zhenlei Song
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| |
Collapse
|
25
|
Côrte-Real L, Karas B, Brás AR, Pilon A, Avecilla F, Marques F, Preto A, Buckley BT, Cooper KR, Doherty C, Garcia MH, Valente A. Ruthenium-Cyclopentadienyl Bipyridine-Biotin Based Compounds: Synthesis and Biological Effect. Inorg Chem 2019; 58:9135-9149. [PMID: 31241925 DOI: 10.1021/acs.inorgchem.9b00735] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prospective anticancer metallodrugs should consider target-specific components in their design in order to overcome the limitations of the current chemotherapeutics. The inclusion of vitamins, which receptors are overexpressed in many cancer cell lines, has proven to be a valid strategy. Therefore, in this paper we report the synthesis and characterization of a set of new compounds [Ru(η5-C5H5)(P(C6H4R)3)(4,4'-R'-2,2'-bpy)]+ (R = F and R' = H, 3; R = F and R' = biotin, 4; R = OCH3 and R' = H, 5; R = OCH3 and R' = biotin, 6), inspired by the exceptional good results recently obtained for the analogue bearing a triphenylphosphane ligand. The precursors for these syntheses were also described following modified literature procedures, [Ru(η5-C5H5)(P(C6H4R)3)2Cl], where R is -F (1) or -OCH3 (2). The structure of all compounds is fully supported by spectroscopic and analytical techniques and by X-ray diffraction studies for compounds 2, 3, and 5. All cationic compounds are cytotoxic in the two breast cancer cell lines tested, MCF7 and MDA-MB-231, and much better than cisplatin under the same experimental conditions. The cytotoxicity of the biotinylated compounds seems to be related with the Ru uptake by the cells expressing biotin receptors, indicating a potential mediated uptake. Indeed, a biotin-avidin study confirmed that the attachment of biotin to the organometallic fragment still allows biotin recognition by the protein. Therefore, the biotinylated compounds might be potent anticancer drugs as they show cytotoxic effect in breast cancer cells at low dose dependent on the compounds' uptake, induce cell death by apoptosis and inhibit the colony formation of cancer cells causing also less severe side effects in zebrafish.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Centro de Química Estrutural , Faculdade de Ciências da Universidade de Lisboa , Campo Grande , 1749-016 Lisboa , Portugal
| | - Brittany Karas
- Environmental and Occupational Health Sciences Institute , Rutgers University , 170 Frelinghuysen Road , Piscataway New Jersey 08854 , United States.,Department of Biochemistry and Microbiology , Rutgers University , 76 Lipman Drive , New Brunswick New Jersey 08854 , United States
| | - Ana Rita Brás
- Centro de Química Estrutural , Faculdade de Ciências da Universidade de Lisboa , Campo Grande , 1749-016 Lisboa , Portugal.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Portugal. Campus de Gualtar , Braga 4710-057 , Portugal
| | - Adhan Pilon
- Centro de Química Estrutural , Faculdade de Ciências da Universidade de Lisboa , Campo Grande , 1749-016 Lisboa , Portugal
| | - Fernando Avecilla
- Grupo Xenomar, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias , Universidade da Coruña , Campus de A Coruña , 15071 A Coruña , Spain
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Te'cnico (C2TN/IST) , Universidade de Lisboa , Estrada Nacional 10 (km 139.7) , 2695-066 Bobadela LRS , Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology , University of Minho , Portugal. Campus de Gualtar , Braga 4710-057 , Portugal
| | - Brian T Buckley
- Environmental and Occupational Health Sciences Institute , Rutgers University , 170 Frelinghuysen Road , Piscataway New Jersey 08854 , United States
| | - Keith R Cooper
- Department of Biochemistry and Microbiology , Rutgers University , 76 Lipman Drive , New Brunswick New Jersey 08854 , United States
| | - Cathleen Doherty
- Environmental and Occupational Health Sciences Institute , Rutgers University , 170 Frelinghuysen Road , Piscataway New Jersey 08854 , United States
| | - M Helena Garcia
- Centro de Química Estrutural , Faculdade de Ciências da Universidade de Lisboa , Campo Grande , 1749-016 Lisboa , Portugal
| | - Andreia Valente
- Centro de Química Estrutural , Faculdade de Ciências da Universidade de Lisboa , Campo Grande , 1749-016 Lisboa , Portugal
| |
Collapse
|
26
|
Pérez H, Ramos R, Plutín AM, Mocelo R, Erben MF, Castellano EE, Batista AA. A Mixed Ligand Platinum(II) Complex: Spectral Analysis, Crystal Structure, Steric Demand of the Ligand, and Bioactivity of cis
-[Pt(PPh3
)2
(L1
-O,S
)]PF6
(L1
-O,S = N
,N
-Morpholine-N′
-benzoylthiourea). Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiram Pérez
- Departamento de Química General e Inorgánica; Universidad de La Habana; 10400 La Habana Cuba
| | - Raúl Ramos
- Laboratorio de Síntesis Orgánica; Facultad de Química; Universidad de La Habana; 10400 La Habana Cuba
| | - Ana M. Plutín
- Laboratorio de Síntesis Orgánica; Facultad de Química; Universidad de La Habana; 10400 La Habana Cuba
| | - Raúl Mocelo
- Laboratorio de Síntesis Orgánica; Facultad de Química; Universidad de La Habana; 10400 La Habana Cuba
| | - Mauricio F. Erben
- CEQUINOR (UNLP-CONICET, CCT La Plata); Departamento de Química; Universidad Nacional de La Plata; Bv. 120 1465 1900 La Plata Argentina
| | - Eduardo E. Castellano
- Instituto de Física de São Carlos; Departamento de Química; Universidade de São Paulo; 05508-090 São Carlos-SP Brazil
| | - Alzir A. Batista
- Departamento de Química; Departamento de Química; Universidade Federal de São Carlos; 13565-905 São Carlos-SP Brazil
| |
Collapse
|
27
|
De Grandis RA, Santos PWDSD, Oliveira KMD, Machado ART, Aissa AF, Batista AA, Antunes LMG, Pavan FR. Novel lawsone-containing ruthenium(II) complexes: Synthesis, characterization and anticancer activity on 2D and 3D spheroid models of prostate cancer cells. Bioorg Chem 2019; 85:455-468. [DOI: 10.1016/j.bioorg.2019.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
|
28
|
Korb M, Lang H. The anionic Fries rearrangement: a convenient route to ortho-functionalized aromatics. Chem Soc Rev 2019; 48:2829-2882. [DOI: 10.1039/c8cs00830b] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The scope and mechanism of anionic (hetero-) Fries rearrangements are summarized for various migrating groups and arenes, including applications and computational studies.
Collapse
Affiliation(s)
- Marcus Korb
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Chemistry
- Inorganic Chemistry
- Chemnitz
| | - Heinrich Lang
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Chemistry
- Inorganic Chemistry
- Chemnitz
| |
Collapse
|
29
|
da Silva MM, de Camargo MS, Correa RS, Castelli S, De Grandis RA, Takarada JE, Varanda EA, Castellano EE, Deflon VM, Cominetti MR, Desideri A, Batista AA. Non-mutagenic Ru(ii) complexes: cytotoxicity, topoisomerase IB inhibition, DNA and HSA binding. Dalton Trans 2019; 48:14885-14897. [DOI: 10.1039/c9dt01905g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we discuss five ruthenium(ii) complexes with good cytotoxicity against cancer cells.
Collapse
Affiliation(s)
| | | | - Rodrigo S. Correa
- Departamento de Química
- Universidade Federal de Ouro Preto
- Ouro Preto
- Brazil
| | - Silvia Castelli
- Dipartimentodi Biologia
- UniversitàTorVergatadi Roma
- 00133 Rome
- Italy
| | - Rone A. De Grandis
- Departamento de Ciências Biológicas
- Faculdade de Ciências Farmacêuticas
- UNESP
- Araraquara
- Brazil
| | | | - Eliana A. Varanda
- Departamento de Ciências Biológicas
- Faculdade de Ciências Farmacêuticas
- UNESP
- Araraquara
- Brazil
| | | | - Victor M. Deflon
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Marcia R. Cominetti
- Departamento de Gerontologia
- Universidade Federal de São Carlos
- São Carlos
- Brazil
| | | | - Alzir A. Batista
- Departamento de Química
- Universidade Federal de São Carlos
- São Carlos
- Brazil
| |
Collapse
|
30
|
Côrte-Real L, Karas B, Gírio P, Moreno A, Avecilla F, Marques F, Buckley BT, Cooper KR, Doherty C, Falson P, Garcia MH, Valente A. Unprecedented inhibition of P-gp activity by a novel ruthenium-cyclopentadienyl compound bearing a bipyridine-biotin ligand. Eur J Med Chem 2018; 163:853-863. [PMID: 30579125 DOI: 10.1016/j.ejmech.2018.12.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022]
Abstract
Two new ruthenium complexes, [Ru(η5-Cp)(PPh3)(2,2'-bipy-4,4'-R)]+ with R = -CH2OH (Ru1) or dibiotin ester (Ru2) were synthesized and fully characterized. Both compounds were tested against two types of breast cancer cells (MCF7 and MDA-MB-231), showing better cytotoxicity than cisplatin in the same experimental conditions. Since multidrug resistance (MDR) is one of the main problems in cancer chemotherapy, we have assessed the potential of these compounds to overcome resistance to treatments. Ru2 showed exceptional selectivity as P-gp inhibitor, while Ru1 is possibly a substrate. In vivo studies in zebrafish showed that Ru2 is well tolerated up to 1.17 mg/L, presenting a LC50 of 5.73 mg/L at 5 days post fertilization.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Brittany Karas
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA; Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ, 08854, USA
| | - Patrícia Gírio
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Drug Resistance and Membrane Proteins Team, Molecular Biology and Structural Biochemistry Laboratory, UMR 5086 CNRS-UCBL1, IBCP 7 Passage du Vercors, 69 367, Lyon Cedex 07, France
| | - Alexis Moreno
- Drug Resistance and Membrane Proteins Team, Molecular Biology and Structural Biochemistry Laboratory, UMR 5086 CNRS-UCBL1, IBCP 7 Passage du Vercors, 69 367, Lyon Cedex 07, France
| | - Fernando Avecilla
- Grupo Xenomar, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A, Coruña, Spain
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066, Bobadela LRS, Portugal
| | - Brian T Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Keith R Cooper
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ, 08854, USA
| | - Cathleen Doherty
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Pierre Falson
- Drug Resistance and Membrane Proteins Team, Molecular Biology and Structural Biochemistry Laboratory, UMR 5086 CNRS-UCBL1, IBCP 7 Passage du Vercors, 69 367, Lyon Cedex 07, France
| | - M Helena Garcia
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
31
|
Non-Platinum Metal Complexes as Potential Anti-Triple Negative Breast Cancer Agents. CRYSTALS 2018. [DOI: 10.3390/cryst8100369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, with a mortality rate that has been forecasted to rise in the next decade. This is especially worrying for people with triple-negative BC (TNBC), because of its unresponsiveness to current therapies. Different drugs to treat TNBC have been assessed, and, although platinum chemotherapy drugs seem to offer some hope, their drawbacks have motivated extensive investigations into alternative metal-based BC therapies. This paper aims to: (i) describe the preliminary in vitro and in vivo anticancer properties of non-platinum metal-based complexes (NPMBC) against TNBC; and (ii) analyze the likely molecular targets involved in their anticancer activity.
Collapse
|
32
|
Yang Y, Guo L, Tian Z, Liu X, Gong Y, Zheng H, Ge X, Liu Z. Imine-N-Heterocyclic Carbenes as Versatile Ligands in Ruthenium(II) p-Cymene Anticancer Complexes: A Structure-Activity Relationship Study. Chem Asian J 2018; 13:2923-2933. [PMID: 30101417 DOI: 10.1002/asia.201801058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/03/2018] [Indexed: 12/18/2022]
Abstract
A family of novel imine-N-heterocyclic carbene ruthenium(II) complexes of the general formula [(η6 -p-cymene)Ru(C^N)Cl]PF6 - (where C^N is an imine-N-heterocyclic carbene chelating ligand with varying substituents) have been prepared and characterized. In this imine-N-heterocyclic carbene chelating ligand framework, there are three potential sites that can be modified, which distinguishes this class of ligand and provides a body of flexibilities and opportunities to tune the cytotoxicity of these ruthenium(II) complexes. The influence of substituent effects of three tunable domains on the anticancer activity and catalytic ability in converting coenzyme NADH to NAD+ is investigated. This family of complexes displays an exceedingly distinct anticancer activity against A549 cancer cells, despite their close structural similarity. Complex 9 shows the highest anticancer activity in this series against A549 cancer cells (IC50 =14.36 μm), with an approximately 1.5-fold better activity than the clinical platinum drug cisplatin (IC50 =21.30 μm) in A549 cancer cells. Mechanistic studies reveal that complex 9 mediates cell death mainly through cell stress, including cell cycle arrest, inducing apoptosis, increasing intracellular reactive oxygen species (ROS) levels, and depolarization of the mitochondrial membrane potential (MMP). Furthermore, lysosomal damage is also detected by confocal microscopy.
Collapse
Affiliation(s)
- Yuliang Yang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yuteng Gong
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Hongmei Zheng
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
33
|
Du Q, Guo L, Tian M, Ge X, Yang Y, Jian X, Xu Z, Tian Z, Liu Z. Potent Half-Sandwich Iridium(III) and Ruthenium(II) Anticancer Complexes Containing a P^O-Chelated Ligand. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00402] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qing Du
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Meng Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuliang Yang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xiyan Jian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhishan Xu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
- Department of Chemistry and Chemical Engineering, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
34
|
Biancalana L, Pampaloni G, Zacchini S, Marchetti F. Synthesis, characterization and behavior in water/DMSO solution of Ru(II) arene complexes with bioactive carboxylates. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Biancalana L, Abdalghani I, Chiellini F, Zacchini S, Pampaloni G, Crucianelli M, Marchetti F. Ruthenium Arene Complexes with α-Aminoacidato Ligands: New Insights into Transfer Hydrogenation Reactions and Cytotoxic Behaviour. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry; University of Pisa; Via Moruzzi 13 56124 Pisa Italy
- CIRCC; Via Celso Ulpiani 27 70126 Bari Italy
| | - Issam Abdalghani
- Department of Physical and Chemical Sciences; University of L'Aquila; Via Vetoio 67100 L'Aquila Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry; University of Pisa; Via Moruzzi 13 56124 Pisa Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”; University of Bologna; Viale Risorgimento 4 40136 Bologna Italy
- CIRCC; Via Celso Ulpiani 27 70126 Bari Italy
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry; University of Pisa; Via Moruzzi 13 56124 Pisa Italy
- CIRCC; Via Celso Ulpiani 27 70126 Bari Italy
| | - Marcello Crucianelli
- Department of Physical and Chemical Sciences; University of L'Aquila; Via Vetoio 67100 L'Aquila Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry; University of Pisa; Via Moruzzi 13 56124 Pisa Italy
- CIRCC; Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
36
|
Biancalana L, Ciancaleoni G, Zacchini S, Monti A, Marchetti F, Pampaloni G. Solvent-Dependent Hemilability of (2-Diphenylphosphino)Phenol in a Ru(II) para-Cymene System. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Biancalana
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa, Italy
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Gianluca Ciancaleoni
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa, Italy
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
- Università di Bologna, Dipartimento di Chimica Industriale “Toso Montanari”, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Andrea Monti
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa, Italy
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Guido Pampaloni
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa, Italy
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
37
|
Biancalana L, Batchelor LK, Ciancaleoni G, Zacchini S, Pampaloni G, Dyson PJ, Marchetti F. Versatile coordination of acetazolamide to ruthenium(ii) p-cymene complexes and preliminary cytotoxicity studies. Dalton Trans 2018; 47:9367-9384. [DOI: 10.1039/c8dt01555d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bioactive molecule acetazolamide was incorporated in Ru(ii)-p-cymene complexes with different coordination modes. Two of the resulting complexes were non cytotoxic towards A2780, A2780cisR and HEK-293 cell lines.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- I-40136 Bologna
- Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| |
Collapse
|
38
|
Guo L, Zhang H, Tian M, Tian Z, Xu Y, Yang Y, Peng H, Liu P, Liu Z. Electronic effects on reactivity and anticancer activity by half-sandwich N,N-chelated iridium(iii) complexes. NEW J CHEM 2018. [DOI: 10.1039/c8nj03360a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work demonstrated how the chemical reactivity and anticancer activity as well as the selectivity of these half-sandwich N,N-chelated iridium(iii) complexes can be controlled and fine-tuned by the modification of the ligand electronic perturbations.
Collapse
Affiliation(s)
- Lihua Guo
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Hairong Zhang
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Meng Tian
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Zhenzhen Tian
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Yanjian Xu
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Yuliang Yang
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Hongwei Peng
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Peng Liu
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Zhe Liu
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| |
Collapse
|