1
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Liao YJ, Huang SC, Lin CY. Selective electrosynthesis of platform chemicals from the electrocatalytic reforming of biomass-derived hexanediol. Faraday Discuss 2023; 247:159-171. [PMID: 37466118 DOI: 10.1039/d3fd00073g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
6-Hydroxyhexanoic acid and adipic acid are platform chemicals and are widely used as building blocks for the synthesis of important polymers. Nevertheless, the industrial syntheses of these two chemicals are fossil fuel-based and involve the use of corrosive acid and emission of the NOx greenhouse gas. In this study, the electrosynthesis of 6-hydroxyhexanoic acid and adipic acid from the electrochemical oxidation of hexanediol at the nanoporous nickel oxyhydroxide modified electrode was explored as an environmentally-benign alternative to the industrial syntheses of 6-hydroxyhexanoic acid and adipic acid. The effects of electrolysis conditions, including the electrolyte pH and applied potentials, on faradaic efficiency and product distribution of the electrochemical oxidation of hexanediol, were thoroughly examined through a series of controlled-potential electrolyses. In addition, the scale-up electrosynthesis of 6-hydroxyhexanoic acid and adipic acid using a flow-type electrolyzer was also demonstrated.
Collapse
Affiliation(s)
- Yun-Ju Liao
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
| | - Shih-Ching Huang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
- Program on Key Materials & Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
3
|
Martín M, Taifouris M, Galán G. Lignocellulosic biorefineries: A multiscale approach for resource exploitation. BIORESOURCE TECHNOLOGY 2023:129397. [PMID: 37380036 DOI: 10.1016/j.biortech.2023.129397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Biomass can become the source for chemicals towards a sustainable production system. However, the challenges it presents such as the variety of species, their widespread and sparse availability, and the expensive transportation claims for an integrated approach to design the novel production system. Multiscale approaches have not been properly extended to biorefineryes design and deployment, due to the comprehensive experimental and modelling work they require. A systems perspective provides the systematic framework to analyze the availability and composition of raw materials across regions, how that affects process design, the portfolio of products that can be obtained by evaluating the strong link between the biomass features and the process design. The use of lignocellulosic materials requires for a multidisciplinary work, that must lead to new process engineers with technical competences in biology, biotechnology but also process engineering, mathematics, computer science and social sciences towards a sustainable process/chemical industry.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain.
| | - Manuel Taifouris
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain
| | - Guillermo Galán
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain
| |
Collapse
|
4
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
5
|
Recent Advances in the Efficient Synthesis of Useful Amines from Biomass-Based Furan Compounds and Their Derivatives over Heterogeneous Catalysts. Catalysts 2023. [DOI: 10.3390/catal13030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Bio-based furanic oxygenates represent a well-known class of lignocellulosic biomass-derived platform molecules. In the presence of H2 and different nitrogen sources, these versatile building blocks can be transformed into valuable amine compounds via reductive amination or hydrogen-borrowing amination mechanisms, yet they still face many challenges due to the co-existence of many side-reactions, such as direct hydrogenation, polymerization and cyclization. Hence, catalysts with specific structures and functions are required to achieve satisfactory yields of target amines. In recent years, heterogeneous catalytic synthesis of amines from bio-based furanic oxygenates has received extensive attention. In this review, we summarize and discuss the recent significant progress in the generation of useful amines from bio-based furanic oxygenates with H2 and different nitrogen sources over heterogeneous catalysts, according to various raw materials and reaction pathways. The key factors affecting catalytic performances, such as active metals, supports, promoters, reaction solvents and conditions, as well as the possible reaction routes and catalytic reaction mechanisms are studied and discussed in depth. Special attention is paid to the structure–activity relationship, which would be helpful for the development of more efficient and stable heterogeneous catalysts. Moreover, the future research direction and development trend of the efficient synthesis for bio-based amines are prospected.
Collapse
|
6
|
Cobalt Catalysts Derived from Layered Double Hydroxide/g-C3N4 Composite in the Hydrogenation of γ-Valerolactone into 1,4-Pentanediol. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Gupta NK, Reif P, Palenicek P, Rose M. Toward Renewable Amines: Recent Advances in the Catalytic Amination of Biomass-Derived Oxygenates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Navneet Kumar Gupta
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Phillip Reif
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Phillip Palenicek
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Marcus Rose
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
8
|
Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over PrOx promoted Ni catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Zhu J, Yin G. Catalytic Transformation of the Furfural Platform into Bifunctionalized Monomers for Polymer Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinlian Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
10
|
Kim H, Lee S, Lee J, Won W. Simultaneous production of 1,6-hexanediol, furfural, and high-purity lignin from white birch: Process integration and techno-economic evaluation. BIORESOURCE TECHNOLOGY 2021; 331:125009. [PMID: 33780837 DOI: 10.1016/j.biortech.2021.125009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
An integrated strategy of multiple catalytic conversions was developed to completely utilize three major fractions of biomass, thereby increasing the revenue from lignocellulosic biomass (white birch). Cellulose was converted into 1,6-hexanediol (1,6-HDO) with a yield of 21.8% via a series of catalytic conversions, hemicellulose was converted into furfural with a yield of 87.2% via dehydration, and lignin was purified into high-purity lignin with a yield of 71.7% via two-step purification. Heat integration was performed to mitigate the challenges associated with the large energy requirements of the process. Additionally, a techno-economic analysis was conducted to investigate the feasibility of the proposed process. The minimum selling price (MSP) of 1,6-HDO is estimated to be $3,922/ton, meaning that the economics of the proposed process are favorable compared to petroleum-derived 1,6-HDO production ($4,400/ton). The effect of economic parameters on the MSP of 1,6-HDO was also investigated via a wide array of sensitivity analyses.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shinje Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Wangyun Won
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
11
|
Chaudhari S, Shin H, Choi S, Cho K, Shon M, Nam S, Park Y. Hydrophilic and organophilic pervaporation of industrially important α,β and α,ω-diols. RSC Adv 2021; 11:9274-9284. [PMID: 35423423 PMCID: PMC8695363 DOI: 10.1039/d1ra00467k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022] Open
Abstract
The distillation-based purification of α,β and α,ω-diols is energy and resource intensive, as well as time consuming. Pervaporation separation is considered to be a remarkable energy efficient membrane technology for purification of diols. Thus, as a core pervaporation process, hydrophilic polyvinyl alcohol (PVA) membranes for the removal of water from 1,2-hexanediol (1,2-HDO) and organophilic polydimethylsiloxane-polysulfone (PDMS-PSF) membranes for the removal of isopropanol from 1,5 pentanediol (1,5-PDO) were employed. For 1,2-HDO/water separation using a feed having a 1 : 4 weight ratio of 1,2-HDO/water, the membrane prepared using 4 vol% glutaraldehyde (GA4) showed the best performance, yielding a flux of 0.59 kg m-2 h-1 and a separation factor of 175 at 40 °C. In the organophilic pervaporation separation of the 1,5-PDO/IPA feed having a 9 : 1 weight ratio of components, the PDMS membrane prepared with a molar ratio of TEOS alkoxy groups to PDMS hydroxyl groups of 70 yielded a flux of 0.12 kg m-2 h-1 and separation factor of 17 638 at 40 °C. Long term stability analysis found that both hydrophilic (PVA) and organophilic (PDMS) membranes retained excellent pervaporation output over 18 days' continuous exposure to the feed. Both the hydrophilic and organophilic membranes exhibited promising separation performance at elevated operating conditions, showing their great potential for purification of α,β and α,ω-diols.
Collapse
Affiliation(s)
- Shivshankar Chaudhari
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - HyeonTae Shin
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - SeoungYong Choi
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - KieYong Cho
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - MinYoung Shon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - SeungEun Nam
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| | - YouIn Park
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| |
Collapse
|
12
|
Banz Chung EMJ, Stones MK, Latifi E, Moore C, Sutton AD, Umphrey G, Soldatov D, Schlaf M. Ruthenium triphos complexes [Ru(X(CH 2PPh 2) 3- κ3-P)(NCCH 3) 3](OTf) 2; X = H 3C-C, N) as catalysts for the conversion of furfuryl acetate to 1,4-pentanediol and cyclopentanol in aqueous medium. CAN J CHEM 2021. [DOI: 10.1139/cjc-2019-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ruthenium complexes [Ru(H3CC(CH2PPh2)3-κ3-P)(NCCH3)3](OTf)2 (1, (H3CC(CH2PPh2)3 = triphos) and [Ru(N(CH2PPh2)3-κ3-P)(NCCH3)3](OTf)2 (2, N(CH2PPh2)3 = N-triphos) have been evaluated as homogeneous ionic hydrogenation catalysts for the catalytic hydrodeoxygenation of furfuryl alcohol and furfuryl acetate to 1,4-pentanediol and cyclopentanol in aqueous media reaction mixtures. For furfuryl alcohol, only marginal yields of 1,4-pentanediol could be achieved with mass balance deficiencies due to humin formation ranging from 67% to 90%. Attempts to improve the catalytic activity of 2 by enhancing its water solubility by nitrogen protonation and (or) methylation failed. Employing the less self-reactive furfuryl acetate as the substrate substantially diminishes humin formation, yielding up to 43% of 1,4-pentanediol and 19% of cyclopentanol (via Piancatelli rearrangement) with 1 and up to 33% of 1,4-pentanediol and 5% of cyclopentanol with 2. A design of experiments study was used to determine and compare the yield responses of the multiple parallel reaction channels with 1,4-pentanediol, cyclopentanol, and humins as a function of reaction temperature, time, catalyst load, and substrate concentration. This explores the correlations between these parameters and their impact on the reaction outcome and suggests an extremely complex overall reaction cascade of interdependent pathways of both acid- and metal-catalyzed steps with some significant differences emerging between the two catalysts.
Collapse
Affiliation(s)
- Elise M.-J. Banz Chung
- Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | - Maryanne K. Stones
- Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | - Elnaz Latifi
- Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | - Cameron Moore
- Chemistry Division, Los Alamos National Laboratory, MS K558, Los Alamos NM 87545, USA
| | - Andrew D. Sutton
- Chemistry Division, Los Alamos National Laboratory, MS K558, Los Alamos NM 87545, USA
| | - Gary Umphrey
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| | - Dmitriy Soldatov
- Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | - Marcel Schlaf
- Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
13
|
Park J, Cahyadi HS, Mushtaq U, Verma D, Han D, Nam KW, Kwak SK, Kim J. Highly Efficient Reductive Catalytic Fractionation of Lignocellulosic Biomass over Extremely Low-Loaded Pd Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jaeyong Park
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Handi Setiadi Cahyadi
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Umair Mushtaq
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Deepak Verma
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Daseul Han
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 Unist-gil, Ulsan 44919, Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
14
|
Rates of levoglucosanol hydrogenolysis over Brønsted and Lewis acid sites on platinum silica-alumina catalysts synthesized by atomic layer deposition. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Chang H, Bajaj I, Huber GW, Maravelias CT, Dumesic JA. Catalytic strategy for conversion of fructose to organic dyes, polymers, and liquid fuels. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2020. [PMID: 34703386 DOI: 10.1039/d1gc00311a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We report a process to produce a versatile platform chemical from biomass-derived fructose for organic dye, polymer, and liquid fuel industries. An aldol-condensed chemical (HAH) is synthesized as a platform chemical from fructose by catalytic reactions in acetone/water solvent with non-noble metal catalysts (e.g., HCl, NaOH). Then, selective reactions (e.g., etherification, reduction, dimerization) of the functional groups, such as enone and hydroxyl groups, in the HAH molecule enable applications in organic dyes and polyether precursors. High yields of target products, such as 5-(hydroxymethyl) furfural (HMF) (85.9% from fructose) and HAH (86.3% from HMF) are achieved by sequential dehydration and aldol-condensation with a simple purification process (>99% HAH purity). The use of non-noble metal catalysts, the high yield of each reaction, and the simple purification of the target product allow for beneficial economics of the process. Techno-economic analysis indicates that the process produces HAH at minimum selling price (MSP) of $1958/ton. The MSP of HAH product allows the economic viability of applications in organic dye and polyether markets by replacing its counterparts, such as anthraquinone ($3200-$3900/ton) and bisphenol-A ($1360-$1720/ton).
Collapse
Affiliation(s)
- Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ishan Bajaj
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - George W Huber
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Christos T Maravelias
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI 53726, USA
| | - James A Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI 53726, USA
| |
Collapse
|
16
|
Toyooka G, Fujita KI. Synthesis of Dicarboxylic Acids from Aqueous Solutions of Diols with Hydrogen Evolution Catalyzed by an Iridium Complex. CHEMSUSCHEM 2020; 13:3820-3824. [PMID: 32449604 DOI: 10.1002/cssc.202001052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
Abstract
A catalytic system for the synthesis of dicarboxylic acids from aqueous solutions of diols accompanied by the evolution of hydrogen was developed. An iridium complex bearing a functional bipyridonate ligand with N,N-dimethylamino substituents exhibited a high catalytic performance for this type of dehydrogenative reaction. For example, adipic acid was synthesized from an aqueous solution of 1,6-hexanediol in 97 % yield accompanied by the evolution of four equivalents of hydrogen by the present catalytic system. It should be noted that the simultaneous production of industrially important dicarboxylic acids and hydrogen, which is useful as an energy carrier, was achieved. In addition, the selective dehydrogenative oxidation of vicinal diols to give α-hydroxycarboxylic acids was also accomplished.
Collapse
Affiliation(s)
- Genki Toyooka
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ken-Ichi Fujita
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
17
|
Lei L, Wang Y, Zhang Z, An J, Wang F. Transformations of Biomass, Its Derivatives, and Downstream Chemicals over Ceria Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01900] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lijun Lei
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yehong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jinghua An
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
18
|
Gale M, Cai CM, Gilliard-Abdul-Aziz KL. Heterogeneous Catalyst Design Principles for the Conversion of Lignin into High-Value Commodity Fuels and Chemicals. CHEMSUSCHEM 2020; 13:1947-1966. [PMID: 31899593 DOI: 10.1002/cssc.202000002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Lignin valorization has risen as a promising pathway to supplant the use of petrochemicals for chemical commodities and fuels. However, the challenges of separating and breaking down lignin from lignocellulosic biomass are the primary barriers to success. Integrated biorefinery systems that incorporate both homo- and heterogeneous catalysis for the upgrading of lignin intermediates have emerged as a viable solution. Homogeneous catalysis can perform selected chemistries, such as the hydrolysis and dehydration of ester or ether bonds, that are more suitable for the pretreatment and fractionation of biomass. Heterogeneous catalysis, however, offers a tunable platform for the conversion of extracted lignin into chemicals, fuels, and materials. Tremendous effort has been invested in elucidating the necessary factors for the valorization of lignin by using heterogeneous catalysts, with efforts to explore more robust methods to drive down costs. Current progress in lignin conversion has fostered numerous advances, but understanding the key catalyst design principles is important for advancing the field. This Minireview aims to provide a summary on the fundamental design principles for the selective conversion of lignin by using heterogeneous catalysts, including the pairing of catalyst metals, supports, and solvents. The review puts a particular focus on the use of bimetallic catalysts on porous supports as a strategy for the selective conversion of lignin. Finally, future research on the valorization of lignin is proposed on the basis of recent progress.
Collapse
Affiliation(s)
- Mark Gale
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, USA
| | - Charles M Cai
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Avenue, Riverside, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Kandis Leslie Gilliard-Abdul-Aziz
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, USA
- Department of Material Science and Engineering, Bourns College of Engineering, University of California, Riverside, 313 Material Science and Engineering Building, 900 University Ave, Riverside, USA
| |
Collapse
|
19
|
Enjamuri N, Darbha S. Solid catalysts for conversion of furfural and its derivatives to alkanediols. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1744327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Nagasuresh Enjamuri
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Srinivas Darbha
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
20
|
Li J, Zhang W, Xu S, Hu C. The Roles of H 2O/Tetrahydrofuran System in Lignocellulose Valorization. Front Chem 2020; 8:70. [PMID: 32117893 PMCID: PMC7020750 DOI: 10.3389/fchem.2020.00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Lignocellulosic biomass as a potential alternative to fossil resource for the production of valuable chemicals and fuels has attracted substantial attention, while reducing the recalcitrance of lignocellulosic biomass is still challenging due to the complex and cross-linking structure of biomass. Solvent system plays important roles in the pretreatment of lignocellulose, enabling the transformation of solid biomass to liquid fluid with better mass and heat transfer, as well as in the selective formation of target products. In particular, H2O/tetrahydrofuran (H2O/THF) system has recently been widely applied in lignocellulose valorization, which has been proved to exhibit outstanding efficiency for the conversion of lignocellulose, solubilization of the intermediates and products, and shifting reaction equilibrium, thereby significantly improving the yield and selectivity of target products, as well as the full utilization of lignocellulose. In addition, THF shows low toxicity, and is known as a renewable solvent which can be produced from bio-derived chemicals. Herein, this review concentrates on the advances of H2O/THF system in lignocellulose valorization in recent years. Several aspects relative to the roles of H2O/THF system are discussed as follows: the pretreatment of lignin, conversion of hemicellulose and cellulose components in lignocelluloses, and the promoting formation of valuable chemicals like furfural, 5-hydroxymethyl furfural (HMF), levulinic acid, and so on, as well as the inhibiting role in humins formation. This review might provide useful information for the design of effective solvent system in full utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
| | | | | | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Stones MK, Banz Chung EMJ, da Cunha IT, Sullivan RJ, Soltanipanah P, Magee M, Umphrey GJ, Moore CM, Sutton AD, Schlaf M. Conversion of Furfural Derivatives to 1,4-Pentanediol and Cyclopentanol in Aqueous Medium Catalyzed by trans-[(2,9-Dipyridyl-1,10-phenanthroline)(CH 3CN) 2Ru](OTf) 2. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maryanne K. Stones
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Elise M.-J. Banz Chung
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Igor Tadeu da Cunha
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Ryan J. Sullivan
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Parnian Soltanipanah
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Megan Magee
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Gary J. Umphrey
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Cameron M. Moore
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Andrew D. Sutton
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Marcel Schlaf
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
22
|
Chou YJ, Ku HC, Chien CC, Hu C, Yu WY. Palladium nanoparticles supported on nanosheet-like graphitic carbon nitride for catalytic transfer hydrogenation reaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01703e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pd/g-C3N4 catalysts with well-dispersed, electron-enriched Pd nanoparticles immobilized on pyridinic N atoms of g-C3N4 are active for catalytic transfer hydrogenation under ambient conditions.
Collapse
Affiliation(s)
- Yan-Jhu Chou
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Advanced Research Center for Green Materials Science and Technology
| | - Hao-Chuan Ku
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Advanced Research Center for Green Materials Science and Technology
| | - Cheng-Chi Chien
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Advanced Research Center for Green Materials Science and Technology
| | - Chechia Hu
- R&D center for Membrane Technology
- Chung Yuan Christian University
- Taoyuan 32023
- Taiwan
- Department of Chemical Engineering
| | - Wen-Yueh Yu
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Advanced Research Center for Green Materials Science and Technology
| |
Collapse
|
23
|
Guo Z, Yan N, Lapkin AA. Towards circular economy: integration of bio-waste into chemical supply chain. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Mounguengui-Diallo M, Sadier A, Da Silva Perez D, Nikitine C, Puchot L, Habibi Y, Pinel C, Perret N, Besson M. Aerobic oxidation of C4–C6 α,ω-diols to the diacids in base-free medium over zirconia-supported (bi)metallic catalysts. NEW J CHEM 2019. [DOI: 10.1039/c9nj01695c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic oxidation of (C4–C6) α,ω-diols in water produces the corresponding α,ω-diacids in high 83–96% yields over a Au–Pt/ZrO2 catalyst.
Collapse
Affiliation(s)
| | | | | | | | - Laura Puchot
- Luxembourg Institute of Science and Technology (LIST)
- L-4362 Esch-sur-Alzette
- Luxembourg
| | - Youssef Habibi
- Luxembourg Institute of Science and Technology (LIST)
- L-4362 Esch-sur-Alzette
- Luxembourg
| | | | | | | |
Collapse
|
25
|
Aparaschivei D, Todea A, Frissen AE, Badea V, Rusu G, Sisu E, Puiu M, Boeriu CG, Peter F. Enzymatic synthesis and characterization of novel terpolymers from renewable sources. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-1015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
2,5-Furandicarboxylic acid and itaconic acid are both important biobased platform chemicals and their terpolymer with 1,6-hexanediol (HDO) can be the starting point for a new class of reactive polyesters, with important applications. The green synthetic route developed in this study involves a biocatalytic condensation polymerization reaction of dimethyl furan-2,5-dicarboxylate (DMFDC) and dimethyl itaconate (DMI) with HDO in toluene at 80°C, using commercial immobilized lipases from Candida antarctica B. In the best conditions, the formed polymer product was isolated with more than 80% yield, containing about 85% terpolymer with average molecular mass of about 1200 (Mn, calculated from MALDI-TOF MS data) and 15% DMFDC_HDO copolymer. Considering the higher reactivity of DMFDC, the composition of the synthesized polymer can be directed by adjusting the molar ratio of DMFDC and DMI, as well as by extending the reaction time. Structural analysis by NMR demonstrated the regioselective preference for the carbonyl group from DMI adjacent to the methylene group. The biocatalyst was successfully reused in multiple reaction cycles.
Collapse
Affiliation(s)
- Diana Aparaschivei
- Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering , 6 Vasile Parvan Bvd , Timisoara 300223 , Romania
| | - Anamaria Todea
- Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering , 6 Vasile Parvan Bvd , Timisoara 300223 , Romania
| | - August E. Frissen
- Wageningen University and Research, Institute of Food and Biobased Research (FBR) , Bornse Weilanden 9 , Wageningen 6708WG , The Netherlands
| | - Valentin Badea
- Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering , 6 Vasile Parvan Bvd , Timisoara 300223 , Romania
| | - Gerlinde Rusu
- Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering , 6 Vasile Parvan Bvd , Timisoara 300223 , Romania
| | - Eugen Sisu
- “Victor Babes” University of Medicine and Pharmacy Timisoara , 2 Eftimie Murgu Sq. , Timisoara 300041 , Romania
| | - Maria Puiu
- “Victor Babes” University of Medicine and Pharmacy Timisoara , 2 Eftimie Murgu Sq. , Timisoara 300041 , Romania
| | - Carmen G. Boeriu
- Wageningen University and Research, Institute of Food and Biobased Research (FBR) , Bornse Weilanden 9 , Wageningen 6708WG , The Netherlands
| | - Francisc Peter
- Politehnica University Timisoara, Faculty of Industrial Chemistry and Environmental Engineering , 6 Vasile Parvan Bvd , Timisoara 300223 , Romania
| |
Collapse
|
26
|
Gao F, Liu H, Hu X, Chen J, Huang Z, Xia C. Selective hydrogenolysis of furfuryl alcohol to 1,5- and 1,2-pentanediol over Cu-LaCoO3 catalysts with balanced Cu0-CoO sites. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63110-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Ledingham ET, Greatrex BW. Diastereoselective Weitz-Scheffer epoxidation of levoglucosenone for the synthesis of isolevoglucosenone and derivatives. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Thaore V, Chadwick D, Shah N. Sustainable production of chemical intermediates for nylon manufacture: A techno-economic analysis for renewable production of caprolactone. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Krishna SH, Huang K, Barnett KJ, He J, Maravelias CT, Dumesic JA, Huber GW, De bruyn M, Weckhuysen BM. Oxygenated commodity chemicals from chemo‐catalytic conversion of biomass derived heterocycles. AIChE J 2018. [DOI: 10.1002/aic.16172] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Siddarth H. Krishna
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - Kefeng Huang
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - Kevin J. Barnett
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - Jiayue He
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - Christos T. Maravelias
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - James A. Dumesic
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - George W. Huber
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
| | - Mario De bruyn
- Dept. of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonMadison WI 53706
- Faculty of Science, Debye Institute for Nanomaterials ScienceUtrecht University, Universiteitsweg 99CG Utrecht 3584 The Netherlands
| | - Bert M. Weckhuysen
- Faculty of Science, Debye Institute for Nanomaterials ScienceUtrecht University, Universiteitsweg 99CG Utrecht 3584 The Netherlands
| |
Collapse
|
30
|
Krishna SH, Assary RS, Rashke QA, Schmidt ZR, Curtiss LA, Dumesic JA, Huber GW. Mechanistic Insights into the Hydrogenolysis of Levoglucosanol over Bifunctional Platinum Silica–Alumina Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siddarth H. Krishna
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Rajeev S. Assary
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Quinn A. Rashke
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Zachary R. Schmidt
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Larry A. Curtiss
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - George W. Huber
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
He J, Burt SP, Ball M, Zhao D, Hermans I, Dumesic JA, Huber GW. Synthesis of 1,6-Hexanediol from Cellulose Derived Tetrahydrofuran-Dimethanol with Pt-WOx/TiO2 Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03593] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiayue He
- Department of Chemical and Biological Engineering and §Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Samuel P. Burt
- Department of Chemical and Biological Engineering and §Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Madelyn Ball
- Department of Chemical and Biological Engineering and §Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Dongting Zhao
- Department of Chemical and Biological Engineering and §Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Ive Hermans
- Department of Chemical and Biological Engineering and §Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - James A. Dumesic
- Department of Chemical and Biological Engineering and §Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - George W. Huber
- Department of Chemical and Biological Engineering and §Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|