1
|
Ebrahiminejad A, Sepahi AA, Yadegar A, Meyfour A. Pasteurized form of a potential probiotic lactobacillus brevis IBRC-M10790 exerts anti-inflammatory effects on inflammatory bowel disease in vitro. BMC Complement Med Ther 2024; 24:258. [PMID: 38987744 PMCID: PMC11234635 DOI: 10.1186/s12906-024-04576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal system. So far, no treatment has been identified that can completely cure IBD. Lactobacillus brevis is hypothesized to be beneficial in preventing inflammation. This study aimed to evaluate the potential probiotic effects of live and pasteurized L. brevis IBRC-M10790 on the in vitro cell co-culture model of IBD. METHODS An in vitro intestinal model was established using a transwell co-culture system of Caco-2 intestinal epithelial cells and RAW264.7 macrophages. Inflammatory conditions were induced in RAW264.7 cells using lipopolysaccharide. The effects of live and pasteurized L. brevis IBRC-M10790 on inflammatory mediators and epithelial barrier markers were investigated. RESULTS L. brevis IBRC-M10790 was able to significantly decrease the proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and increase the anti-inflammatory cytokine (IL-10) in the in vitro co-culture system. In addition, L. brevis increased adherens and tight junction (TJ) markers (ZO-1, E-cadherin, and Occludin) in Caco-2 intestinal epithelial cells. Based on the results, pasteurized L. brevis showed a higher protective effect than live L. brevis. CONCLUSIONS Our findings suggest that live and pasteurized forms of L. brevis possess probiotic properties and can mitigate inflammatory conditions in IBD.
Collapse
Affiliation(s)
- Ardeshir Ebrahiminejad
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kumari V. B. C, Huligere S, M. K. J, Goh KW, Desai SM, H. L. K, Ramu R. Characterization of Lactobacillus spp. as Probiotic and Antidiabetic Potential Isolated from Boza, Traditional Fermented Beverage in Turkey. Int J Microbiol 2024; 2024:2148676. [PMID: 38962395 PMCID: PMC11221989 DOI: 10.1155/2024/2148676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Boza, a cereal-based beverage popular in southeast Europe, is fortified with probiotics and is believed to positively impact the composition of the gut microflora. This investigation focused on fermented cereal-based beverage boza to identify strains of probiotic Lactobacillus spp. capable of inhibiting carbohydrate-hydrolysing enzymes α-glucosidase (AG) and α-amylase (AA). The isolated bacterial strains underwent a comprehensive assessment, including biochemical, molecular, and probiotic trait analyses such as tolerance survivability, adhesion, safety, and health-promoting attributes. We evaluated the inhibitory potential of the supernatant, cell lysate, and intact cells of Lactobacillus spp. Molecular analysis has revealed that isolates RAMULAB30 and RAMULAB29 exhibit a significant genetic similarity (>97%) to Lacticaseibacillus paracasei and Limosilactobacillus fermentum, respectively. These findings are documented in the NCBI database. They exhibited significant resistance to gastrointestinal and intestinal fluids, also indicating their potential for adhesion. Additionally, the isolates showed a significant antibacterial activity, particularly against Micrococcus luteus. They showed resistance to vancomycin and methicillin antibiotics but were more susceptible to streptomycin and ampicillin. Furthermore, the strains demonstrated antioxidant properties. To ensure their safety, a haemolytic assay was conducted despite their general recognition as safe (GRAS) status. The study primarily aimed to evaluate the inhibitory effects of the extract on enzymes AG and AA. Bacterial isolates demonstrated a significant inhibitory activity against both enzyme AG (32%-67% inhibition) and enzyme AA (18%-46% inhibition) in different forms, including supernatant (CS), lysed extract (CE), and intact cell (IC). These findings underscore the potential of bacterial isolates to inhibit the enzyme activity effectively. Furthermore, the L. fermentum RAMULAB29 and L. paracasei RAMULAB30 strains exhibit remarkable antidiabetic potential. Food products incorporating these strains have promising prospects as nutraceuticals, providing improved health benefits.
Collapse
Affiliation(s)
- Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Sujay Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Sudhanva M. Desai
- Department of Chemical Engineering, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Kalabharthi H. L.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| |
Collapse
|
3
|
Corriero A, Giglio M, Soloperto R, Inchingolo F, Varrassi G, Puntillo F. Microbial Symphony: Exploring the Role of the Gut in Osteoarthritis-Related Pain. A Narrative Review. Pain Ther 2024; 13:409-433. [PMID: 38678155 PMCID: PMC11111653 DOI: 10.1007/s40122-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
One of the most common musculoskeletal disorders, osteoarthritis (OA), causes worldwide disability, morbidity, and poor quality of life by degenerating articular cartilage, modifying subchondral bone, and inflaming synovial membranes. OA pathogenesis pathways must be understood to generate new preventative and disease-modifying therapies. In recent years, it has been acknowledged that gut microbiota (GM) can significantly contribute to the development of OA. Dysbiosis of GM can disrupt the "symphony" between the host and the GM, leading to a host immunological response that activates the "gut-joint" axis, ultimately worsening OA. This narrative review summarizes research supporting the "gut-joint axis" hypothesis, focusing on the interactions between GM and the immune system in its two main components, innate and adaptive immunity. Furthermore, the pathophysiological sequence of events that link GM imbalance to OA and OA-related pain is broken down and further investigated. We also suggest that diet and prebiotics, probiotics, nutraceuticals, exercise, and fecal microbiota transplantation could improve OA management and represent a new potential therapeutic tool in the light of the scarce panorama of disease-modifying osteoarthritis drugs (DMOADs). Future research is needed to elucidate these complex interactions, prioritizing how a particular change in GM, i.e., a rise or a drop of a specific bacterial strain, correlates with a certain OA subset to pinpoint the associated signaling pathway that leads to OA.
Collapse
Affiliation(s)
- Alberto Corriero
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mariateresa Giglio
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Rossana Soloperto
- Department of Intensive Care, Brussels' University Hospital (HUB), Rue de Lennik 808, 1070, Brussels, Belgium
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Filomena Puntillo
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
4
|
Bachtarzi N, Gomri MA, Meradji M, Gil-Cardoso K, Ortega N, Chomiciute G, Del Bas JM, López Q, Martínez V, Kharroub K. In vitro assessment of biofunctional properties of Lactiplantibacillus plantarum strain Jb21-11 and the characterization of its exopolysaccharide. Int Microbiol 2024; 27:239-256. [PMID: 37286917 DOI: 10.1007/s10123-023-00387-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
ABSTACT The microbiota of traditional food provides a rich reservoir of biodiversity to find new strains with interesting features for novel functional food formulation. Therefore, this study aimed to investigate the biofunctional potential of the lactic acid bacteria (LAB) strain Jb21-11 isolated from Jben, a traditional Algerian fresh cheese. This isolate was selected out of a collection of 154 LAB based on its exopolysaccharide (EPS) phenotype and was preliminarily identified by polyphasic characterization as Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) and its biofunctional properties were then assessed in vitro. The tested strain demonstrated good resistance to gastric juice, acidity around pH 2, and 2% (v/v) bile salts, which are important characteristics for potential biofunctional LAB candidates. It also showed a good production of ropy EPS with 674 mg/L on MRS medium. However, this ability appears to compromise the adhesion of the strain to Caco-2 cells (less than 1%), which according to our results, seems not to be related to autoaggregation and hydrophobicity (44.88 ± 0.028% and 16.59 ± 0.012%). Furthermore, promising antimicrobial activity against three pathogenic bacteria (Escherichia coli, Staphylococcus aureus, and Salmonella) was detected probably due to antimicrobial metabolites excreted during fermentation process into the medium. Moreover, the strain L. plantarum Jb21-11 displayed a therapeutic functionality with both anti-inflammatory and immunomodulatory action using RAW 264.7 cells. The chemical features of the novel ropy Jb21-11-EPS were also investigated revealing the presence of three monosaccharides, namely, mannose, galactose, and glucose, with a molar ratio of 5.42:1.00:4.52 linked together by α- and β-glycosidic bonds, presenting a relatively high molecular weight of 1.08 × 105 Da of interest for a texturing potential. Therefore, the new producing EPS strain Jb21-11 is a promising candidate for use as an adjunct culture for improving the texture of functional food.
Collapse
Affiliation(s)
- Nadia Bachtarzi
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria.
| | - Mohamed Amine Gomri
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Meriem Meradji
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Nàdia Ortega
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | | | - Quiro López
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Vanesa Martínez
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Karima Kharroub
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| |
Collapse
|
5
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
6
|
Prakash AN, Prasad N, Puppala ER, Panda SR, Jain S, Ravichandiran V, Singh M, Naidu VGM. Loganic acid protects against ulcerative colitis by inhibiting TLR4/NF-κB mediated inflammation and activating the SIRT1/Nrf2 anti-oxidant responses in-vitro and in-vivo. Int Immunopharmacol 2023; 122:110585. [PMID: 37421777 DOI: 10.1016/j.intimp.2023.110585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic disorder of the intestines characterized by excessive inflammation and oxidative stress. Loganic acid (LA) is an iridoid glycoside reported to have antioxidant and anti-inflammatory properties. However, the beneficial effects of LA on UC are unexplored yet. Thus, this study aims to explore the potential protective effects of LA and its possible mechanisms. In-vitro models were employed using LPS-stimulated RAW 264.7 macrophage cells, and Caco-2 cells, whereas an in-vivo model of ulcerative colitis was employed using 2.5% DSS in BALB/c mice. Results indicated that LA significantly suppressed the intracellular ROS levels and inhibited the phosphorylation of NF-κB in both RAW 264.7 and Caco-2 cells, contrarily LA activated the Nrf2 pathway in RAW 264.7 cells. In DSS-induced colitis mice, LA significantly alleviated the inflammation and colonic damage by decreasing the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ), oxidative stress markers (MDA, and NO), and also expression levels of various inflammatory proteins (TLR4 and NF-кB) which was evidenced by immunoblotting. On the contrary, the release of GSH, SOD, HO-1, and Nrf2 were profoundly increased upon LA treatment.Subsequently, molecular docking studies showed that LA interacts with active site regions of target proteins (TLR4, NF-κB, SIRT1, and Nrf2) through hydrogen bonding and salt bridge interaction. The current findings demonstrated that LA could exhibit a protective effect in DSS-induced ulcerative colitis through its anti-inflammatory and anti-oxidant effects via inactivating the TLR4/NF-κB signaling pathway and activating the SIRT1/Nrf2 pathways.
Collapse
Affiliation(s)
- Arun N Prakash
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal 700054, India
| | - Meenakshi Singh
- Centre for GMP Extraction Facility, Sponsored by Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India.
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India; Centre for GMP Extraction Facility, Sponsored by Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India.
| |
Collapse
|
7
|
Carrizales-Sánchez AK, Tamez-Rivera O, García-Gamboa R, García-Cayuela T, Rodríguez-Gutiérrez NA, Elizondo-Montemayor L, García-Rivas G, Pacheco A, Hernández-Brenes C, Senés-Guerrero C. Gut microbial composition and functionality of school-age Mexican population with metabolic syndrome and type-2 diabetes mellitus using shotgun metagenomic sequencing. Front Pediatr 2023; 11:1193832. [PMID: 37342535 PMCID: PMC10277889 DOI: 10.3389/fped.2023.1193832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Gut metagenome in pediatric subjects with metabolic syndrome (MetS) and type-2 diabetes mellitus (T2DM) has been poorly studied, despite an alarming worldwide increase in the prevalence and incidence of obesity and MetS within this population. The objective of this study was to characterize the gut microbiome taxonomic composition of Mexican pediatric subjects with MetS and T2DM using shotgun metagenomics and analyze the potential relationship with metabolic changes and proinflammatory effects. Paired-end reads of fecal DNA samples were obtained through the Illumina HiSeq X Platform. Statistical analyses and correlational studies were conducted using gut microbiome data and metadata from all individuals. Gut microbial dysbiosis was observed in MetS and T2DM children compared to healthy subjects, which was characterized by an increase in facultative anaerobes (i.e., enteric and lactic acid bacteria) and a decrease in strict anaerobes (i.e., Erysipelatoclostridium, Shaalia, and Actinomyces genera). This may cause a loss of gut hypoxic environment, increased gut microbial nitrogen metabolism, and higher production of pathogen-associated molecular patterns. These metabolic changes may trigger the activation of proinflammatory activity and impair the host's intermediate metabolism, leading to a possible progression of the characteristic risk factors of MetS and T2DM, such as insulin resistance, dyslipidemia, and an increased abdominal circumference. Furthermore, specific viruses (Jiaodavirus genus and Inoviridae family) showed positive correlations with proinflammatory cytokines involved in these metabolic diseases. This study provides novel evidence for the characterization of MetS and T2DM pediatric subjects in which the whole gut microbial composition has been characterized. Additionally, it describes specific gut microorganisms with functional changes that may influence the onset of relevant health risk factors.
Collapse
Affiliation(s)
| | - Oscar Tamez-Rivera
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Ricardo García-Gamboa
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Jalisco, Mexico
- Tecnologico de Monterrey, Escuela de Medicina, Colonia Nuevo México, Zapopan, Jalisco, México
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Jalisco, Mexico
| | - Nora A Rodríguez-Gutiérrez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
- Hospital Regional Materno Infantil de Alta Especialidad, Guadalupe, Nuevo Leon, Mexico
| | | | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon, Mexico
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| | | |
Collapse
|
8
|
Park MS, Kim YJ, Shin HJ, Kwon YJ, Chu J, Lee I, Kim KH, Kim BK, Kim SH, Seo HW, Kim TW. Protective Effect of Novel Lactobacillus plantarum KC3 Isolated from Fermented Kimchi on Gut and Respiratory Disorders. Microorganisms 2023; 11:microorganisms11040967. [PMID: 37110390 PMCID: PMC10141104 DOI: 10.3390/microorganisms11040967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics have been shown to possess anti-inflammatory effects in the gut by directly reducing the production of pro-inflammatory cytokines and by secreting anti-inflammatory molecules. However, their systemic anti-inflammatory effects have not been thoroughly investigated. In this study, we aimed to develop probiotics that have efficacy in both intestinal and lung inflammation. Lactobacillus plantarum KC3 (KC3), which was isolated from kimchi, was selected as a pre-candidate based on its inhibitory effects on the production of pro-inflammatory cytokines in vitro. To further validate the effectiveness of KC3, we used ear edema, DSS-induced colitis, and ambient particulate-matter-induced lung inflammation models. First, KC3 exhibited direct anti-inflammatory effects on intestinal cells with the inhibition of IL-1β and TNF-α production. Additionally, KC3 treatment alleviated ear edema and DSS-induced colic inflammation, improving colon length and increasing the number of regulatory T cells. Beyond its local intestinal anti-inflammatory activity, KC3 inhibited pro-inflammatory cytokines in the bronchoalveolar fluid and prevented neutrophil infiltration in the lungs. These results suggest that KC3 could be a potential functional ingredient with respiratory protective effects against air-pollutant-derived inflammation, as well as for the treatment of local gut disorders.
Collapse
Affiliation(s)
- Min-Seon Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon 34131, Republic of Korea
| | - Yu-Jeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Biosystems & Bioengineering Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Han-Jae Shin
- KT&G Research Institute, Daejeon 34128, Republic of Korea
| | - Yoo Jin Kwon
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Jaeryang Chu
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Inock Lee
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute (CKDBiO), Seoul 03722, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon 34131, Republic of Korea
| |
Collapse
|
9
|
Analysis of the effect of hyaluronic acid on intestinal flora and its metabolites in diabetic mice via high-throughput sequencing and nontargeted metabolomics. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
10
|
Bhatia R, Singh S, Maurya R, Bhadada SK, Bishnoi M, Chopra K, Joshi SR, Kondepudi KK. In vitro characterization of lactic acid bacterial strains isolated from fermented foods with anti-inflammatory and dipeptidyl peptidase-IV inhibition potential. Braz J Microbiol 2023; 54:293-309. [PMID: 36401067 PMCID: PMC9944167 DOI: 10.1007/s42770-022-00872-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Probiotics are known to stimulate, modulate, and regulate host immune response by regulating specific sets of genes and improve glucose homeostasis through regulating dipeptidyl peptidase (DPP-IV) activity, but the mechanism behind their protective role is not clearly understood. Therefore, the present study was designed to isolate indigenous lactic acid bacterial (LAB) strains from different fermented food samples, vegetables, and human infant feces exhibiting anti-inflammatory, antioxidant, and DPP-IV inhibitory activity. A total of thirty-six Gram-positive, catalase-negative, and rod-shaped bacteria were isolated and screened for their anti-inflammatory activity using lipopolysaccharide (LPS)-induced inflammation on the murine (RAW264.7) macrophages. Among all, sixteen strains exhibited more than 90% reduction in nitric oxide (NO) production by the LPS-treated RAW264.7 cells. Prioritized strains were characterized for their probiotic attributes as per the DBT-ICMR guidelines and showed desirable probiotic attributes in a species and strain-dependent manner. Accordingly, Lacticaseibacillus rhamnosus LAB3, Levilactobacillus brevis LAB20, Lactiplantibacillus plantarum LAB31, Pediococcus acidilactici LAB8, and Lactiplantibacillus plantarum LAB39 were prioritized. Furthermore, these strains when co-supplemented with LPS and treated on RAW264.7 cells inhibited the mitogen-activated protein kinases (MAPKs), i.e., p38 MAPK, ERK1/2, and SAPK/JNK, cyclooxygenase-2 (COX-2), relative to the LPS-alone-treated macrophages. LAB31 and LAB39 also showed 64 and 95% of DPP-IV inhibitory activity relative to the Lacticaseibacillus rhamnosus GG ATCC 53103, which was used as a reference strain in all the studies. Five prioritized strains ameliorated the LPS-induced inflammation by downregulating the JNK/MAPK pathway and could be employed as an alternative bio-therapeutic strategy in mitigating gut-associated inflammatory conditions. The potential mechanism of action of prioritized LAB strains in preventing the LPS-induced inflammation in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Ruchika Bhatia
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Shashank Singh
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
| | - Ruchika Maurya
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
- Regional Centre of Biotechnology, Faridabad, 121001, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
- Regional Centre of Biotechnology, Faridabad, 121001, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Santa Ram Joshi
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Meghalaya, 793022, Shillong, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India.
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India.
- Regional Centre of Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
11
|
Peng B, Cui Q, Ma C, Yi H, Gong P, Lin K, Liu T, Zhang L. Lactiplantibacillus plantarum YZX28 alleviated intestinal barrier dysfunction induced by enterotoxigenic Escherichia coli via inhibiting its virulence factor production. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Shen Z, Luo W, Tan B, Nie K, Deng M, Wu S, Xiao M, Wu X, Meng X, Tong T, Zhang C, Ma K, Liao Y, Xu J, Wang X. Roseburia intestinalis stimulates TLR5-dependent intestinal immunity against Crohn's disease. EBioMedicine 2022; 85:104285. [PMID: 36182776 PMCID: PMC9526137 DOI: 10.1016/j.ebiom.2022.104285] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
13
|
Lacticaseibacillus casei Strain Shirota Modulates Macrophage-Intestinal Epithelial Cell Co-Culture Barrier Integrity, Bacterial Sensing and Inflammatory Cytokines. Microorganisms 2022; 10:microorganisms10102087. [PMID: 36296363 PMCID: PMC9607601 DOI: 10.3390/microorganisms10102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Probiotic bacteria modulate macrophage immune inflammatory responses, with functional cytokine responses determined by macrophage subset polarisation, stimulation and probiotic strain. Mucosal macrophages exhibit subset functional heterogeneity but are organised in a 3-dimensional tissue, over-laid by barrier epithelial cells. This study aimed to investigate the effects of the probiotic Lacticaseibacillus casei strain Shirota (LcS) on macrophage-epithelial cell cytokine responses, pattern recognition receptor (PRR) expression and LPS responses and the impacts on barrier integrity. THP-1-derived M1 and M2 subset macrophages were co-cultured in a transwell system with differentiated Caco-2 epithelial cells in the presence or absence of enteropathogenic LPS. Both Caco-2 cells in monoculture and macrophage co-culture were assayed for cytokines, PRR expression and barrier integrity (TEER and ZO-1) by RT-PCR, ELISA, IHC and electrical resistance. Caco-2 monocultures expressed distinct cytokine profiles (IL-6, IL-8, TNFα, endogenous IL-10), PRRs and barrier integrity, determined by inflammatory context (TNFα or IL-1β). In co-culture, LcS rescued ZO-1 and TEER in M2/Caco-2, but not M1/Caco-2. LcS suppressed TLR2, TLR4, MD2 expression in both co-cultures and differentially regulated NOD2, TLR9, Tollip and cytokine secretion. In conclusion, LcS selectively modulates epithelial barrier integrity, pathogen sensing and inflammatory cytokine profile; determined by macrophage subset and activation status.
Collapse
|
14
|
Liu Q, An X, Chen Y, Deng Y, Niu H, Ma R, Zhao H, Cao W, Wang X, Wang M. Effects of Auricularia auricula Polysaccharides on Gut Microbiota and Metabolic Phenotype in Mice. Foods 2022; 11:foods11172700. [PMID: 36076885 PMCID: PMC9455240 DOI: 10.3390/foods11172700] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
Personalized diets change the internal metabolism of organisms, which, in turn, affects the health of the body; this study was performed to explore the regulatory effects of polysaccharides extracted from Auricularia auricula on the overall metabolism and gut microbiota in normal C57BL/6J mice. The study was conducted using metabolomic and microbiomic methods to provide a scientific basis for further development and use of Auricularia auricula resources in the Qinba Mountains and in nutritional food with Auricularia auricula polysaccharides (AAP) as the main functional component. Based on LC-MS/MS metabolomic results, 51 AAP-regulated metabolites were found, mainly enriched in the arginine biosynthesis pathway, which had the highest correlation, followed by the following metabolisms: arginine and proline; glycine, serine and threonine; and glycerophospholipid, along with the sphingolipid metabolism pathway. Furthermore, supplementation of AAP significantly changed the composition of the mice intestinal flora. The relative abundance levels of Lactobacillus johnsonii, Weissella cibaria, Kosakonia cowanii, Enterococcus faecalis, Bifidobacterium animalis and Bacteroides uniformis were markedly up-regulated, while the relative abundance of Firmicutes bacterium M10-2 was down-regulated. The bioactivities of AAP may be related to the regulatory effects of endogenous metabolism and gut microbiota composition.
Collapse
Affiliation(s)
- Qian Liu
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China
- Shaanxi Functional Food Engineering Center Co., Ltd., Xi’an 710069, China
- Correspondence: ; Tel./Fax: +86-29-88305208
| | - Xin An
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| | - Yuan Chen
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| | - Yuxuan Deng
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| | - Haili Niu
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| | - Ruisen Ma
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| | - Xiaoru Wang
- Shaanxi Functional Food Engineering Center Co., Ltd., Xi’an 710069, China
| | - Meng Wang
- Shaanxi Functional Food Engineering Center Co., Ltd., Xi’an 710069, China
| |
Collapse
|
15
|
Wen L, Bi H, Zhou X, Jiang Y, Zhu H, Fu X, Yang B. Structure characterization of soybean peptides and their protective activity against intestinal inflammation. Food Chem 2022; 387:132868. [PMID: 35381416 DOI: 10.1016/j.foodchem.2022.132868] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Soybean peptides serve as functional foods with impressive health benefits. The structure characteristics of peptides are highly related to the health benefits. The structure-activity relationship and mechanism underlined are important scientific questions in this field. To answer these questions, soybean peptides were produced by combinatory enzymatic hydrolysis in this work. Fifty-two peptide sequences were identified by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The anti-inflammatory activities of these peptides were investigated by using a lipopolysaccharide (LPS)-induced inflammation cell model. Soybean peptides could significantly promote cell proliferation. Additionally, soybean peptides could alleviate LPS-induced inflammation by reducing the production and expression of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Moreover, soybean peptides could promote the mRNA expression of proteins related to inflammation inhibition (IL-10) and tight junction modulation. The structure-activity relationship was addressed. The results documented the potential of soybean peptides as functional foods.
Collapse
Affiliation(s)
- Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huimin Bi
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Xuesong Zhou
- Guangzhou Honsea Industry Co., Ltd., Guangzhou 510530, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
16
|
Zhang Y, Chen H, Lu M, Cai J, Lu B, Luo C, Dai M. Habitual Diet Pattern Associations with Gut Microbiome Diversity and Composition: Results from a Chinese Adult Cohort. Nutrients 2022; 14:nu14132639. [PMID: 35807820 PMCID: PMC9268000 DOI: 10.3390/nu14132639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
The influence of long-term diet on gut microbiota is an active area of investigation. The present work aimed to explore the associations between habitual diet patterns and gut microbiota in a large sample of asymptomatic Chinese adults. The gut microbiome was profiled through the sequencing of the 16S rRNA gene in stool samples from 702 Chinese adults aged 50–75 years who underwent colonoscopies and were diagnosed to be free of colorectal neoplasm. Long-term dietary consumption was assessed through a food-frequency questionnaire. The microbial associations with specific food groups and the posteriori dietary pattern were tested using the Kruskal–Wallis H test, permutational ANOVAs, and multivariate analyses with linear models. The Shannon indexes generally shared similar levels across different food intake frequency groups. Whole grain and vegetable intakes totally explained 1.46% of the microbiota compositional variance. Using the data-driven posteriori approach, a general dietary pattern characterized by lower intakes of refined grains was highlighted to be associated with higher abundances of the genus Anaerostipes and a species of it. We also observed 17 associations between various food group intakes and specific genera and species. For instance, the relative abundances of the genus Weissella and an uncultured species of it were negatively associated with red meat intake. The results of this study support the idea that the usual dietary consumption measured by certain food items or summary indexes is associated with gut microbial features. These results deepen the understanding of complex relationships of diet and gut microbiota, as well as their implications for gut microbiome studies of human chronic diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Hongda Chen
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
- Correspondence: (H.C.); (M.D.); Tel.: +86-10-6915-4660 (H.C.); +86-10-6915-4651 (M.D.)
| | - Ming Lu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Jie Cai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Bin Lu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Chenyu Luo
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Min Dai
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
- Correspondence: (H.C.); (M.D.); Tel.: +86-10-6915-4660 (H.C.); +86-10-6915-4651 (M.D.)
| |
Collapse
|
17
|
Bhatia R, Sharma S, Bhadada SK, Bishnoi M, Kondepudi KK. Lactic Acid Bacterial Supplementation Ameliorated the Lipopolysaccharide-Induced Gut Inflammation and Dysbiosis in Mice. Front Microbiol 2022; 13:930928. [PMID: 35770157 PMCID: PMC9235405 DOI: 10.3389/fmicb.2022.930928] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Lipopolysaccharide (LPS), a gut-transmitted endotoxin from Gram-negative bacteria, causes inflammatory diseases leading to the loss of gut barrier integrity and has been identified as a major pathogenic stimulator in many dysfunctions. Hence, supplementation with probiotics is believed to be one of the most effective strategies for treating many inflammatory gut disorders. Although probiotics are known to have a variety of therapeutic characteristics and to play a beneficial role in host defense responses, the molecular mechanisms by which they achieve these beneficial effects are unknown due to species- and strain-specific behaviors. Therefore, in this study, the protective role of five indigenous lactic acid bacterial strains in ameliorating LPS-induced gut barrier impairment in the C57BL/6 mice model was elucidated. Lacticaseibacillus rhamnosus LAB3, Levilactobacillus brevis LAB20, and Lactiplantibacillus plantarum LAB31 were isolated from infant feces; Pediococcus acidilactici LAB8 from fermented food (Bekang); and Lactiplantibacillus plantarum LAB39 from beetroot. Intraperitoneal injection of LPS (10 mg/kg of body weight) increased the levels of lipocalin and serum markers TNF-α, IL-6, and IL-1β, and the overall disease activity index in the treated group. Furthermore, gene expression of NF-kB, IL-12, and Cox-2; mucin-producing genes Muc-2 and Muc-4; and intestinal alkaline phosphatase (IAP) was deleteriously altered in the ileum of LPS-treated mice. Furthermore, LPS also induced dysbiosis in gut microbiota where higher abundances of Klebsiella, Enterobacter, and Salmonella and decreased abundances of Lactobacillus, Bifidobacteria, Roseburia, and Akkermansia were observed. Western blotting results also suggested that LPS treatment causes the loss of gut barrier integrity relative to the pre-supplementation with LAB strains, which enhanced the expression of tight junction proteins and ameliorated the LPS-induced changes and inflammation. Taken together, the study suggested that LAB3 and LAB39 were more potent in ameliorating LPS-induced gut inflammation and dysbiosis.
Collapse
Affiliation(s)
- Ruchika Bhatia
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Shikha Sharma
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
- *Correspondence: Kanthi Kiran Kondepudi, ; orcid.org/0000-0001-8036-7555
| |
Collapse
|
18
|
Sharma S, Singh S, Chaudhary V, Mantri S, Chander A, Maurya R, Rajarammohan S, Singh RP, Rishi P, Bishnoi M, Bhadada SK, Kondepudi KK. Isomaltooligosaccharides utilization and genomic characterization of human infant anti-inflammatory Bifidobacterium longum and Bifidobacterium breve strains. 3 Biotech 2022; 12:89. [PMID: 35299989 PMCID: PMC8901852 DOI: 10.1007/s13205-022-03141-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/07/2022] [Indexed: 11/01/2022] Open
Abstract
This study was carried out to understand the probiotic features, ability to utilize non-digestible carbohydrates and comparative genomics of anti-inflammatory Bifidobacterium strains isolated from human infant stool samples. Bacterial strains were isolated from the stool samples using serial dilution on MRS agar plates supplemented with 0.05% l-cysteine hydrochloride and mupirocin. Molecular characterization of the strains was carried out by 16S rRNA gene sequencing. Anti-inflammatory activity was determined using TNF-α and lipopolysaccharide (LPS) induced inflammation in Caco2 cells. Probiotic attributes were determined as per the established protocols. Isomaltooligosaccharides (IMOS) utilization was determined in the broth cultures. Whole genome sequencing and analysis was carried out for three strains. Four obligate anaerobic, Gram positive Bifidobacterium strains were isolated from the infant stool samples. Strains were identified as Bifidobacterium longum Bif10, B. breve Bif11, B. longum Bif12 and B. longum Bif16. The strains were able to prevent inflammation in the Caco2 cells through lowering of IL8 production that was caused by TNF-α and LPS treatment. The strains exhibited desirable probiotic attributes such as acid and bile tolerance, mucin binding, antimicrobial activity, bile salt hydrolase activity, cholesterol lowering ability and could ferment non-digestible carbohydrates such as isomaltooligosaccharides and raffinose. Furthermore, Isomaltooligosaccharides supported the optimum growth of the strains in vitro, which was comparable to that on glucose. Strains could metabolize IMOS through cell associated α-glucosidase activity. Genomic features revealed the presence of genes responsible for the utilization of IMOS and for the probiotic attributes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03141-2.
Collapse
|
19
|
Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity. Food Chem 2022; 373:131374. [PMID: 34717092 DOI: 10.1016/j.foodchem.2021.131374] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
Ganoderma lucidum spore is widely accepted as functional food. Polysaccharides are the predominant bioactive components in G. lucidum spore and contribute much to its health benefits. However, their structural characteristics remain unclear. In this work, water-soluble polysaccharides (GLSP) were obtained by hot water extraction. Three monosaccharides, including arabinose (Ara), glucose (Glc) and galactose (Gal), were presented in GLSP. 1D and 2D NMR data revealed that GLSP were composed mainly by two polysaccharides, β-glucan and arabinogalactan. The arabinogalactan had a backbone of galactan with Araf in the side chain. β-Glucan was the dominant polysaccharide in G. lucidum spore. The molecular weight was measured. GLSP could induce IEC-6 cells proliferation in a concentration-dependent manner. Moreover, GLSP possessed a strong anti-inflammatory activity through inhibiting the overproduction of NO and pro-inflammatory cytokines, like interleukin-6 (IL-6) and interleukin-1β (IL-1β) induced by LPS. These results implied the potential of GLSP on gut barrier protection.
Collapse
|
20
|
Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int 2022; 156:111133. [DOI: 10.1016/j.foodres.2022.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|
21
|
Kim WJ, Hyun JH, Lee NK, Paik HD. Protective Effects of a Novel Lactobacillus brevis Strain with Probiotic Characteristics against Staphylococcus aureus Lipoteichoic Acid-Induced Intestinal Inflammatory Response. J Microbiol Biotechnol 2022; 32:205-211. [PMID: 34750285 PMCID: PMC9628842 DOI: 10.4014/jmb.2110.10034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
Probiotics can effectively modulate host immune responses and prevent gastrointestinal diseases. The objective of this study was to investigate the probiotic characteristics of Lactobacillus brevis KU15152 isolated from kimchi and its protective potential against intestinal inflammation induced by Staphylococcus aureus lipoteichoic acid (aLTA). L. brevis KU15152 exhibited a high survival rate in artificial gastric and bile environments. Additionally, the adhesion capability of the strain to HT-29 cells was higher than that of L. rhamnosus GG. L. brevis KU15152 did not produce harmful enzymes, such as β-glucuronidase, indicating that it could be used as a potential probiotic. The anti-inflammatory potential of L. brevis KU15152 was determined in HT-29 cells. Treatment with L. brevis KU15152 suppressed the production of interleukin-8 without inducing significant cytotoxicity. The downregulatory effects of L. brevis KU15152 were involved in the suppression of nuclear factor-kappa B activation mediated by the extracellular signal-regulated kinase and Akt signaling pathways. Collectively, these data suggest that L. brevis KU15152 can be used in developing therapeutic and prophylactic products to manage and treat aLTA-induced intestinal damage.
Collapse
Affiliation(s)
- Won-Ju Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jun-Hyun Hyun
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-2049-6011 E-mail:
| |
Collapse
|
22
|
Liu Y, Wang J, Wu C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Front Nutr 2022; 8:634897. [PMID: 35047537 PMCID: PMC8761849 DOI: 10.3389/fnut.2021.634897] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract harbours a complex microbial community, which interacts with the mucosal immune system closely. Gut microbiota plays a significant role in maintaining host health, which could supply various nutrients, regulate energy balance, modulate the immune response, and defence against pathogens. Therefore, maintaining a favourable equilibrium of gut microbiota through modulating bacteria composition, diversity, and their activity is beneficial to host health. Several studies have shown that probiotics and pre-biotics could directly and indirectly regulate microbiota and immune response. In addition, post-biotics, such as the bioactive metabolites, produced by gut microbiota, and/or cell-wall components released by probiotics, also have been shown to inhibit pathogen growth, maintain microbiota balance, and regulate an immune response. This review summarises the studies concerning the impact of probiotics, pre-biotics, and post-biotics on gut microbiota and immune systems and also describes the underlying mechanisms of beneficial effects of these substances. Finally, the future and challenges of probiotics, pre-biotics, and post-biotics are proposed.
Collapse
Affiliation(s)
- Yue Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiaqi Wang
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
23
|
Structural characterization and protective effects of polysaccharide from Gracilaria lemaneiformis on LPS-induced injury in IEC-6 cells. Food Chem X 2021; 12:100157. [PMID: 34816122 PMCID: PMC8593598 DOI: 10.1016/j.fochx.2021.100157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
Abstract
This study was aimed to characterize Gracilaria lemaneiformis polysaccharides and evaluate their protective effects on Lipopolysaccharide-induced injury in IEC-6 cells. The G. lemaneiformis polysaccharide was degraded by UV/H2O2 treatment and purified to three fractions named GLP-1.0 M, GLP-1.4 M and GLP-1.6 M. The purified fractions were mainly composed of galactose, glucose and xylose. The structural analysis showed that GLP-1.6 M was a typical sulfated red alga polysaccharide containing the linear backbone of β-(1 → 3)- and α-(1 → 4)-linked galactosyl residues, anhydro-galactose units. In the Lipopolysaccharide-induced IEC-6 cells model, GLP-1.6 M exerted the strongest in vitro anti-inflammatory activity by inhibiting the release and expressions of tumor necrosis factor-α, interleukin-6 and interleukin-1β by 89.93%, 67.82% and 38.06%, respectively. Meanwhile, GLP-1.6 M enhanced the intestinal barrier function via up-regulating the expressions of tight junctions and mucin. Therefore, the purified polysaccharide from G. lemaneiformis could be a promising candidate for maintaining intestinal health in the food and pharmaceutical industries.
Collapse
|
24
|
Wang Z, Cao Y, Zhang K, Guo Z, Liu Y, Zhou P, Liu Z, Lu X. Gold nanoparticles alleviates the lipopolysaccharide-induced intestinal epithelial barrier dysfunction. Bioengineered 2021; 12:6472-6483. [PMID: 34523392 PMCID: PMC8806813 DOI: 10.1080/21655979.2021.1972782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nanotechnology is used in the immune response manipulation to treat various human diseases. In the present study, we explored the effects of Au nanoparticles (AuNPs) on the lipopolysaccharide (LPS)-induced epithelial barrier dysfunction and inflammatory response of colonic epithelial NCM460 cells. According to the results of cell counting kit-8 and flow cytometry analysis, the viability of NCM460 cells was inhibited, and the apoptosis was increased after LPS treatment, and AuNPs reversed these changes in a dose-dependent way. The permeability was evaluated by detecting the flux of fluorescein isothiocyanate-dextran and transepithelial electrical resistance. LPS enhanced the permeability and promoted barrier dysfunction of NCM460 cells. Enzyme-linked immunosorbent sorbent assay results revealed that the concentrations of pro-inflammatory factors and nitric oxide were elevated by LPS treatment and decreased by the AuNPs. LPS aggravated the inflammatory response, which was rescued by the AuNPs. Moreover, LPS promoted the activation of the nuclear factor kappa-B and extracellular signal-regulated kinase/c-Jun NH-terminal kinase signaling pathways, which were inhibited by AuNPs.
Collapse
Affiliation(s)
- Zhen Wang
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Critical Care Medicine, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yinya Cao
- Department of Critical Care Medicine, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Kangzhen Zhang
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhirui Guo
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Liu
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Zhou
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Liu
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Pabari K, Pithva S, Kothari C, Purama RK, Kondepudi KK, Vyas BRM, Kothari R, Ambalam P. Evaluation of Probiotic Properties and Prebiotic Utilization Potential of Weissella paramesenteroides Isolated From Fruits. Probiotics Antimicrob Proteins 2021; 12:1126-1138. [PMID: 31942681 DOI: 10.1007/s12602-019-09630-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Weissella paramesenteroides has gained a considerable attention as bacteriocin and exopolysaccharide producers. However, potential of W. paramesenteroides to utilize different prebiotics is unexplored area of research. Fruits being vectors of various probiotics, five W. paramesenteroides strains, namely, FX1, FX2, FX5, FX9, and FX12, were isolated from different fruits. They were screened and selected based on their ability to survive at pH 2.5 and in 1.0% sodium taurocholate, high cell surface hydrophobicity, mucin adhesion, bile-induced biofilm formation, antimicrobial activity (AMA) against selected enteropathogens, and prebiotic utilization ability, implicating the functional properties of these strains. In vitro safety evaluation showed that strains were susceptible to antibiotics except vancomycin and did not harbor any virulent traits such as biogenic amine production, hemolysis, and DNase production. Based on their functionality, two strains FX5 and FX9 were selected for prebiotic utilization studies by thin layer chromatography (TLC) and short-chain fatty acids (SCFAs) production by high performance liquid chromatography. TLC profile evinced the ability of these two strains to utilize low molecular weight galactooligosaccharides (GOS) and fructooligosaccharides (FOS), as only the upper low molecular weight fractions were disappeared from cell-free-supernatants (CFS). Enhanced β-galactosidase activity correlated with galactose accumulation in residual CFS of GOS displayed GOS utilization ability. Both the strains exhibited AMA against E. coli and Staph. aureus and high SCFAs production in the presence of prebiotic, suggesting their synbiotic potential. Thus, W. paramesenteroides strains FX5 and FX9 exhibit potential probiotic properties with prebiotic utilization and can be taken forward to evaluate synergistic synbiotic potential in detail.
Collapse
Affiliation(s)
- Kinjal Pabari
- Department of Biotechnology, Christ College, Vidya Niketan, Saurashtra University, PO, Rajkot, Gujarat, 360005, India.,UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Sheetal Pithva
- Government Science College, Sector 15, Gandhinagar, India
| | - Charmy Kothari
- Department of Biotechnology, Christ College, Vidya Niketan, Saurashtra University, PO, Rajkot, Gujarat, 360005, India
| | - Ravi Kiran Purama
- National Institute of Plant Genome Research, Aruna Asaf Marg, Po Box No. 10531, New Delhi, India
| | | | | | - Ramesh Kothari
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat, 360005, India.
| | - Padma Ambalam
- Department of Biotechnology, Christ College, Vidya Niketan, Saurashtra University, PO, Rajkot, Gujarat, 360005, India.
| |
Collapse
|
26
|
He Q, Zou T, Chen J, He J, Jian L, Xie F, You J, Wang Z. Methyl-Donor Micronutrient for Gestating Sows: Effects on Gut Microbiota and Metabolome in Offspring Piglets. Front Nutr 2021; 8:675640. [PMID: 34164424 PMCID: PMC8215270 DOI: 10.3389/fnut.2021.675640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the effects of maternal methyl-donor micronutrient supplementation during gestation on gut microbiota and the fecal metabolic profile in offspring piglets. Forty-three Duroc × Erhualian gilts were assigned to two dietary groups during gestation: control diet (CON) and CON diet supplemented with MET (folic acid, methionine, choline, vitamin B6, and vitamin B12). The body weights of offspring piglets were recorded at birth and weaning. Besides this, fresh fecal samples of offspring piglets were collected at 7, 14, and 21 days. The gut microbiota composition, metabolic profile, and short-chain fatty acid (SCFA) profiles in the fecal samples were determined using 16S rDNA sequencing, liquid chromatography-mass spectrometry metabolomics, and gas chromatography methods, respectively. The results showed that maternal methyl-donor micronutrient supplementation increased the microbiota diversity and uniformity in feces of offspring piglets as indicated by increased Shannon and Simpson indices at 7 days, and greater Simpson, ACE, Chao1 and observed species indices at 21 days. Specifically, at the phylum level, the relative abundance of Firmicutes and the Firmicutes to Bacteroidetes ratio were elevated by maternal treatment. At the genus level, the relative abundance of SCFA-producing Dialister, Megasphaera, and Turicibacter, and lactate-producing Sharpea as well as Akkermansia, Weissella, and Pediococcus were increased in the MET group. The metabolic analyses show that maternal methyl-donor micronutrient addition increased the concentrations of individual and total SCFAs of 21-day piglets and increased metabolism mainly involving amino acids, pyrimidine, and purine biosynthesis. Collectively, maternal methyl-donor micronutrient addition altered gut microbiota and the fecal metabolic profile, resulting in an improved weaning weight of offspring piglets.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Tiande Zou
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Jun Chen
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Jia He
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Li Jian
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Fei Xie
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Jinming You
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Zirui Wang
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
27
|
Jahan D, Peile E, Sheikh MA, Islam S, Parasnath S, Sharma P, Iskandar K, Dhingra S, Charan J, Hardcastle TC, Samad N, Chowdhury TS, Dutta S, Haque M. Is it time to reconsider prophylactic antimicrobial use for hematopoietic stem cell transplantation? a narrative review of antimicrobials in stem cell transplantation. Expert Rev Anti Infect Ther 2021; 19:1259-1280. [PMID: 33711240 DOI: 10.1080/14787210.2021.1902304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Hematopoietic Stem Cell Transplantation (HSCT) is a life-saving procedure for multiple types of hematological cancer, autoimmune diseases, and genetic-linked metabolic diseases in humans. Recipients of HSCT transplant are at high risk of microbial infections that significantly correlate with the presence of graft-versus-host disease (GVHD) and the degree of immunosuppression. Infection in HSCT patients is a leading cause of life-threatening complications and mortality. AREAS COVERED This review covers issues pertinent to infection in the HSCT patient, including bacterial and viral infection; strategies to reduce GVHD; infection patterns; resistance and treatment options; adverse drug reactions to antimicrobials, problems of antimicrobial resistance; perturbation of the microbiome; the role of prebiotics, probiotics, and antimicrobial peptides. We highlight potential strategies to minimize the use of antimicrobials. EXPERT OPINION Measures to control infection and its transmission remain significant HSCT management policy and planning issues. Transplant centers need to consider carefully prophylactic use of antimicrobials for neutropenic patients. The judicious use of appropriate antimicrobials remains a crucial part of the treatment protocol. However, antimicrobials' adverse effects cause microbiome diversity and dysbiosis and have been shown to increase morbidity and mortality.
Collapse
Affiliation(s)
- Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh
| | - Ed Peile
- Department of Medical Education, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Sharlene Parasnath
- Department of Clinical Hematology, Inkosi Albert Luthuli Central Hospital, 800 Vusi Mzimela Road, Cato Manor, Durban, South Africa
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Katia Iskandar
- Lebanese University, School of Pharmacy, Beirut, Lebanon.,INSPECT-LB: Institute National de Sante Publique, Epidemiologie Clinique et Toxicologie, Beirut, Lebanon.,Universite Paul Sabatier UT3, INSERM, UMR1027, Toulouse, France
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Timothy Craig Hardcastle
- Trauma Service, Inkosi Albert Luthuli Central Hospital, Mayville, South Africa.,Department of Surgery, Nelson R Mandela School of Clinical Medicine, UKZN, South Africa
| | - Nandeeta Samad
- Department of Public Health, North South University, Bangladesh
| | | | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Jang HJ, Son S, Kim JA, Jung MY, Choi YJ, Kim DH, Lee HK, Shin D, Kim Y. Characterization and Functional Test of Canine Probiotics. Front Microbiol 2021; 12:625562. [PMID: 33763044 PMCID: PMC7982664 DOI: 10.3389/fmicb.2021.625562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 02/01/2023] Open
Abstract
Probiotics can modulate the composition of gut microbiota and benefit the host animal health in multiple ways. Lactic acid bacteria (LAB), mainly Lactobacillus and Bifidobacterium species, are well-known microbes with probiotic potential. In the present study, 88 microbial strains were isolated from canine feces and annotated. Among these, the four strains CACC517, 537, 558, and 566 were tested for probiotic characteristics, and their beneficial effects on hosts were evaluated both in vitro and in vivo; these strains exhibited antibiosis, antibiotic activity, acid and bile tolerance, and relative cell adhesion to the HT-29 monolayer cell line. Byproducts of these strains increased the viability and decreased oxidative stress in mouse and dog cell lines (RAW264.7 and DH82, respectively). Subsequently, when the probiotics were applied to the clinical trial, changes in microbial composition and relative abundance of bacterial strains were clearly observed in the experimental animals. Experimental groups before and after the application were obviously separated from PCA analysis of clinical results. Conclusively, these results could provide comprehensive understanding of the effects of probiotic strains (CACC517, 537, 558, and 566) and their industrial applications.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| | - Seungwoo Son
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju-si, South Korea.,The Animal Molecular Genetics & Breeding Center, Jeonbuk National University, Jeonju-si, South Korea
| | - Jung-Ae Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea.,Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju-si, South Korea
| | - Min Young Jung
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| | - Yeon-Jae Choi
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| | - Dae-Hyuk Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea.,Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju-si, South Korea.,Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju-si, South Korea
| | - Hak Kyo Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju-si, South Korea.,The Animal Molecular Genetics & Breeding Center, Jeonbuk National University, Jeonju-si, South Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju-si, South Korea.,The Animal Molecular Genetics & Breeding Center, Jeonbuk National University, Jeonju-si, South Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, South Korea
| |
Collapse
|
29
|
Khare P, Maurya R, Bhatia R, Mangal P, Singh J, Podili K, Bishnoi M, Kondepudi KK. Polyphenol rich extracts of finger millet and kodo millet ameliorate high fat diet-induced metabolic alterations. Food Funct 2020; 11:9833-9847. [PMID: 33089852 DOI: 10.1039/d0fo01643h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Finger millet (FM) and kodo millet (KM) are known for their multiple health benefits. Several studies have indicated the antioxidant and hypoglycemic potential of polyphenol rich extracts (PREs) from them. However, the protective roles of PREs from these millets in overcoming high-fat diet (HFD)-induced obesity have not yet been investigated. This study aimed to identify the polyphenols in FM-PREs and KM-PREs using HPLC-DAD/ESI-MS, and to evaluate the role of PREs in mitigating lipopolysaccharide induced inflammation in murine macrophage cells and in the reduction of HFD-induced metabolic complications using male Swiss albino mice. The results suggested that KM-PRE had higher polyphenol content than FM-PRE, of which taxifolin (98%) and catechin (86.6%) were the major fractions respectively. FM-PRE and KM-PRE prevented obesity, however, KM-PRE was more profound in preventing weight gain, adipose tissue hypertrophy, hepatic steatosis, and systemic inflammation than FM-PRE. This study suggests that FM-PRE and KM-PRE could be exploited for developing functional foods or nutraceuticals against obesity and comorbidities.
Collapse
Affiliation(s)
- Pragyanshu Khare
- Healthy Gut Research Group, Center of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen P, Xu H, Tang H, Zhao F, Yang C, Kwok L, Cong C, Wu Y, Zhang W, Zhou X, Zhang H. Modulation of gut mucosal microbiota as a mechanism of probiotics-based adjunctive therapy for ulcerative colitis. Microb Biotechnol 2020; 13:2032-2043. [PMID: 32969200 PMCID: PMC7533322 DOI: 10.1111/1751-7915.13661] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
This was a pilot study aiming to evaluate the effects of probiotics as adjunctive treatment for ulcerative colitis (UC). Twenty-five active patients with UC were assigned to the probiotic (n = 12) and placebo (n = 13) groups. The probiotic group received mesalazine (60 mg kg-1 day-1 ) and oral probiotics (containing Lactobacillus casei Zhang, Lactobacillus plantarum P-8 and Bifidobacterium animalis subsp. lactis V9) twice daily for 12 weeks, while the placebo group received the same amounts of mesalazine and placebo. The clinical outcomes were assessed. The gut mucosal microbiota was profiled by PacBio single-molecule, real-time (SMRT) sequencing of the full-length 16S rRNA of biopsy samples obtained by colonoscopy. A significantly greater magnitude of reduction was observed in the UC disease activity index (UCDAI) in the probiotic group compared with the placebo group (P = 0.043), accompanying by a higher remission rate (91.67% for probiotic-receivers versus 69.23% for placebo-receivers, P = 0.034). The probiotics could protect from diminishing of the microbiota diversity and richness. Moreover, the gut mucosal microbiota of the probiotic-receivers had significantly more beneficial bacteria like Eubacterium ramulus (P < 0.05), Pediococcus pentosaceus (P < 0.05), Bacteroides fragilis (P = 0.02) and Weissella cibaria (P = 0.04). Additionally, the relative abundances of the beneficial bacteria correlated significantly but negatively with the UCDAI score, suggesting that the probiotics might alleviate UC symptoms by modulating the gut mucosal microbiota. Our research has provided new insights into the mechanism of symptom alleviation in UC by applying probiotic-based adjunctive treatment.
Collapse
Affiliation(s)
- Ping Chen
- The Affiliated Hospital of Inner Mongolia Medical UniversityHohhot010050China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | - Hai Tang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | - Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | - Lai‐Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | - Chunli Cong
- The Affiliated Hospital of Inner Mongolia Medical UniversityHohhot010050China
| | - YanFang Wu
- The Affiliated Hospital of Inner Mongolia Medical UniversityHohhot010050China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | | | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| |
Collapse
|
31
|
Kim MJ, You YO, Kang JY, Kim HJ, Kang MS. Weissella cibaria CMU exerts an anti‑inflammatory effect by inhibiting Aggregatibacter actinomycetemcomitans‑induced NF‑κB activation in macrophages. Mol Med Rep 2020; 22:4143-4150. [PMID: 33000248 PMCID: PMC7533440 DOI: 10.3892/mmr.2020.11512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by various periodontal pathogens. Weissella cibaria CMU (oraCMU) is a probiotic that promotes oral health. However, its anti‑inflammatory effects against periodontal pathogens have not yet been investigated. The present study evaluated the anti‑inflammatory effects of live oraCMU against stimulation with the formalin‑inactivated periodontal pathogen Aggregatibacter actinomycetemcomitans in RAW 264.7 macrophages. Cell viability was analyzed by the MTS assay in a dose‑dependent manner (at multiplicities of infection of 0.1, 1, 10, 100 and 1,000). Nitric oxide (NO) was monitored using the Griess test. The mRNA expression of proinflammatory cytokines such as interleukin (IL)1β and IL6 was assessed by reverse transcription‑quantitative PCR. Western blotting was used to examine the effects of oraCMU on the phosphorylation of NF‑κB inhibitor α (IκBα) and IκBα kinase (IKK), the nuclear translocation of the NF‑κB subunit p65 and the expression of inducible NO synthase (iNOS). Live oraCMU had no cytotoxic effects on RAW 264.7 macrophages. In A. actinomycetemcomitans‑stimulated RAW 264.7 macrophages, oraCMU reduced NO production by suppressing iNOS expression and downregulating the mRNA expression of proinflammatory cytokines in a dose‑dependent manner. IKK phosphorylation and IκBα degradation were dose‑dependently inhibited by oraCMU and the nuclear translocation of p65 via the canonical NF‑κB pathway was simultaneously reduced. The results indicated that oraCMU possessed anti‑inflammatory activity associated with the inhibition of NF‑κB signal activation in response to periodontal pathogens. This suggests that oraCMU is a beneficial anti‑inflammatory probiotic that can aid in the maintenance of oral health.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Convergence Technology for Food Industry and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Joo-Yi Kang
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Hyun-Jin Kim
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Mi-Sun Kang
- Research and Development Department, Research Institute, OraPharm Inc., Seoul 04782, Republic of Korea
| |
Collapse
|
32
|
Patrone V, Al-Surrayai T, Romaniello F, Fontana A, Milani G, Sagheddu V, Puglisi E, Callegari ML, Al-Mansour H, Kishk MW, Morelli L. Integrated Phenotypic-Genotypic Analysis of Candidate Probiotic Weissella Cibaria Strains Isolated from Dairy Cows in Kuwait. Probiotics Antimicrob Proteins 2020; 13:809-823. [PMID: 33085038 PMCID: PMC8203532 DOI: 10.1007/s12602-020-09715-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 12/12/2022]
Abstract
Probiotics represent a possible strategy for controlling intestinal infections in livestock. Members of the Weissella genus are increasingly being studied for health-related applications in animals and humans. Here we investigated the functional properties of two Weissella cibaria strains isolated from cows reared in Kuwait breeding facilities by combining phenotypic with genomic analyses. W. cibaria SP7 and SP19 exhibited good growth in vitro under acidic conditions and in the presence of bile salts compared to the reference probiotic Lacticaseibacillus (formerly Lactobacillus) rhamnosus GG. Both strains were able to adhere to Caco-2 and HT-29 cell lines, as well as to mucin. The cell-free supernatants of the two isolates exhibited inhibitory activity towards Escherichia coli ATCC 25,922 and Salmonella enterica UC3605, which was ultimately due to the low pH of supernatants. W. cibaria SP19 showed a co-aggregation ability similar to that of L. rhamnosus GG when incubated with S. enterica. Whole genome sequencing and analysis revealed that both strains harbored several genes involved in carbohydrate metabolism and general stress responses, indicating bacterial adaptation to the gastrointestinal environment. We also detected genes involved in the adhesion to host epithelial cells or extracellular matrix. No evidence of acquired antibiotic resistance or hemolytic activity was found in either strain. These findings shed light on the potential of W. cibaria for probiotic use in livestock and on the mechanisms underlying host-microbe interaction in the gut. W. cibaria` strain SP19 exhibited the best combination of in vitro probiotic properties and genetic markers, and is a promising candidate for further investigation.
Collapse
Affiliation(s)
- Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | | | - Francesco Romaniello
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, via Milano 24, 26100, Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | - Giovanni Milani
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | - Valeria Sagheddu
- AAT - Advanced Analytical Technologies Srl, Via P. Majavacca 12, 29107, Fiorenzuola d'Arda (Piacenza), Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| | - Maria Luisa Callegari
- Biotechnological Research Centre, Università Cattolica del Sacro Cuore, via Milano 24, 26100, Cremona, Italy.
| | | | | | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via E. Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
33
|
A respiratory commensal bacterium acts as a risk factor for Mycoplasma gallisepticum infection in chickens. Vet Immunol Immunopathol 2020; 230:110127. [PMID: 33080531 DOI: 10.1016/j.vetimm.2020.110127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Commensal microbiota has been shown to play an important role in local infections. However, the correlation between host respiratory microbiota and Mycoplasma gallisepticum (MG) infection is not well characterized. Here, the results of 16S rRNA sequencing showed that MG infection correlated with alteration in respiratory microbiota of chickens characterized by decreased richness and diversity. To explore whether respiratory microbiota contributed to MG infection, an antibiotics cocktail was used to deplete respiratory microbiota. It has been found that depletion of respiratory Gram-positive and Gram-negative bacteria promoted MG infection, as reflected in the form of increased MG colonization, pro-inflammatory cytokines and proteins expression, and severe lung damage compared to the control group. Importantly, depletion of Gram-negative bacteria in respiratory tract mitigated MG infection, which indicated that certain Gram-negative bacteria may promote MG infection. By reconstitution of individual cultivable respiratory tract bacteria in antibiotic-treated chickens, a respiratory commensal microbe Serratia marcescens was identified to facilitate MG infection. We further found that Serratia marcescens may promote MG infection by downregulating Mucin 2 (MUC2) and tight junction related gene mRNA expression levels in trachea and lung tissues. Together, our data demonstrated that MG infection induced disturbed respiratory microbiota and the specific respiratory commensal bacterium Serratia marcescens could promote MG infection, and thus expand our understanding of the pathogenesis of MG infection.
Collapse
|
34
|
Huang L, Cui K, Mao W, Du Y, Yao N, Li Z, Zhao H, Ma W. Weissella cibaria Attenuated LPS-Induced Dysfunction of Intestinal Epithelial Barrier in a Caco-2 Cell Monolayer Model. Front Microbiol 2020; 11:2039. [PMID: 33013748 PMCID: PMC7509449 DOI: 10.3389/fmicb.2020.02039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
The dysfunction of the intestinal epithelial barrier contributes to local or systemic infection and inflammation. Some lactic acid bacteria (LAB) strains had been shown to improve the conditions of barrier function and, for this reason, are recognized as probiotics. Weissella cibaria, a species belonging to the LAB group, is known to promote several health benefits. However, the role of W. cibaria in regulating the integrity of the intestinal epithelial barrier has not yet been investigated. In this study, W. cibaria MW01 was isolated from Chinese sauerkraut and was selected based on its functional features, such as gastric juice and bile salt tolerance, besides antagonistic activity against pathogenic bacteria. In a cellular model of the intestinal barrier, it was observed that W. cibaria was able to adhere more efficiently than Lactobacillus rhamnosus GG in Caco-2 cells. Moreover, the LPS-induced inflammation in Caco-2 cells was attenuated by the treatment with W. cibaria MW01, which reduced the synthesis of TNF-α, IL-6, and IL-8. In addition, it was noted that the treatment with W. cibaria MW01 recovered the integrity of the Caco-2 cell monolayer exposed to LPS. Furthermore, W. cibaria MW01 significantly alleviated LPS-induced downregulation of tight junction proteins (TJP) (claudin, occludin, and tight junction protein-1). Mechanistically, W. cibaria MW01 inhibited the translocation of NF-κB to the nucleus and deactivated the MLCK-pMLC pathway during LPS exposure. Thus, W. cibaria MW01, as a potential probiotic, can protect intestinal epithelial barrier function by regulating inflammation and expression of TJP via the NF-κB-mediated MLCK-pMLC pathway.
Collapse
Affiliation(s)
- Liping Huang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhao Mao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yurong Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Yao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Microbiome Laboratory, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Khanna S, Bishnoi M, Kondepudi KK, Shukla G. Isolation, characterization and anti-inflammatory mechanism of probiotics in lipopolysaccharide-stimulated RAW 264.7 macrophages. World J Microbiol Biotechnol 2020; 36:74. [PMID: 32388765 DOI: 10.1007/s11274-020-02852-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Probiotics are known to modulate gut microbiota, intestinal barrier function and host immune response, but due to the species and strain specific response their mechanisms are not clearly understood. Thus, the present study was designed to isolate, assess the anti-inflammatory potential and underlying modulatory mechanisms of indigenous probiotics in murine macrophage cell line, RAW 264.7. Forty lactic acid bacteria (LAB) were isolated from different sources and monitored for their anti-inflammatory potential against lipopolysaccharide (LPS) induced inflammatory stress employing RAW 264.7 cells. Among these isolates, only four LAB isolates exhibited more than 90% nitric oxide inhibition and possessed the probiotic attributes. Further, these selected LAB isolates reduced the level of pro-inflammatory cytokines, TNF-α, IL-1β and IL-6, inhibited the phosphorylation of Mitogen Activated Protein Kinases (MAPKs) i.e. p38 MAPK, ERK1/2 and SAPK/JNK and expression of cyclooxygenase-2 (COX-2) in LPS stimulated RAW 264.7 cells. The in vitro analysis suggested that the selected probiotic isolates attenuated the LPS-induced inflammation by downregulating MAPK pathway vis-a-vis inhibiting COX-2 and can be employed as anti-inflammatory agents in various inflammatory diseases.
Collapse
Affiliation(s)
- Sakshi Khanna
- Department of Microbiology, Basic Medical Sciences, Block I, South campus, Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences, Block I, South campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
36
|
Tian Y, Li G, Chen L, Bu X, Shen J, Tao Z, Zeng T, Du X, Lu L. High-temperature exposure alters the community structure and functional features of the intestinal microbiota in Shaoxing ducks (Anas platyrhynchos). Poult Sci 2020; 99:2662-2674. [PMID: 32359603 PMCID: PMC7597459 DOI: 10.1016/j.psj.2019.12.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome is a complex ecosystem that contributes to host nutrition and health. However, our current knowledge of the relationship between ambient temperature and gut microbiota of poultry is still limited. The objective of the present study was to characterize the intestinal microbiota of ducks exposed to high ambient temperature. Sixty 60-day-old Shaoxing ducks were allocated to control and heat-treated groups. The ducks in the control group were kept at 25°C, and the ducks in the heat treatment group were raised at 30–40°C, which simulated the temperature change of day and night in summer. After 15 D, the intestinal contents of the duodenum, jejunum, and ileum were obtained from 6 ducks of each group. Genomic DNA was extracted and amplified based on the V4–V5 hypervariable region of 16S rRNA. The results showed that Firmicutes was the dominant bacterial phylum with the highest abundance in the contents of the small intestine of ducks, and the relative abundance of the phylum Firmicutes in all 3 intestinal segments was increased by high temperature. At the genus level, Lactobacillus was found to be the most dominant bacterial genus across 3 gut segments, and its abundance was increased in ducks under heat treatment. Compared with the corresponding intestine segment of control ducks, a total of 36 genera in the duodenum, 19 genera in the jejunum, and 6 genera in the ileum of heat-treated ducks were found to be significantly different in the abundance (linear discriminant analysis score >3.0, P < 0.05). Functional prediction of gut microbiota revealed that high temperature caused changes in the abundance of metabolism and transcription-related pathways. It is noteworthy that most of the altered pathways are related to metabolism. In conclusion, high temperature induced remarkable taxonomic changes in the gut microbiome of ducks, which might be related to the negative effects of high temperature in ducks. Our present study provided an important theoretical ground for high-temperature intervention.
Collapse
Affiliation(s)
- Yong Tian
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China
| | - Guoqin Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingchen Bu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junda Shen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengrong Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China
| | - Xue Du
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China.
| |
Collapse
|
37
|
Hu P, Zhao F, Wang J, Zhu W. Lactoferrin attenuates lipopolysaccharide-stimulated inflammatory responses and barrier impairment through the modulation of NF-κB/MAPK/Nrf2 pathways in IPEC-J2 cells. Food Funct 2020; 11:8516-8526. [DOI: 10.1039/d0fo01570a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lactoferrin attenuated LPS-induced inflammatory responsesviainhibiting NF-κB/MAPK pathways in IPEC-J2 cells.
Collapse
Affiliation(s)
- Ping Hu
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| | - Fangzhou Zhao
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| |
Collapse
|
38
|
Xu YW, Xing RX, Zhang WH, Li L, Wu Y, Hu J, Wang C, Luo QL, Shen JL, Chen X. Toxoplasma ROP16 I/III ameliorated inflammatory bowel diseases via inducing M2 phenotype of macrophages. World J Gastroenterol 2019; 25:6634-6652. [PMID: 31832003 PMCID: PMC6906210 DOI: 10.3748/wjg.v25.i45.6634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by chronic and non-specific inflammation of the intestinal mucosa and mainly includes ulcerative colitis and Crohn's disease.
AIM To explore the beneficial effect of ToxoROP16I/III-induced M2 phynotype macrophages in homeostasis of IBDs through downregulation of M1 inflammatory cells.
METHODS RAW264.7 macrophages stimulated by lipopolysaccharide (LPS) (M1 cells) were co-cultured with Caco-2 cells as an inflammatory model of IBD in vitro. The expression of ToxoROP16I/III was observed in RAW264.7 macrophages that were transfected with pEGFP-rop16I/III. The phenotypes of M2 and M1 macrophage cells were assessed by quantitative real-time reverse transcriptase polymerase chain reaction and the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1, IL-10, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1) was detected. The expression of iNOS, Arg-1, signal transducer and activator of transcription 3 (Stat3), p-Stat3, Stat6, p-Stat6, programmed death ligand-2 (PD-L2), caspase-3, -8, and -9 was analyzed by Western blotting, and Griess assays were performed to detect nitric oxide (NO). TNF-α, IL-1β, IL-6, TGF-β1, and IL-10 expression in the supernatants was detected by enzyme-linked immunosorbent assay, and Caco-2 cell apoptosis was determined by flow cytometry after mixing M1 cells with M2 cells in a Caco-2 cell co-culture system.
RESULTS M1 cells exhibited significantly increased production of iNOS, NO, TNF-α, IL-1β, and IL-6, while ToxoROP16I/III induced macrophage bias to M2 cells in vitro, showing increased expression of Arg-1, IL-10 and TGF-β1 and elevated production of p-Stat3 and p-Stat6. The mixed M1 and M2 cell culture induced by ToxoROP16I/III exhibited decreased production of NO and iNOS and upregulated expression of Arg-1 and PD-L2. Accordingly, Caco-2 cells became apoptotic, and apoptosis-associated proteins such as caspase-3, -8 and -9 were dampened during co-culture of M1 and M2 cells. Flow cytometry analysis showed that co-culture of M1 cells with Caco-2 cells facilitated the apoptosis of Caco-2 cells, but co-culture of M1 and M2 cells alleviated Caco-2 cell apoptosis.
CONCLUSION ToxoROP16I/III-induced M2 macrophages inhibited apoptosis of Caco-2 cells caused by M1 macrophages. This finding may help gain a better understanding of the underlying mechanism and represent a promising therapeutic strategy for IBDs.
Collapse
Affiliation(s)
- Yong-Wei Xu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Rui-Xin Xing
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Wen-Hui Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Lu Li
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yi Wu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Jing Hu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Cong Wang
- Department of Pathogen Biology, Provincial Laboratory of Pathogen Biology and Zoonoses Anhui, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Qing-Li Luo
- Department of Pathogen Biology, Provincial Laboratory of Pathogen Biology and Zoonoses Anhui, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ji-Long Shen
- Department of Pathogen Biology, Provincial Laboratory of Pathogen Biology and Zoonoses Anhui, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xi Chen
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
39
|
Jia GC, Che N, Xia YJ, Lai PFH, Xiong ZQ, Wang GQ, Zhang H, Ai LZ. Adhesion to pharyngeal epithelium and modulation of immune response: Lactobacillus salivarius AR809, a potential probiotic strain isolated from the human oral cavity. J Dairy Sci 2019; 102:6738-6749. [PMID: 31178178 DOI: 10.3168/jds.2018-16117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Abstract
Microbiome modulators such as probiotics are known to modulate oral diseases. Very few probiotics are commercially available for use in the oral cavity. In this context, we selected human-origin Lactobacillus salivarius AR809 as a promising oropharyngeal probiotic and characterized its functional and immunomodulatory properties. Results demonstrated that AR809 could efficiently adhere to pharyngeal epithelial FaDu cells, antagonize Staphylococcus aureus, adapt to the oral environment, and modulate host innate immunity by inducing potentially protective effects. Particularly, AR809 diminished proinflammatory activity by enhancing the production of IL10 and inhibiting the expression of tumor necrosis factor-α, IL1B, inducible nitric oxide synthase, and RELA. Finally, we observed that AR809 grew efficiently when cultured in milk, suggesting that the preparation of a fermented milk product containing AR809 could be a practical way to administer this probiotic to humans. In conclusion, AR809 has high potential to adhere to the pharyngeal mucosa and could be applied in novel milk-based probiotic fermented food products.
Collapse
Affiliation(s)
- G C Jia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - N Che
- Department of Otolaryngology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Y J Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Phoency F-H Lai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Z Q Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - G Q Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - H Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - L Z Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
40
|
Rhein protects against barrier disruption and inhibits inflammation in intestinal epithelial cells. Int Immunopharmacol 2019; 71:321-327. [PMID: 30952096 DOI: 10.1016/j.intimp.2019.03.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Intestinal epithelial barrier and intestinal inflammation play indispensable roles in the development of intestinal diseases. The major aims of the current study were to investigate the potential of rhein, a major flavonoid compound isolated from Rheum rhabarbarum, in the treatment of intestinal diseases and its underlying mechanisms in vitro. METHODS The protective role of rhein on intestinal epithelial barrier was evaluated in a monolayer of IEC-6 cells stimulated by TNF-α, while the anti-inflammatory effects were investigated in an IEC-6 cell model with LPS stimulation. RESULTS Rhein inhibited the increase of phenol red flux and the decrease of TEER, as well as recovered the expression and distribution of ZO-1 and weakened MLC phosphorylation, MLCK expression and NF-κB activation. Meanwhile, LPS-stimulated IL-1β and IL-6 were down-regulated, expression levels of TLR4, NLRP3 and cleaved caspase1 were weakened and NF-κB was inactivated. CONCLUSIONS These results suggested that rhein has potential therapeutic effects against intestinal diseases by maintaining intestinal epithelial barrier and suppressing intestinal inflammation.
Collapse
|
41
|
Genome Sequence of Weissella cibaria M2, a Potential Probiotic Strain Isolated from the Feces of a Giant Panda. Microbiol Resour Announc 2018; 7:MRA01121-18. [PMID: 30533633 PMCID: PMC6256656 DOI: 10.1128/mra.01121-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Weissella cibaria M2, a potential probiotic strain isolated from the feces of a giant panda (Ailuropoda melanoleuca). The genome consists of one chromosome of 2.56 Mb and two plasmids. The genome contains 2,420 genes which make up 86.17% of genome.
Collapse
|
42
|
Wang Y, Kong D. MicroRNA-136 promotes lipopolysaccharide-induced ATDC5 cell injury and inflammatory cytokine expression by targeting myeloid cell leukemia 1. J Cell Biochem 2018; 119:9316-9326. [PMID: 30074264 DOI: 10.1002/jcb.27208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
Osteoarthritis is the most frequent chronic bone and joint diseases in older populations all over the world. Lipopolysaccharide (LPS)-induced murine chondrogenic ATDC5 cell model has been widely used for testing new osteoarthritis therapeutic targets. This study aimed to explore the effects of microRNA-136 (miR-136) on LPS-induced ATDC5 cell injury and inflammatory cytokine expression, as well as underlying potential mechanism. We found that LPS remarkably inhibited ATDC5 cell viability, induced ATDC5 cell apoptosis, and upregulated the expression of inflammatory cytokines, including interleukin 1β (IL-1β), IL-6, IL-8, and tumor necrosis factor α (TNF-α; P < .01 or < .001). Moreover, LPS obviously upregulated the expression of miR-136 in ATDC5 cells (P < .05). Overexpression of miR-136 markedly exacerbated the LPS-induced ATDC5 cell viability inhibition, cell apoptosis enhancement, and inflammatory cytokine expression (P < .05), and suppression of miR-136 had opposite effects (P < .05). Myeloid cell leukemia 1 (Mcl-1) was a direct target gene of miR-136, which participated in the effect of miR-136 on LPS-induced ATDC5 cell inflammatory injury. Overexpression of Mcl-1 alleviated the LPS-induced inactivation of Wnt/β-catenin and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways, while suppression of Mcl-1 had opposite effects. To conclude, this study verified that miR-136 promoted LPS-induced ATDC5 cell injury and inflammatory cytokine expression by targeting Mcl-1, and Mcl-1 was involved in the regulatory effects of LPS on Wnt/β-catenin and JAK/STAT signaling pathways in ATDC5 cells.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Daliang Kong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Protection from chemotherapy- and antibiotic-mediated dysbiosis of the gut microbiota by a probiotic with digestive enzymes supplement. Oncotarget 2018; 9:30919-30935. [PMID: 30112118 PMCID: PMC6089397 DOI: 10.18632/oncotarget.25778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/05/2018] [Indexed: 01/20/2023] Open
Abstract
There are numerous downstream consequences of marketed drugs like antineoplastic agents on the gut microbiome, an effect that is suggested to contribute to adverse event profiles and may also influence drug responses. In cancer, progress is needed toward modulation of the host microbiome to prevent off-target side effects of drugs such as gastrointestinal mucositis that result from gut dysbiosis. The objective of this study was evaluation of the bioactivity of a supplement consisting of capsules with a blend of 9 probiotic organisms of the genera Lactobacillus and Bifidobacterium plus 10 digestive enzymes, in protecting the human gastrointestinal tract from chemotherapy and an antibiotic. We used the Simulator of Human Intestinal Microbial Ecosystem (SHIME) model, an in vitro model of a stable colon microbiota, and introduced 5-fluorouracil (5-FU) and vancomycin as microbiome-disrupting drugs. The probiotic with digestive enzymes supplement, added in capsules at in vivo doses, improved fermentation activity in the colon reactors and accelerated the recovery of microbial populations following 5-FU/vancomycin treatment. The supplement restored the Bacteroidetes to Firmicutes ratios in the colon reactors, increased the diversity of microbiota, and induced the production of microbial metabolites that elicited anti-inflammatory cytokines in an in vitro model of intestinal inflammation. In the proximal colon, preventative administration of the supplement resulted in full recovery of the gut microbial community after cessation of 5-FU and vancomycin treatment. These results identify a probiotic with digestive enzymes formulation that protects against drug-induced gut dysbiosis, highlighting its potential utility as a component of routine cancer care.
Collapse
|