1
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
2
|
Shu Z, Ji Y, Liu F, Jing Y, Jiao C, Li Y, Zhao Y, Wang G, Zhang J. Proteomics Analysis of the Protective Effect of Polydeoxyribonucleotide Extracted from Sea Cucumber ( Apostichopus japonicus) Sperm in a Hydrogen Peroxide-Induced RAW264.7 Cell Injury Model. Mar Drugs 2024; 22:325. [PMID: 39057434 PMCID: PMC11277713 DOI: 10.3390/md22070325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Sea cucumber viscera contain various naturally occurring active substances, but they are often underutilized during sea cucumber processing. Polydeoxyribonucleotide (PDRN) is an adenosine A2A receptor agonist that activates the A2A receptor to produce various biological effects. Currently, most studies on the activity of PDRN have focused on its anti-inflammatory, anti-apoptotic, and tissue repair properties, yet relatively few studies have investigated its antioxidant activity. In this study, we reported for the first time that PDRN was extracted from the sperm of Apostichopus japonicus (AJS-PDRN), and we evaluated its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and hydroxyl radical scavenging assays. An in vitro injury model was established using H2O2-induced oxidative damage in RAW264.7 cells, and we investigated the protective effect of AJS-PDRN on these cells. Additionally, we explored the potential mechanism by which AJS-PDRN protects RAW264.7 cells from damage using iTRAQ proteomics analysis. The results showed that AJS-PDRN possessed excellent antioxidant activity and could significantly scavenge DPPH, ABTS, and hydroxyl radicals. In vitro antioxidant assays demonstrated that AJS-PDRN was cytoprotective and significantly enhanced the antioxidant capacity of RAW264.7 cells. The results of GO enrichment and KEGG pathway analysis indicate that the protective effects of AJS-PDRN pretreatment on RAW264.7 cells are primarily achieved through the regulation of immune and inflammatory responses, modulation of the extracellular matrix and signal transduction pathways, promotion of membrane repair, and enhancement of cellular antioxidant capacity. The results of a protein-protein interaction (PPI) network analysis indicate that AJS-PDRN reduces cellular oxidative damage by upregulating the expression of intracellular selenoprotein family members. In summary, our findings reveal that AJS-PDRN mitigates H2O2-induced oxidative damage through multiple pathways, underscoring its significant potential in the prevention and treatment of diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Zhiqiang Shu
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China; (Z.S.)
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yizhi Ji
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China; (Z.S.)
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Fang Liu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Yuexin Jing
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Chunna Jiao
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Yue Li
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China; (Z.S.)
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yunping Zhao
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Gongming Wang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Jian Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| |
Collapse
|
3
|
Xiang L, Zheng Z, Guo X, Bai R, Zhao R, Chen H, Qiu Z, Qiao X. Two novel angiotensin I-converting enzyme inhibitory peptides from garlic protein: In silico screening, stability, antihypertensive effects in vivo and underlying mechanisms. Food Chem 2024; 435:137537. [PMID: 37797452 DOI: 10.1016/j.foodchem.2023.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
This study aimed to screen novel angiotensin I-converting enzyme (ACE) inhibitory peptides from garlic proteins and to explore their underlying antihypertensive mechanisms in vivo. After simulated hydrolysis and in silico screening, two novel peptides (MGR and HDCF) were obtained with the highest ACE inhibitory activity (IC50 of 4.50 μM and 26.38 μM) and acted as competitive inhibitors. They interacted with key residues in the ACE receptor mainly through hydrogen bonding and exhibited excellent stability against high temperature, extreme pH, and gastrointestinal digestion. In spontaneously hypertensive rats, MGR and HDCF effectively lowered blood pressure after single or continuous treatments. This was mainly achieved by balancing the renin-angiotensin system, improving renal and cardiac impairment, and regulating endothelial dysfunction. These findings suggested that garlic proteins were potentially suitable materials to prepare ACE inhibitory peptides and provided two promising candidates for ACE inhibition as functional food ingredients.
Collapse
Affiliation(s)
- Lu Xiang
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Zhenjia Zheng
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Xiaojing Guo
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Ruoxi Bai
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Renjie Zhao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Haihua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, PR China
| | - Zhichang Qiu
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, United States.
| | - Xuguang Qiao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
4
|
Wang Y, Chen S, Shi W, Liu S, Chen X, Pan N, Wang X, Su Y, Liu Z. Targeted Affinity Purification and Mechanism of Action of Angiotensin-Converting Enzyme (ACE) Inhibitory Peptides from Sea Cucumber Gonads. Mar Drugs 2024; 22:90. [PMID: 38393061 PMCID: PMC10890666 DOI: 10.3390/md22020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Protein hydrolysates from sea cucumber (Apostichopus japonicus) gonads are rich in active materials with remarkable angiotensin-converting enzyme (ACE) inhibitory activity. Alcalase was used to hydrolyze sea cucumber gonads, and the hydrolysate was separated by the ultrafiltration membrane to produce a low-molecular-weight peptide component (less than 3 kDa) with good ACE inhibitory activity. The peptide component (less than 3 kDa) was isolated and purified using a combination method of ACE gel affinity chromatography and reverse high-performance liquid chromatography. The purified fractions were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the resulting products were filtered using structure-based virtual screening (SBVS) to obtain 20 peptides. Of those, three noncompetitive inhibitory peptides (DDQIHIF with an IC50 value of 333.5 μmol·L-1, HDWWKER with an IC50 value of 583.6 μmol·L-1, and THDWWKER with an IC50 value of 1291.8 μmol·L-1) were further investigated based on their favorable pharmacochemical properties and ACE inhibitory activity. Molecular docking studies indicated that the three peptides were entirely enclosed within the ACE protein cavity, improving the overall stability of the complex through interaction forces with the ACE active site. The total free binding energies (ΔGtotal) for DDQIHIF, HDWWKER, and THDWWKER were -21.9 Kcal·mol-1, -71.6 Kcal·mol-1, and -69.1 Kcal·mol-1, respectively. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that HDWWKER could significantly decrease the systolic blood pressure (SBP) of SHRs after intravenous administration. The results showed that based on the better antihypertensive activity of the peptide in SHRs, the feasibility of targeted affinity purification and computer-aided drug discovery (CADD) for the efficient screening and preparation of ACE inhibitory peptide was verified, which provided a new idea of modern drug development method for clinical use.
Collapse
Affiliation(s)
- Yangduo Wang
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 202206, China; (Y.W.); (W.S.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Shicheng Chen
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL 60015, USA;
| | - Wenzheng Shi
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 202206, China; (Y.W.); (W.S.)
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Xiaoting Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Nan Pan
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Xiaoyan Wang
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| |
Collapse
|
5
|
Wu J, Li Q, Cui C, Xu J. Screening of novel bovine-elastin-derived peptides with elastase inhibition and photoprotective potential: a combined in silico and in vitro study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:716-726. [PMID: 37658829 DOI: 10.1002/jsfa.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The demand for food-based anti-photoaging products is surging because of the rising recognition of health and beauty, as well as enhanced comprehension of the detrimental impact of ultraviolet (UV) radiation. This study aimed to investigate the potential of bioactive peptides derived from bovine elastin, specifically focusing on identifying novel elastase inhibitory peptides and assessing their photoprotective properties using bioinformatics techniques. RESULTS A total of 48 bioactive peptides were screened in bovine elastin hydrolysate (EH) utilizing Peptide Ranker analysis. Three novel elastase inhibitory peptides, GAGQPFPI, FFPGAG and FPGIG (in descending order of activity), exhibited potent inhibitory effects on elastase in vitro, surpassing the inhibitory effect of EH by a factor of 1-2 and reaching significantly lower concentrations (8-15 times lower) than EH. The cumulative inhibitory effect of GAGQPFPI, FFPGAG, and FPGIG reached 91.5%. Further analysis revealed that FFPGAG and FPGIG exhibited mixed inhibition, whereas GAGQPFPI displayed non-competitive inhibition. Molecular simulations showed that these peptides interacted effectively with the elastase active site through hydrogen bonding and hydrophobic interactions. Furthermore, GAGQPFPI, FFPGAG, and FPGIG demonstrated high stability in gastrointestinal digestion, demonstrated transcellular permeability across Caco-2 cell monolayers, and exhibited remarkable photoprotective properties against UVB-irradiated HaCaT cells. CONCLUSION GAGQPFPI showed the most promising potential as a functional food with photoprotective effects against UVB damage and inhibitory properties against elastase. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Wu
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Qinglan Li
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Chun Cui
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Jucai Xu
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen, China
| |
Collapse
|
6
|
Shou Y, Feng C, Lu Q, Mao X, Huang H, Su Z, Guo H, Huang Z. Research progress on the chemical components and biological activities of sea cucumber polypeptides. Front Pharmacol 2023; 14:1290175. [PMID: 37908979 PMCID: PMC10613643 DOI: 10.3389/fphar.2023.1290175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Owing to their unique physical and chemical properties and remarkable biological activities, marine biological resources are emerging as important sources of raw materials for producing health products, food, and cosmetics. Collagen accounts for approximately 70% of the sea cucumber body wall, and its hydrolysis produces small-molecule collagen polypeptides with diverse biological functions, such as anticancer, antihypertensive, immune-enhancing, memory-enhancing, and cartilage tissue repairing effects. Notably, the potential of sea cucumber polypeptides in combination with anticancer therapy has garnered considerable attention. Determining the composition and structure of sea cucumber polypeptides and exploring their structure-activity relationships will aid in obtaining an in-depth understanding of their diverse biological activities and provide scientific insights for the development and utilization of these polypeptides. Therefore, this review focuses on the amino acid structures and activities of sea cucumber polypeptides of varying molecular weights. This study also provides an overview of the biological activities of various sea cucumber polypeptides and aims to establish a scientific basis for their development.
Collapse
Affiliation(s)
- Yiwen Shou
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation and College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education and Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qinpei Lu
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation and College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xin Mao
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation and College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| | - Huisha Huang
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation and College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiheng Su
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation and College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongwei Guo
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation and College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education and Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhaoquan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Zeng J, Lin C, Zhang S, Yin H, Deng K, Yang Z, Zhang Y, Liu Y, Hu C, Zhao YT. Isolation and Identification of a Novel Anti-Dry Eye Peptide from Tilapia Skin Peptides Based on In Silico, In Vitro, and In Vivo Approaches. Int J Mol Sci 2023; 24:12772. [PMID: 37628955 PMCID: PMC10454390 DOI: 10.3390/ijms241612772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Tilapia skin is a great source of collagen. Here, we aimed to isolate and identify the peptides responsible for combating dry eye disease (DED) in tilapia skin peptides (TSP). In vitro cell DED model was used to screen anti-DED peptides from TSP via Sephadex G-25 chromatography, LC/MS/MS, and in silico methods. The anti-DED activity of the screened peptide was further verified in the mice DED model. TSP was divided into five fractions (TSP-I, TSP-II, TSP-III, TSP-IV, and TSP-V), and TSP-II exerted an effective effect for anti-DED. A total of 131 peptides were identified using LC/MS/MS in TSP-II, and NGGPSGPR (NGG) was screened as a potential anti-DED fragment in TSP-II via in silico methods. In vitro, NGG restored cell viability and inhibited the expression level of Cyclooxygenase-2 (COX-2) protein in Human corneal epithelial cells (HCECs) induced by NaCl. In vivo, NGG increased tear production, decreased tear ferning score, prevented corneal epithelial thinning, alleviated conjunctival goblet cell loss, and inhibited the apoptosis of corneal epithelial cells in DED mice. Overall, NGG, as an anti-DED peptide, was successfully identified from TSP, and it may be devoted to functional food ingredients or medicine for DED.
Collapse
Affiliation(s)
- Jian Zeng
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Cuixian Lin
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Shilin Zhang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Haowen Yin
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- College of Food Science and Engineering, Ocean University of China, Yu-Shan Road, Qingdao 266003, China
| | - Kaishu Deng
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Zhiyou Yang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Yongping Zhang
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - You Liu
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yun-Tao Zhao
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| |
Collapse
|
8
|
The Bioaccessibility of Yak Bone Collagen Hydrolysates: Focus on Analyzing the Variation Regular of Peptides and Free Amino Acids. Foods 2023; 12:foods12051003. [PMID: 36900520 PMCID: PMC10001269 DOI: 10.3390/foods12051003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The lack of a bioaccessibility test for yak bone collagen hydrolysates (YBCH) limits their development as functional foods. In this study, simulated gastrointestinal digestion (SD) and absorption (SA) models were utilized to evaluate the bioaccessibility of YBCH for the first time. The variation in peptides and free amino acids was primarily characterized. There was no significant alteration in the concentration of peptides during the SD. The transport rate of peptides through the Caco-2 cell monolayers was 22.14 ± 1.58%. Finally, a total of 440 peptides were identified, more than 75% of them with lengths ranging from 7 to 15. The peptide identification indicated that about 77% of the peptides in the beginning sample still existed after the SD, and about 76% of the peptides in the digested YBCH could be observed after the SA. These results suggested that most peptides in the YBCH resist gastrointestinal digestion and absorption. After the in silico prediction, seven typical bioavailable bioactive peptides were screened out and they exhibited multi-type bioactivities in vitro. This is the first study to characterize the changes in peptides and amino acids in the YBCH during gastrointestinal digestion and absorption, and provides a foundation for analyzing the mechanism of YBCH's bioactivities.
Collapse
|
9
|
Wu N, Zhang F, Shuang Q. Peptidomic analysis of the angiotensin-converting-enzyme inhibitory peptides in milk fermented with Lactobacillus delbrueckii QS306 after ultrahigh pressure treatment. Food Res Int 2023; 164:112406. [PMID: 36737987 DOI: 10.1016/j.foodres.2022.112406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
In this study, we assessed the effect of ultrahigh pressure (UHP) treatment on the concentration of peptides and angiotensin-converting enzyme (ACE) inhibitory activity in milk fermented with Lactobacillus delbrueckii QS306. The peptides were identified using peptidomic analysis, and 313 unique peptides were identified. These peptides were derived from 53 precursor proteins. Before and after UHP treatment, 361 (22.2%) peptide sequences exhibited difference, and 53 peptide segments were significantly different. Among them, small peptides (amino acid residues ≤6) isoelectric were point at pH 5-6, and the net charge was mainly positive or neutral. With hydrophobicity and ACE inhibitory activity as screening indicators, 214 small peptides with potential ACE inhibitory activity were identified, and 130 new peptides had potential ACE inhibitory activity. A novel ACE inhibitory peptide VAPFP was synthesized, whose in vitro inhibition rate was 10.56 μmol\/L. Therefore, using peptidomics, the changes in peptide sequences and enhancement in ACE inhibitory activity before and after UHP treatment could be effectively identified in milk fermented with Lactobacillus delbrueckii QS306. This study provided a convenient method for the discovery and identification of new ACE inhibitory peptides.
Collapse
Affiliation(s)
- Nan Wu
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China
| | - Fengmei Zhang
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China.
| | - Quan Shuang
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China.
| |
Collapse
|
10
|
Man J, Abd El‐Aty AM, Wang Z, Tan M. Recent advances in sea cucumber peptide: Production, bioactive properties, and prospects. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jiacong Man
- School of Mechanical Engineering and Automation Dalian Polytechnic University Dalian Liaoning China
| | - A. M. Abd El‐Aty
- Department of Pharmacology, Faculty of Veterinary Medicine Cairo University Giza Egypt
- Department of Medical Pharmacology, Medical Faculty Ataturk University Erzurum Turkey
| | - Zuzhe Wang
- Dalian Blue Peptide Technology Research & Development Co., Ltd. Liaoning China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| |
Collapse
|
11
|
Xiong Y, Peng P, Chen SJ, Chang M, Wang Q, Yin SN, Ren DF. Preparation, identification, and molecular docking of novel elastase inhibitory peptide from walnut ( Juglans regia L.) meal. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100139. [PMID: 36262383 PMCID: PMC9574760 DOI: 10.1016/j.fochms.2022.100139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 05/13/2023]
Abstract
This study aimed to isolate bioactive peptides with elastase inhibitory activity from walnut meal via ultrasonic enzymatic hydrolysis. The optimal hydrolysis conditions of walnut meal protein hydrolysates (WMPHs) were obtained by response surface methodology (RSM), while a molecular weight of<3 kDa fraction was analyzed by LC-MS/MS, and 556 peptides were identified. PyRx virtual screening and Autodock Vina molecular docking revealed that the pentapeptide Phe-Phe-Val-Pro-Phe (FFVPF) could interact with elastase primarily through hydrophobic interactions, hydrogen bonds, and π-sulfur bonds, with a binding energy of -5.22 kcal/mol. The verification results of inhibitory activity showed that FFVPF had better elastase inhibitory activity, with IC50 values of 0.469 ± 0.01 mg/mL. Furthermore, FFVPF exhibited specific stability in the gastric environment. These findings suggest that the pentapeptide FFVPF from defatted walnut meal could serve as a potential source of elastase inhibitors in the food, medical, and cosmetics industries.
Collapse
|
12
|
Anti-diabetic and anti-hyperlipidemic effects of sea cucumber (Cucumaria frondosa) gonad hydrolysates in type II diabetic rats. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Guo J, Lu A, Sun Y, Liu B, Zhang J, Zhang L, Huang P, Yang A, Li Z, Cao Y, Miao J. Purification and identification of antioxidant and angiotensin converting enzyme-inhibitory peptides from Guangdong glutinous rice wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Suo SK, Zheng SL, Chi CF, Luo HY, Wang B. Novel angiotensin-converting enzyme inhibitory peptides from tuna byproducts—milts: Preparation, characterization, molecular docking study, and antioxidant function on H2O2-damaged human umbilical vein endothelial cells. Front Nutr 2022; 9:957778. [PMID: 35938100 PMCID: PMC9355146 DOI: 10.3389/fnut.2022.957778] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023] Open
Abstract
To prepare peptides with high angiotensin-converting enzyme (ACE) inhibitory (ACEi) activity, Alcalase was screened from five proteases and employed to prepare protein hydrolysate (TMH) of skipjack tuna (Katsuwonus pelamis) milts. Subsequently, 10 novel ACEi peptides were isolated from the high-ACEi activity TMH and identified as Tyr-Asp-Asp (YDD), Thr-Arg-Glu (TRE), Arg-Asp-Tyr (RDY), Thr-Glu-Arg-Met (TERM), Asp-Arg-Arg-Tyr-Gly (DRRYG), Ile-Cys-Tyr (ICY), Leu-Ser-Phe-Arg (LSFR), Gly-Val-Arg-Phe (GVRF), Lys-Leu-Tyr-Ala-Leu-Phe (KLYALF), and Ile-Tyr-Ser-Pro (IYSP) with molecular weights of 411.35, 404.41, 452.45, 535.60, 665.69, 397.48, 521.61, 477.55, 753.91, and 478.53 Da, respectively. Among them, the IC50 values of ICY, LSFR, and IYSP on ACE were 0.48, 0.59, and 0.76 mg/mL, respectively. The significant ACEi activity of ICY, LSFR, and IYSP with affinities of −7.0, −8.5, and −8.3 kcal/mol mainly attributed to effectively combining with the ACEi active sites through hydrogen bonding, electrostatic force, and hydrophobic interaction. Moreover, ICY, LSFR, and IYSP could positively influence the production of nitric oxide (NO) and endothelin-1 (ET-1) secretion in human umbilical vein endothelial cells (HUVECs) and weaken the adverse impact of norepinephrine (NE) on the production of NO and ET-1. In addition, ICY, LSFR, and IYSP could provide significant protection to HUVECs against H2O2 damage by increasing antioxidase levels to decrease the contents of reactive oxide species and malondialdehyde. Therefore, the ACEi peptides of ICY, LSFR, and IYSP are beneficial functional molecules for healthy foods against hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Shi-Kun Suo
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shuo-Lei Zheng
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Hong-Yu Luo
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Hong-Yu Luo
| | - Bin Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Bin Wang ;
| |
Collapse
|
15
|
Lu Z, Sun N, Dong L, Gao Y, Lin S. Production of Bioactive Peptides from Sea Cucumber and Its Potential Health Benefits: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7607-7625. [PMID: 35715003 DOI: 10.1021/acs.jafc.2c02696] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioactive peptides from food have been widely studied due to their potential applications as functional foods and pharmaceuticals. Sea cucumber, a traditional tonic food, is characterized by high protein and low fat, thereby substrates are being studied to release sea cucumber peptides (SCPs). Although recent studies have shown that SCPs have various bioactive functions, there is no literature reviewing the development status of SCPs. In this review, we summarized the production of SCPs, including their purification and identification, then mainly focused on the comprehensive potential health benefits of SCP in vivo and in vitro, and finally discussed the challenge facing the development of SCPs. We found that SCPs have well-documented health benefits due to their antioxidation, anti-diabetes, ACE inhibitory, immunomodulatory, anti-cancer, anti-fatigue, anti-aging, neuroprotection, micromineral-chelating, etc. However, the structure-activity relationships of SCPs and the functional molecular mechanisms underlying their regulation in vivo need further investigation. Research on the safety of SCP and its potential regulation mechanism will contribute to transferring these findings into commercial applications. Hopefully, this review could promote the development and application of SCPs in further investigation and commercialization.
Collapse
Affiliation(s)
- Zhiqiang Lu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yuanhong Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
16
|
Zhou R, Yang C, Xie T, Zhang J, Wang C, Ma Z, Zhang L. Angiotensin-converting enzyme inhibitory activity of four Amadori compounds (ACs) and mechanism analysis of N-(1-Deoxy-D-fructos-1-yl)-glycine (Fru-Gly). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wang J, Shi S, Li F, Du X, Kong B, Wang H, Xia X. Physicochemical properties and antioxidant activity of polysaccharides obtained from sea cucumber gonads via ultrasound-assisted enzymatic techniques. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Hu ZZ, Sha XM, Zhang L, Zha MJ, Tu ZC. From Fish Scale Gelatin to Tyrosinase Inhibitor: A Novel Peptides Screening Approach Application. Front Nutr 2022; 9:853442. [PMID: 35369091 PMCID: PMC8973439 DOI: 10.3389/fnut.2022.853442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bioaffinity ultrafiltration combined with LC-Orbitrap-MS/MS was applied for the first time to achieve rapid screening and identification of tyrosinase inhibitory peptides (TYIPs) from grass carp scale gelatin hydrolysates. The binding mode of TYIPs with tyrosinase was investigated by molecular docking technology. The whitening effect of TYIPs was further studied by evaluating the tyrosinase activity and melanin content in mouse B16F10 cells. Four new TYIPs were screened from hydrolysates, among which DLGFLARGF showed the strongest tyrosinase inhibition with an IC50 value of 3.09 mM. Molecular docking showed that hydrogen bonds were the main driving force in the interaction between the peptide DLGFLARGF and tyrosinase. The addition of DLGFLARGF significantly inhibited the tyrosinase activity and melanin production of B16F10 melanoma cells. These results suggest that DLGFLARGF is a promising skin whitening agent for the treatment of potential pigment-related diseases.
Collapse
Affiliation(s)
- Zi-Zi Hu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Xiao-Mei Sha
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
- *Correspondence: Xiao-Mei Sha
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Min-Jun Zha
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Zong-Cai Tu
| |
Collapse
|
19
|
Zhou R, Yang C, Xie T, Zhang J, Wang C, Ma Z, Zhang L. Angiotensin-Converting Enzyme (ACE) Inhibitory Activity and Mechanism Analysis of N-(1-Deoxy-d-fructos-1-yl)-histidine (Fru-His), a Food-Derived Amadori Compound. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2179-2186. [PMID: 35148100 DOI: 10.1021/acs.jafc.1c05583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
N-(1-Deoxy-d-fructos-1-yl)-histidine (Fru-His), one of the Amadori compounds, widely presents in processed foods, and its potential functional activities have attracted extensive attention in recent years. In this work, the angiotensin-converting enzyme (ACE) inhibitory activity and mechanism of Fru-His were investigated. The IC50 value of Fru-His was 0.150 ± 0.019 mM, and there was no obvious degradation of Fru-His after digestion simulation, showing that Fru-His has good ACE inhibition and digestive stability. Fru-His was a competitive inhibitor according to the enzyme inhibition kinetic analysis. The interaction between ACE and Fru-His occurred spontaneously mainly through hydrogen bonding, and the process was accompanied by fluorescence quenching and the alteration of the secondary structure of ACE. The molecular docking data supported the above results. Fru-His was attached to ACE's S1 active pocket through hydrogen bonds and interacted with zinc ions in active sites. The present study demonstrates that food-derived Fru-His has the potential to relieve hypertension.
Collapse
Affiliation(s)
- Renjie Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Ting Xie
- Technical Center of Hefei Customs, Hefei 230041, Anhui, P. R. China
| | - Jian Zhang
- College of Food, Shihezi University, Beisi Road, Shihezi 832003, Xinjiang, P. R. China
| | - Chenqiang Wang
- Technology Center, Xinjiang Guannong Fruit & Antler Group Co., Ltd., Korla City 841000, Xinjiang, P. R. China
| | - Ziqiang Ma
- Technology Center, Xinjiang Guannong Fruit & Antler Group Co., Ltd., Korla City 841000, Xinjiang, P. R. China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- College of Food, Shihezi University, Beisi Road, Shihezi 832003, Xinjiang, P. R. China
| |
Collapse
|
20
|
Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: A systematic review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Jogi N, Yathisha UG, Bhat I, Mamatha BS. Antihypertensive activity of orally consumed ACE-I inhibitory peptides. Crit Rev Food Sci Nutr 2022; 62:8986-8999. [PMID: 34213991 DOI: 10.1080/10408398.2021.1938508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Food proteins are sources for ACE-I inhibitory peptides that can be extracted by enzymatic hydrolysis exhibiting anti-hypertensive activity. However, these peptides are prone to further degradation by gastrointestinal enzymes during oral consumption. Bio-activity of these peptides is dependent on the resultant peptide post gastrointestinal digestion. To exhibit the bio-activity, they need to be absorbed in intact form. Although studies suggest di and tri-peptides show better ACE-I inhibitory activity, few peptides show altered IC50 values under simulated gastrointestinal digestion. Moreover, ACE-I inhibitory peptides with low IC50 values have not shown effective anti-hypertensive activity in spontaneously hypertensive rats when administered orally. Few ACE-I inhibitory peptides have reported effective reduction in systolic blood-pressure when administered through intravenously. During oral consumption of such peptides, the actual peptide sequence responsible for reducing blood-pressure is a result of breakdown in gastrointestinal tract. The fate of targeted peptides during digestion depends on amino acid sequence of the protein containing the specific site for cleavage where the action of digestive enzymes takes place. Therefore, this review attempts to explain the factors that affect the anti-hypertensive activity of ACE-I inhibitory peptides during oral consumption. It also highlights subsequent absorption of ACE-I inhibitory peptides after gastrointestinal digestion.
Collapse
Affiliation(s)
- Nishithkumar Jogi
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| | - Undiganalu Gangadharappa Yathisha
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| | - Ishani Bhat
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| | - Bangera Sheshappa Mamatha
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| |
Collapse
|
22
|
LI H, CHEN X, GUO Y, HOU T, HU J. A pivotal peptide (Ile-Leu-Lys-Pro) with high ACE- inhibitory activity from duck egg white: identification and molecular docking. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.66121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haitao LI
- Zhejiang Pharmaceutical College, China
| | | | - Yan GUO
- Zhejiang Pharmaceutical College, China
| | - Tao HOU
- Huazhong Agricultural University, China
| | - Jun HU
- Huazhong Agricultural University, China
| |
Collapse
|
23
|
Qi Y, Tang X, Liu H, Lin Q, Lu Y, Luo H. Identification of Novel Nonapeptides from Sipunculus nudus L. and Comparing Its ACEI Activities Mechanism by Molecular Docking. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10328-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Mildenberger J, Remm M, Atanassova M. Self-assembly potential of bioactive peptides from Norwegian sea cucumber Parastichopus tremulus for development of functional hydrogels. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Zhang Y, He S, Rui X, Simpson BK. Interactions of C. frondosa-derived inhibitory peptides against angiotensin I-converting enzyme (ACE), α-amylase and lipase. Food Chem 2021; 367:130695. [PMID: 34365251 DOI: 10.1016/j.foodchem.2021.130695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/05/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022]
Abstract
The study illustrates the molecular mechanisms by which marine-derived peptides exhibited different structures and inhibition functions to concurrently inhibit multiple enzymes involved in chronic diseases. Peptides (2 mg/mL) exhibited inhibition against angiotensin-converting enzyme (ACE, inhibition of 52.2-78.8%), pancreatic α-amylase (16.3-27.2%) and lipase (5.3-17.0%). Further in silico analyses on physiochemistry, bioactivity, safety and interaction energy with target enzymes indicated that one peptide could inhibit multiple enzymes. Peptide FENLLEELK potent in inhibiting both ACE and α-amylase showed different mechanisms: it had ordered extended structure in ACE active pocket with conventional H-bond towards Arg522 which is the ligand for activator Cl-, while the peptide folded into compact "lariat" conformation within α-amylase active site and the K residue in peptide formed intensive H-bonds and electrostatic interactions with catalytic triad Asp197 - Asp300 - Glu233. Another peptide APFPLR showed different poses in inhibiting ACE, α-amylase and lipase, and it formed direct interactions to lipase catalytic residues Phe77 & His263.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue H9X 3V9, Québec, Canada; IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64000 Pau, France.
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, China.
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue H9X 3V9, Québec, Canada.
| |
Collapse
|
26
|
Quaisie J, Ma H, Yiting G, Tuly JA, Igbokwe CJ, Zhang X, Ekumah JN, Akpabli-Tsigbe NDK, Nianzhen S. Impact of sonication on slurry shear -thinning of protein from sea cucumber (Apostichopus japonicus): Proteolytic reaction kinetics, thermodynamics, and conformational modification. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Udenigwe CC, Abioye RO, Okagu IU, Obeme-Nmom JI. Bioaccessibility of bioactive peptides: recent advances and perspectives. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Lu M, Mishra A, Boschetti C, Lin J, Liu Y, Huang H, Kaminski CF, Huang Z, Tunnacliffe A, Kaminski Schierle GS. Sea Cucumber-Derived Peptides Alleviate Oxidative Stress in Neuroblastoma Cells and Improve Survival in C. elegans Exposed to Neurotoxic Paraquat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8842926. [PMID: 33959216 PMCID: PMC8075690 DOI: 10.1155/2021/8842926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
Oxidative stress results when the production of oxidants outweighs the capacity of the antioxidant defence mechanisms. This can lead to pathological conditions including cancer and neurodegeneration. Consequently, there is considerable interest in compounds with antioxidant activity, including those from natural sources. Here, we characterise the antioxidant activity of three novel peptides identified in protein hydrolysates from the sea cucumber Apostichopus japonicus. Under oxidative stress conditions, synthetic versions of the sea cucumber peptides significantly compensate for glutathione depletion, decrease mitochondrial superoxide levels, and alleviate mitophagy in human neuroblastoma cells. Moreover, orally supplied peptides improve survival of the Caenorhabditis elegans after treatment with paraquat, the latter of which leads to the production of excessive oxidative stress. Thus, the sea cucumber peptides exhibit antioxidant activity at both the cellular and organism levels and might prove attractive as nutritional supplements for healthy ageing.
Collapse
Affiliation(s)
- Meng Lu
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Ajay Mishra
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Chiara Boschetti
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Jing Lin
- Research Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yushuang Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongliang Huang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Clemens F. Kaminski
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Zebo Huang
- Research Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Alan Tunnacliffe
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Gabriele S. Kaminski Schierle
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
29
|
Effect of Drying on Nutritional Composition of Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Derived from Newfoundland Fisheries. Processes (Basel) 2021. [DOI: 10.3390/pr9040703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cucumaria frondosa is the main sea cucumber species harvested from Newfoundland waters. During processing, the viscera of sea cucumber are usually discarded as waste. As a matter of fact, sea cucumber viscera are abundant in various nutrients and promising for valorization. In the present study, sea cucumber viscera were pretreated by air drying and freeze drying, and the nutritional compositions of the dried products were investigated, including proximate composition, lipid class, fatty acid profile, and amino acid composition. The dried viscera had similar levels of ash, lipids, and proteins compared to fresh viscera. Both air- and freeze-dried viscera had total fatty acid composition similar to fresh viscera, with high levels of omega-3 polyunsaturated fatty acids (PUFAs) (30–31%), especially eicosapentaenoic acid (27–28%), and low levels of omega-6 PUFAs (~1%). The dried samples were abundant in essential amino acids (46–51%). Compared to air-dried viscera, freeze-dried viscera contained a lower content of moisture and free fatty acids, and higher content of glycine and omega-3 PUFAs in phospholipid fraction. The high content of nutritious components in dried viscera of Cucumaria frondosa indicates their great potential for valorization into high-value products.
Collapse
|
30
|
Ma T, Fu Q, Mei Q, Tu Z, Zhang L. Extraction optimization and screening of angiotensin-converting enzyme inhibitory peptides from Channa striatus through bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking. Food Chem 2021; 354:129589. [PMID: 33773481 DOI: 10.1016/j.foodchem.2021.129589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 11/25/2022]
Abstract
Channa striatus is high-protein food with many health functions. This study aimed to prepare, screen and identify the angiotensin-converting enzyme inhibition peptides (ACEIPs) from C. striatus hydrolysates by response surface methodology and bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking. The optimal conditions for preparing ACEIPs were hydrolysis temperature 55 °C, hydrolysis time 3 h, pH 9, solid-liquid ratio 1:20 g/mL, and enzyme addition 5%, the ACE inhibition and molecular weight distribution of obtained hydrolysate was 54.35% and 8770-160 Da, respectively. Seven novel ACEIPs were screened through the established high-throughput screening approach, among which, EYFR and LPGPGP showed the strongest ACE inhibition with the IC50 value of 179.2 and 186.3 μM, respectively (P > 0.05). Molecular docking revealed that three and ten hydrogen bonds were formed between ACE and LPGPGP and EYFR, respectively, S1 and S2 were the major active pockets, but the major driving forces varied.
Collapse
Affiliation(s)
- Tianxin Ma
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiaoqin Fu
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qianggen Mei
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
31
|
Huang Y, Jia F, Zhao J, Hou Y, Hu SQ. Novel ACE Inhibitory Peptides Derived from Yeast Hydrolysates: Screening, Inhibition Mechanisms and Effects on HUVECs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2412-2421. [PMID: 33593053 DOI: 10.1021/acs.jafc.0c06053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The antihypertensive activity of yeast hydrolysate (YH) was confirmed in our previous study. However, the critical peptides in YH and the underlying mechanisms have not been fully elucidated. This study aimed to explore the angiotensin-converting enzyme (ACE) inhibitory peptides in YH and illustrate their molecular and cellular mechanisms. The potential of YH-derived peptides was evaluated by in silico methods, followed by in vitro verification. A new competitive ACE inhibitory peptide, VIPVPFF (V7), with an IC50 value of 10.27 μM, was screened. YH and V7 increased the nitric oxide (NO) levels, upregulated GUCY1A1 gene expression (approximately 15-fold), and functioned in several hypertension-related pathways in human umbilical vein endothelial cells (HUVECs). This study revealed the antihypertensive mechanisms of YH and V7, laying down a theoretical basis for their application.
Collapse
Affiliation(s)
- Yanbo Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Feng Jia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| |
Collapse
|
32
|
Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf 2021; 20:1150-1187. [PMID: 33527706 DOI: 10.1111/1541-4337.12711] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides are able to inhibit the activity of ACE, which is the key enzymatic factor mediating systemic hypertension. ACE-inhibitory peptides can be obtained from edible proteins and have the function of antihypertension. The amino acid sequences and the secondary structures of ACE-inhibitory peptides determine the inhibitory activities and stability. The resistance of ACE-inhibitory peptides to digestive enzymes and peptidase affect their antihypertensive bioactivity in vivo. In this paper, the mechanism of ACE-inhibition, sources of the inhibitory peptides, structure-activity relationships, stability during digestion, absorption and transportation of ACE-inhibitory peptides, and consumption of ACE-inhibitory peptides are reviewed, which provide guidance to the development of new functional foods and production of antihypertensive nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Lu Xue
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rongxin Yin
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
34
|
Guo H, Hao Y, Richel A, Everaert N, Chen Y, Liu M, Yang X, Ren G. Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5569-5576. [PMID: 32608025 DOI: 10.1002/jsfa.10609] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Quinoa protein is a potential source of bioactive peptides. Although some studies have demonstrated its angiotensin converting enzyme (ACE) inhibitory properties, research into its in vivo effect on blood-pressure regulation and peptide characterization remains limited. RESULTS Quinoa protein hydrolyzate (QPH) was prepared by simulated gastrointestinal digestion. QPH lowered the systolic blood pressure (SBP) and diastolic blood pressure (DBP) in spontaneously hypertensive model rats (SHRs) from 2 h to10 h after oral administration, effectively controlling blood pressure in these SHRs. An in vitro study showed that QPH is capable of inhibiting ACE activity. This was attributed to the activity of a number of low-molecular-weight peptides. With relatively high scores predicted by PeptideRanker, three promising bioactive peptides, FHPFPR, NWFPLPR, and NIFRPF, were further studied and their ACE-inhibition effects were confirmed with IC50 values of 34.92, 16.77, and 32.40 μM, respectively. A molecular docking study provided insights into the binding of ACE with peptides, and revealed that the presence of specific amino acids in the peptide sequence (Pro, Phe, and Arg at the C-terminal, and Asn at the N-terminal) could contribute to the interaction between ACE and peptides. CONCLUSION These results demonstrated the potential of QPH for the management of hypertension, which indicates that it could be a good candidate for inclusion in functional foods to control high blood pressure. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yuqiong Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aurore Richel
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Nadia Everaert
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yinhuan Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjie Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiushi Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Ye Q, Chen K, Yang X, Xiao K, Shen Y. Facile and moderate immobilization of proteases on SPS nanospheres for the active collagen peptides. Food Chem 2020; 335:127610. [PMID: 32738532 DOI: 10.1016/j.foodchem.2020.127610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/20/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Although collagen peptides have been proved to possess wide applications in functional foods, cosmetics, medical materials and pharmaceuticals, the production of collagen peptides are deeply affected by proteases and substrate. In this study, the scalable-synthesis sulfonated polystyrene (SPS) nanospheres were utilized as accessible supports for efficient subtilisin immobilization. Detailed characterizations through SEM-EDS, TEM, TGA and FT-IR confirmed the undamaged formation of the SPS-subtilisin. Owing to the moderate hydrophobic effect and electrostatic interaction, the SPS-subtilisin could achieve 397.15 mg/g enzyme loading and 77.3% activity recovery. The tilapia skin collagen, as a resource-rich raw material, was hydrolyzed by the prepared immobilized subtilisin. The antioxidant activity of the attained peptides was verified. With the mass spectrometry and molecular docking analysis of product peptides sequences, representative peptides were synthesized and their anti-oxidation capacity and mechanism were affirmed, which further verified the undiminished catalytic ability of immobilized subtilisin.
Collapse
Affiliation(s)
- Qianqian Ye
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kai Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaocui Yang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kaijun Xiao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yi Shen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
36
|
Li J, Li Y, Li Y, Yang Z, Jin H. Physicochemical Properties of Collagen from Acaudina Molpadioides and Its Protective Effects against H 2O 2-Induced Injury in RAW264.7 Cells. Mar Drugs 2020; 18:md18070370. [PMID: 32708463 PMCID: PMC7403972 DOI: 10.3390/md18070370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Collagen is a promising biomaterial used in the beauty and biomedical industries. In this study, the physicochemical characterization, antioxidant activities, and protective effects against H2O2-induced injury of collagen isolated from Acaudina molpadioides were investigated. The amino acid composition analysis showed that the collagen was rich in glycine (Gly), alanine (Ala), and glutamic acid (Glu), but poor in tyrosine (Tyr) and phenylalanine (Phe). Zeta potential analysis revealed that the isoelectric point (pI) of collagen from Acaudina molpadioides was about 4.25. It possessed moderate scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals in a dose-dependent manner. In addition, the collagen was able to effectively improve cell viability and morphology, inhibit the production of Malondialdehyde (MDA), and increase the activities of Superoxide Dismutase (SOD) and Glutathione Peroxidase (GSH-Px) in cultured RAW264.7 cells, resulting in a protective effect against H2O2-induced injury. Overall, the results showed that collagen extracted from A. molpadioides has promising prospects in the beauty and cosmetics industries.
Collapse
Affiliation(s)
| | | | | | | | - Huoxi Jin
- Correspondence: ; Tel.: +86-187-6808-2687
| |
Collapse
|
37
|
Nuchprapha A, Paisansak S, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Choowongkomon K, Karnchanatat A. Two novel ACE inhibitory peptides isolated from longan seeds: purification, inhibitory kinetics and mechanisms. RSC Adv 2020; 10:12711-12720. [PMID: 35492113 PMCID: PMC9051311 DOI: 10.1039/d0ra00093k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/23/2020] [Indexed: 01/11/2023] Open
Abstract
Angiotensin converting enzyme (ACE) inhibition offers a useful means of managing hypertension, because ACE inhibitors (ACEIs) are known to serve as agents with antihypertensive properties in addition to generating positive metabolic and cardioprotective outcomes. However, current ACEIs are linked to adverse consequences, and so there is a requirement for effective but safer compounds, which might be achieved through chemical synthesis or the isolation of naturally obtained bioactive molecules. Protein hydrolysates with ACEI activity can be produced by the combined pepsin and pancreatin proteolysis (to mimic gastrointestinal digestion) of longan seed protein. This study examined longan seed protein hydrolysates, obtained from a sequential 3 h digestion with pepsin and then pancreatin. The resulting hydrolysate underwent sequential ultrafiltration membrane fractionation with a 10, 5, and 3 kDa molecular weight cut-off (MWCO). The permeate derived from the <3 kDa MWCO demonstrated the highest ACEI activity. This permeate subsequently underwent separation by reverse-phase high performance liquid chromatography to give the main fractions on the basis of differing elution times. The ACEI IC50 values for these fractions were then identified. Quadrupole time-of-flight tandem mass spectrometry was employed to determine the peptide mass for the major peak (F 5), which was shown to be Glu-Thr-Ser-Gly-Met-Lys-Pro-Thr-Glu-Leu (ETSGMKPTEL) and Ile-Ser-Ser-Met-Gly-Ile-Leu-Val-Cys-Leu (ISSMGILVCL). These two peptides were stable over a temperature and pH range of -20 to 90 °C and 2-12, respectively, for 60 min. From the Lineweaver-Burk plot, both peptides inhibited ACE non-competitively. Molecular docking simulation of the peptides with ACE supported the formation of hydrogen bonds by the peptides with the ACE active pockets. This research indicates that it may be possible to use both of these peptides or longan seed protein hydrolysates in order to create ingredients for functional foods, or to produce pharmaceutical products, capable of lowering hypertension.
Collapse
Affiliation(s)
- Atthasith Nuchprapha
- Program in Biotechnology, Faculty of Science, Chulalongkorn University 254 Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Supawee Paisansak
- Program in Biotechnology, Faculty of Science, Chulalongkorn University 254 Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University 254 Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University 254 Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University 254 Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University 420/6 Ratchawithi Road, Ratchathewi Bangkok 10400 Thailand
| | | | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University 254 Phayathai Road, Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
38
|
Liu P, Lan X, Yaseen M, Chai K, Zhou L, Sun J, Lan P, Tong Z, Liao D, Sun L. Immobilized metal affinity chromatography matrix modified by poly (ethylene glycol) methyl ether for purification of angiotensin I-converting enzyme inhibitory peptide from casein hydrolysate. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1143:122042. [PMID: 32172172 DOI: 10.1016/j.jchromb.2020.122042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Purification of small bioactive peptides from complex biological samples is a difficult task due to the interference of concentrated large biomolecules. In this study, a magnetic immobilized metal affinity chromatography matrix modified by poly (ethylene glycol) methyl ether (IMACM@mPEG) was prepared and applied for the rapid purification of angiotensin I-converting enzyme (ACE) inhibitory peptides from casein hydrolysate. The proposed IMACM@mPEG considerably reduced the non-specific adsorption of large proteins and exhibited improved purification efficiency towards ACE inhibitory peptides. A novel peptide with moderate ACE inhibitory activity (IC50 value of 274 ± 5 μM) was identified as LLYQEPVLGPVR. Lineweaver-Burk plot confirmed the non-competitive inhibition pattern of LLYQEPVLGPVR. The purified peptide was digested after simulated gastrointestinal digestion and produced shorter peptides which contributed to enhanced ACE inhibitory activity. These results indicated that the IMACM@mPEG is an effective method for the prepurification of ACE inhibitory peptide and the purified peptide LLYQEPVLGPVR may have potential as nutraceutical ingredient in functional foods for hypertension treatments.
Collapse
Affiliation(s)
- Pengru Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Muhammad Yaseen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Institute of Chemical Sciences, University of Peshawar, KP 25120, Pakistan
| | - Kungang Chai
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liqin Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jianhua Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ping Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Lixia Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
39
|
Cao S, Wang Y, Hao Y, Zhang W, Zhou G. Antihypertensive Effects in Vitro and in Vivo of Novel Angiotensin-Converting Enzyme Inhibitory Peptides from Bovine Bone Gelatin Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:759-768. [PMID: 31841328 DOI: 10.1021/acs.jafc.9b05618] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we investigated the antihypertensive effects in vitro and in vivo of novel angiotensin-converting enzyme inhibitory (ACEI) peptides purified and identified from bovine bone gelatin hydrolysate (BGH). Thirteen ACEI peptides were identified from BGH, and among which, RGL-(Hyp)-GL and RGM-(Hyp)-GF exhibited high ACE inhibition with IC50 values of 1.44 and 10.23 μM. Molecular docking predicted that RGM-(Hyp)-GF and ACE residues of Glu384, His513, and Lys511 formed hydrogen-bonding interactions at distances of 2.57, 2.99, and 2.42 + 3.0 Å. RGL-(Hyp)-GL formed hydrogen bonds with Lys511 and Tyr523 and generated hydrogen-bonding interactions with His387 and Glu411 in the zinc(II) complexation motif at distances of 2.74 and 3.03 + 1.93 Å. The maximal decrements in systolic blood pressure in spontaneously hypertensive rats induced by one-time gavage of RGL-(Hyp)-GL and RGM-(Hyp)-GF at 30 mg/kg were 31.3 and 38.6 mmHg. RGL-(Hyp)-GL had higher enzyme degradation resistance than that of RGM-(Hyp)-GF in vitro incubation in rat plasma, and they were sequentially degraded into pentapeptides and tetrapeptides within 2 h. Our results indicate that BGH can serve as a nutritional candidate to control blood pressure.
Collapse
Affiliation(s)
- Songmin Cao
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yi Wang
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yuejing Hao
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Guanghong Zhou
- Key Lab of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Products Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; MOE Joint International Research Laboratory of Animal Health and Food Safety , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| |
Collapse
|
40
|
Caballero J. Considerations for Docking of Selective Angiotensin-Converting Enzyme Inhibitors. Molecules 2020; 25:molecules25020295. [PMID: 31940798 PMCID: PMC7024173 DOI: 10.3390/molecules25020295] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
The angiotensin-converting enzyme (ACE) is a two-domain dipeptidylcarboxypeptidase, which has a direct involvement in the control of blood pressure by performing the hydrolysis of angiotensin I to produce angiotensin II. At the same time, ACE hydrolyzes other substrates such as the vasodilator peptide bradykinin and the anti-inflammatory peptide N-acetyl-SDKP. In this sense, ACE inhibitors are bioactive substances with potential use as medicinal products for treatment or prevention of hypertension, heart failures, myocardial infarction, and other important diseases. This review examined the most recent literature reporting ACE inhibitors with the help of molecular modeling. The examples exposed here demonstrate that molecular modeling methods, including docking, molecular dynamics (MD) simulations, quantitative structure-activity relationship (QSAR), etc, are essential for a complete structural picture of the mode of action of ACE inhibitors, where molecular docking has a key role. Examples show that too many works identified ACE inhibitory activities of natural peptides and peptides obtained from hydrolysates. In addition, other works report non-peptide compounds extracted from natural sources and synthetic compounds. In all these cases, molecular docking was used to provide explanation of the chemical interactions between inhibitors and the ACE binding sites. For docking applications, most of the examples exposed here do not consider that: (i) ACE has two domains (nACE and cACE) with available X-ray structures, which are relevant for the design of selective inhibitors, and (ii) nACE and cACE binding sites have large dimensions, which leads to non-reliable solutions during docking calculations. In support of the solution of these problems, the structural information found in Protein Data Bank (PDB) was used to perform an interaction fingerprints (IFPs) analysis applied on both nACE and cACE domains. This analysis provides plots that identify the chemical interactions between ligands and both ACE binding sites, which can be used to guide docking experiments in the search of selective natural components or novel drugs. In addition, the use of hydrogen bond constraints in the S2 and S2′ subsites of nACE and cACE are suggested to guarantee that docking solutions are reliable.
Collapse
Affiliation(s)
- Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile
| |
Collapse
|
41
|
Guo K, Su L, Wang Y, Liu H, Lin J, Cheng P, Yin X, Liang M, Wang Q, Huang Z. Antioxidant and anti-aging effects of a sea cucumber protein hydrolyzate and bioinformatic characterization of its composing peptides. Food Funct 2020; 11:5004-5016. [DOI: 10.1039/d0fo00560f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C. elegans-based activity guided and size-based isolation of antioxidant peptide fractions from a sea cucumber protein hydrolyzate and their bioinformatic characterization.
Collapse
|
42
|
Musa A, Gasmalla MAA, Ma H, Sarpong F, Wali A, Awad FN, Duan Y. Effect of a multi-frequency counter-current S-type ultrasound pretreatment on the defatted corn germ protein: enzymatic hydrolysis, ACE inhibitory activity and structural characterization. Food Funct 2019; 10:6020-6029. [DOI: 10.1039/c9fo01531k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of low-frequency ultrasound pretreatments on the properties and structure of the defatted corn germ protein (DCGP) are investigated.
Collapse
Affiliation(s)
- Abubakr Musa
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
- Sugar Institute
| | - Mohammed A. A. Gasmalla
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
- Nutrition & Food Technology
| | - Haile Ma
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Frederick Sarpong
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Asif Wali
- Department of Agriculture and Food Technology
- Karakoram International University
- Gilgit
- Pakistan
| | - Faisal N. Awad
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yuqing Duan
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| |
Collapse
|
43
|
Zhang SS, Han LW, Shi YP, Li XB, Zhang XM, Hou HR, Lin HW, Liu KC. Two Novel Multi-Functional Peptides from Meat and Visceral Mass of Marine Snail Neptunea arthritica cumingii and Their Activities In Vitro and In Vivo. Mar Drugs 2018; 16:E473. [PMID: 30486436 PMCID: PMC6315844 DOI: 10.3390/md16120473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Neptunea arthritica cumingii (Nac) is a marine snail with high nutritional and commercial value; however, little is known about its active peptides. In this study, two multi-functional peptides, YSQLENEFDR (Tyr-Ser-Gln-Leu-Glu-Asn-Glu-Phe-Asp-Arg) and YIAEDAER (Tyr-Ile-Ala-Glu-Asp-Ala-Glu-Arg), were isolated and purified from meat and visceral mass extracts of Nac using a multi-bioassay-guided method and were characterized by using liquid chromatography-tandem mass spectrometry. Both peptides showed high antioxidant, angiotensin-converting enzyme (ACE)-inhibitory, and anti-diabetic activities, with half-maximal effective concentrations values less than 1 mM. Antioxidant and ACE-inhibitory activities were significantly higher for YSQLENEFDR than for YIAEDAER. In a zebrafish model, the two peptides exhibited strong scavenging ability for reactive oxygen species and effectively protected skin cells against oxidative damage without toxicity. Molecular docking simulation further predicted the interactions of the two peptides and ACE. Stability analysis study indicated that the two synthetic peptides maintained their activities under thermal stress and simulated gastrointestinal digestion conditions. The low molecular weight, high proportion of hydrophobic and negatively-charged amino acids, and specific C-terminal and N-terminal amino acids may contribute to the observed bio-activities of these two peptides with potential application for the prevention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
- Shandong Provncial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan 250103, China.
| | - Li-Wen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
- Shandong Provncial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan 250103, China.
| | - Yong-Ping Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
- Shandong Provncial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan 250103, China.
| | - Xiao-Bin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
- Shandong Provncial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan 250103, China.
| | - Xuan-Ming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
- Shandong Provncial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan 250103, China.
| | - Hai-Rong Hou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
- Shandong Provncial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan 250103, China.
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
- Shandong Provncial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan 250103, China.
| |
Collapse
|
44
|
Liu Y, Su G, Zhou F, Zhang J, Zheng L, Zhao M. Protective Effect of Bovine Elastin Peptides against Photoaging in Mice and Identification of Novel Antiphotoaging Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10760-10768. [PMID: 30269487 DOI: 10.1021/acs.jafc.8b04676] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study aimed to investigate the protective effects of bovine elastin hydrolysates on UV-induced skin photoaging in mice and to identify the potent antiphotoaging peptides. Results showed that the ingestion of elastin peptides could obviously ameliorate epidermis hyperplasia and fibroblast apoptosis, and increase the content of hydroxyproline and water in photoaging skin in vivo ( p < 0.05). Furthermore, four peptides with elastase inhibitory activity were purified and identified, including GLPY, PY, GLGPGVG, and GPGGVGAL. Interestingly, GLPY and GPGGVGAL exhibited the highest inhibition activity with 58.77% and 42.91% at 10 mΜ, respectively. This might be attributed to the N-terminal Gly, C-terminal Leu, and Pro at the third position of the N-terminus, which showed stronger affinity and interaction with elastase. Moreover, GLPY and GPGGVGAL could also inhibit the apoptosis of fibroblasts effectively at 50 μΜ ( p < 0.01). It suggested that elastin peptides had great potential to prevent and regulate skin photoaging.
Collapse
Affiliation(s)
- Yang Liu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Guowan Su
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Feibai Zhou
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Jianan Zhang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Lin Zheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
| |
Collapse
|
45
|
Lin L, Yang K, Zheng L, Zhao M, Sun W, Zhu Q, Liu S. Anti-aging effect of sea cucumber (Cucumaria frondosa) hydrolysate on fruit flies and d-galactose-induced aging mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|