1
|
Lima MA, Carusi J, Rocha LDO, Tonon RV, Cunha RL, Rosenthal A. Physicochemical Characterization, Rheological Properties, and Antimicrobial Activity of Sodium Alginate-Pink Pepper Essential Oil (PPEO) Nanoemulsions. Foods 2024; 13:3090. [PMID: 39410124 PMCID: PMC11476015 DOI: 10.3390/foods13193090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/20/2024] Open
Abstract
Essential oils (EOs) have antimicrobial properties, but their low solubility in water and strong flavor pose challenges for direct incorporation into food, as they can negatively impact organoleptic properties. To overcome these issues, strategies such as oil-in-water (O/W) nanoemulsions have been developed to improve EO dispersion and protection while enhancing antimicrobial efficacy. The objective of this study was to create sodium alginate-pink pepper essential oil (PPEO) nanoemulsions using microfluidization. Various formulations were assessed for physicochemical, physical, and antimicrobial properties to evaluate their potential in food applications. The microfluidized emulsions and nanoemulsions had droplet sizes ranging from 160 to 443 nm, polydispersity index (PdI) ranging from 0.273 to 0.638, and zeta potential (ζ) ranging from -45.2 to 66.3 mV. The nanoemulsions exhibited Newtonian behavior and remarkable stability after 20 days of storage. Antimicrobial testing revealed effectiveness against Staphylococcus aureus and Listeria monocytogenes, with minimum inhibitory concentrations (MIC) of 200 µg/mL for both microorganisms and minimum bactericidal concentrations (MBC) of 800 µg/mL and 400 µg/mL, respectively, proving that encapsulation of PPEO in nanoemulsions significantly increased its antibacterial activity. These results present the possibility of using PPEO nanoemulsions as a more effective natural alternative to synthetic preservatives in food systems.
Collapse
Affiliation(s)
- Mariah Almeida Lima
- Food Technology Department, Institute of Technology, University Federal Rural of Rio de Janeiro, Seropedica 23890-000, RJ, Brazil
| | - Juliana Carusi
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.C.); (L.d.O.R.)
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.C.); (L.d.O.R.)
| | | | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Amauri Rosenthal
- Embrapa Food Technology, Rio de Janeiro 23020-470, RJ, Brazil; (R.V.T.); (A.R.)
| |
Collapse
|
2
|
Alencar-Luciano W, Magnani M, Martín-Belloso O, Salvia-Trujillo L. Effect of digestible versus non-digestible citral nanoemulsions on human gut microorganisms: An in vitro digestion study. Food Res Int 2023; 173:113313. [PMID: 37803624 DOI: 10.1016/j.foodres.2023.113313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 10/08/2023]
Abstract
Essential oil (EO) nanoemulsions have been recently studied due to their antimicrobial properties. Nevertheless, little is known about their possible negative effect against human gut microorganisms during their passage though the gastrointestinal tract. This work studied the effect of digestible (corn oil) or non-digestible (paraffin oil) citral nanoemulsions against specific microorganisms of human microflora under in vitro digestion conditions. The use of a citral lipid carrier (paraffin oil or corn oil) decreased the nanoemulsion particle size and increased its stability after gastric conditions with regards to the pure citral nanoemulsions. Digestible nanoemulsions formulated with corn oil and citral presented a lower bactericidal activity against Lactobacillus acidophilus and Escherichia coli after being subjected to in vitro digestion conditions in comparison to the initial nanoemulsion. However, a non-digestible nanoemulsion formulated with paraffin oil and citral presented a similar antimicrobial activity against L. acidophilus and E. coli to the one of the initial nanoemulsion. This evidences that non-digestible nanoemulsions may entrap the citral in the lipid core and thus retaining its antimicrobial potential during their passage though the gastrointestinal tract. Hence, this work evidences the impact of the lipid carrier digestibility when formulating antimicrobial nanoemulsions on certain intestinal probiotic bacteria.
Collapse
Affiliation(s)
- Winnie Alencar-Luciano
- Departament of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marciane Magnani
- Departament of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Olga Martín-Belloso
- Departament of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain
| | - Laura Salvia-Trujillo
- Departament of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| |
Collapse
|
3
|
Feng J, Yanshao B, Wang H, Zhang X, Wang F. Recent advancements on use of essential oils as preservatives against fungi and mycotoxins spoiling food grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1242-1263. [PMID: 37549249 DOI: 10.1080/19440049.2023.2240894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Spoilage of grains by mycotoxigenic fungi poses a great threat to food security and human health. Conventionally used chemical agents to prevent grain fungi contamination cause increasingly significant problems such as microbial resistance, residual toxicity and environmental unfriendliness. In recent years, plant essential oils (EOs) have become a hot spot in the research of control of grain fungi and mycotoxins, due to their extensive sources, non-toxicity, environmental friendliness and good antifungal efficiency. The current review aims to provide an overview of the prevention of fungi and mycotoxins in grain through EOs. The antifungal and toxin inhibition efficiency of different EOs and their effective components are investigated. The inhibition mechanism of EOs on fungi and mycotoxins in grains is introduced. The influence of EOs treatment on the change of grain quality is also discussed. In addition, the formulations and techniques used to overcome the disadvantages of EOs application are introduced. The results of recent studies have confirmed that EOs provide great potential for controlling common fungi and mycotoxins in grains, and enhancing quantity and quality safety of grains.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Bowen Yanshao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fenghe Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
4
|
Zhang W, Li B, Lv Y, Wei S, Zhang S, Hu Y. Synergistic effects of combined cinnamaldehyde and nonanal vapors against Aspergillus flavus. Int J Food Microbiol 2023; 402:110277. [PMID: 37331114 DOI: 10.1016/j.ijfoodmicro.2023.110277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
This study evaluated the synergistic antifungal effects of vapor-phase natural agents against Aspergillus flavus with an aim to prevent fungal contamination in agricultural products. Screening different combinations of natural antifungal vapor agents using the checkerboard assay revealed that the cinnamaldehyde and nonanal (SCAN) blend could exert the strongest synergistic antifungal activities against A. flavus, with a minimum inhibitory concentration (MIC) of 0.03 μL/mL, which caused a 76 % decrease in fungal population compared to when each agent was used separately. Subsequent gas chromatography-mass spectrometry (GC/MS) analysis demonstrated that the cinnamaldehyde/nonanal combination was stable and no effects on their individual molecular structures. SCAN at 2 × MIC completely inhibited the fungal conidia production and mycelial growth. The calcofluor white (CFW) and dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining assays showed that SCAN treatment could accelerate the destruction of cell wall integrity and accumulation of reactive oxygen species (ROS) in A. flavus. Moreover, pathogenicity assay indicated that in contrast to separate treatment with cinnamaldehyde or nonanal, SCAN could cause a decrease in the production of A. flavus asexual spores and AFB1 on peanuts, which verified its potential synergistic activity against fungal propagation. In addition, SCAN effectively preserves the organoleptic and nutritional properties of stored peanuts. Overall, our findings strongly indicated that the cinnamaldehyde/nonanal combination is a potentially significant antifungal agent against A. flavus contamination during the postharvest storage of peanuts.
Collapse
Affiliation(s)
- Wei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Bangbang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China.
| |
Collapse
|
5
|
Chen J, Wang H, Chen Y, Zhu Q, Wan J. Inhibitive effect and mechanism of cinnamaldehyde on growth and OTA production of Aspergillus niger in vitro and in dried red chilies. Food Res Int 2023; 168:112794. [PMID: 37120239 DOI: 10.1016/j.foodres.2023.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Mould and mycotoxin contamination is an ongoing issue in agriculture and food industry. Production by Aspergillus niger DTZ-12 in Guizhou dried red chilies was found, leading to significant economic losses. In this study, the inhibitive efficacy (Effective Concentration, EC) of cinnamaldehyde (CIN), eugenol (EUG), carvacrol (CAR), and linalool (LIN) against A. niger DTZ-12 were evaluated. CIN with the best antifungal capacity was then investigated for the comprehensive inhibitory activity against A. niger DTZ-12 including mycelia, spores, and physiological activities. Results showed that CIN can effectively retard mycelial growth, spore germination, and OTA production of A. niger DTZ-12 in vitro and in dried red chilies during storage. At physiological level, CIN can increase cell membrane permeability by reducing the ergosterol, decrease ATP content and ATPase activity, and promote the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in cell. These results suggested that CIN displayed a great potential to be employed as a natural and effective alternative preservative during dried red chili storage.
Collapse
Affiliation(s)
- Jiang Chen
- College of Life Sciences, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Hua Wang
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Yuanshan Chen
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Qiujin Zhu
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Jing Wan
- College of Life Sciences, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China; Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
6
|
Jiang H, Qi X, Zhong S, Schwarz P, Chen B, Rao J. Effect of treatment of Fusarium head blight infected barley grains with hop essential oil nanoemulsion on the quality and safety of malted barley. Food Chem 2023; 421:136172. [PMID: 37094405 DOI: 10.1016/j.foodchem.2023.136172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Fusarium mycotoxin contamination of malting barley has been a persistent food safety issue for malting companies. In this study, the effect of hop essential oil (HEO) nanoemulsion on fungal biomass and mycotoxin production during the malting process was evaluated. Furthermore, the localization of fungal hyphae on the surface and inside the tissue of barley and malts was observed. The application of HEO nanoemulsion reduced fungal biomass and deoxynivalenol (DON) contents at each stage of the malting process as compared to control. During malting process, the fungal hyphae on kernel surfaces was reduced appreciably after steeping. However, the increment of hyphae was observed between the husk and testa layer of barley after germination than raw barley grains. In addition to its antifungal activity, the antioxidant activity of HEO in the treated malts suppressed the formation of aldehydes. This study lays the foundation for the utilization of HEO in the malting industry.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Xiaoxi Qi
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | - Paul Schwarz
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
7
|
Jiang H, Zhong S, Schwarz P, Chen B, Rao J. Antifungal activity, mycotoxin inhibitory efficacy, and mode of action of hop essential oil nanoemulsion against Fusarium graminearum. Food Chem 2022; 400:134016. [DOI: 10.1016/j.foodchem.2022.134016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
|
8
|
Haghighi TM, Saharkhiz MJ, Khalesi M, Mousavi SS, Ramezanian A. Eco-friendly 'ochratoxin A' control in stored licorice roots - quality assurance perspective. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1321-1336. [PMID: 35594289 DOI: 10.1080/19440049.2022.2077460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
According to toxicity data, ochratoxin A (OTA) is the second most important mycotoxin and is produced by Aspergillus and Penicillium. As a natural antifungal agent, clove essential oil (CEO) is a substance generally recognised as safe (GRAS) and shows strong activity against fungal pathogens. Here, we aimed to investigate the control efficacy of CEO in nano-emulsions (CEN) against OTA production in licorice roots and rhizomes during storage. The experiments were performed under simulated conditions of all four seasons (i.e. Spring, Summer, Autumn and Winter). Relative humidity (RH) and temperature were simulated in desiccators along with various salt solutions in incubators. Fresh licorice roots were immersed in CEN at various concentrations (150, 300, 600, 1200 and 2400 µl/l). Before utilising the nano-emulsions, we measured their polydispersity index and mean droplet size by the dynamic light scattering (DLS) technique. Also, the chemical composition of the CEO was determined using GC and GC-MS analyses. Sampling was carried out to monitor OTA once every five days. The samples were dried immediately and analysed by high-performance liquid chromatography (HPLC). Results showed that various concentrations of CEN inhibited the growth of fungi and OTA production. The most effective CEN concentrations were 1200 and 2400 µl/l, which reduced OTA production to 19 and 20 ppb under Winter and Autumn conditions, respectively. These results suggest an effective eco-friendly method for the storage of licorice to reduce postharvest fungal decay.
Collapse
Affiliation(s)
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.,Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Khalesi
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Asghar Ramezanian
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
Angelopoulou P, Giaouris E, Gardikis K. Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation. NANOMATERIALS 2022; 12:nano12071196. [PMID: 35407315 PMCID: PMC9000819 DOI: 10.3390/nano12071196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
Cosmetic and food products containing water are prone to contamination during the production, storage, and transit process, leading to product spoilage and degraded organoleptic characteristics. The efficient preservation of food and cosmetics is one of the most important issues the industry is facing today. The use of nanotechnology in food and cosmetics for preservation purposes offers the possibility to boost the activity of antimicrobial agents and/or promote their safer distribution into the end product upon incorporation into packaging or film constructions. In this review, current preservation strategies are discussed and the most recent studies in nanostructures used for preservation purposes are categorized and analyzed in a way that hopefully provides the most promising strategies for both the improvement of product safety and shelf-life extension. Packaging materials are also included since the container plays a major role in the preservation of such products. It is conclusively revealed that most of the applications refer to the nanocomposites as part of the packaging, mainly due to the various possibilities that nanoscience offers to this field. Apart from that, the route of exposure being either skin or the gastrointestinal system involves safety concerns, and since migration of nanoparticles (NPs) from their container can be measured, concerns can be minimized. Conclusion: Nanomaterial science has already made a significant contribution to food and cosmetics preservation, and rapid developments in the last years reinforce the belief that in the future much of the preservation strategies to be pursued by the two industries will be based on NPs and their nanocomposites.
Collapse
Affiliation(s)
- Paraskevi Angelopoulou
- IPSP Nanomedicine, Medical & Pharmacy Department, School of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Konstantinos Gardikis
- IPSP Nanomedicine, Medical & Pharmacy Department, School of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- R&D Department, APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece
- Correspondence:
| |
Collapse
|
10
|
Sun Y, Tang W, Pu C, Li R, Sun Q, Wang H. Improved stability of liposome-stabilized emulsions as coencapsulation delivery system for vitamin B2, vitamin E and β-carotene. Food Funct 2022; 13:2966-2984. [DOI: 10.1039/d1fo03617c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To realize the co-encapsulation of multiple nutraceuticals with different solubilities, Pickering emulsions stabilized by freshly-prepared liposome suspension stabilized emulsion (Fre-Lip-Sus-E) and hydrated lyophilized liposome stabilized emulsion (Hyd-Lyo-Lip-E) were prepared, in...
Collapse
|
11
|
Song R, Lin Y, Li Z. Ultrasonic-assisted preparation of eucalyptus oil nanoemulsion: Process optimization, in vitro digestive stability, and anti-Escherichia coli activity. ULTRASONICS SONOCHEMISTRY 2022; 82:105904. [PMID: 34979457 PMCID: PMC8799746 DOI: 10.1016/j.ultsonch.2021.105904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/01/2023]
Abstract
Eucalyptus oil (EO) is a natural and effective antimicrobial agent; however, it has disadvantages such as poor water solubility and instability. The aim of this study was to investigate the effect of process vessels and preparation process parameters on the particle size of the emulsion droplets using ultrasonic technique and response surface methodology to prepare eucalyptus oil nanoemulsion (EONE). The optimal sonication process parameters in conical centrifuge tubes were confirmed: sonication distance of 0.9 cm, sonication amplitude of 18%, and sonication time of 2 min. Under these conditions, the particle size of EONE was 18.96 ± 4.66 nm, the polydispersity index was 0.39 ± 0.09, and the zeta potential was -31.17 ± 2.15 mV. In addition, the changes in particle size, potential, micromorphology, and anti-Escherichia coli activity of EONE during digestion were investigated by in vitro simulated digestion. The emulsion was stable in simulated salivary fluid, tended to aggregate in simulated gastric fluid, and increased in particle size and potential value in simulated intestinal fluid. EONE showed higher anti-E. coli activity than EO by simulated digestion. These results provide a useful reference for the in vivo antimicrobial application of the essential oil.
Collapse
Affiliation(s)
- Ruiteng Song
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yongqi Lin
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Zhenzhen Li
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
12
|
Nanoemulsion of cashew gum and clove essential oil (Ocimum gratissimum Linn) potentiating antioxidant and antimicrobial activity. Int J Biol Macromol 2021; 193:100-108. [PMID: 34627848 DOI: 10.1016/j.ijbiomac.2021.09.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023]
Abstract
In this study, nanoemulsions of essential oil from Ocimumgratissimum (Linn) (EO) were produced using low and high energy techniques using cashew gum (CG) as a co-surfactant. The main constituents of the EO were determined by Gas Chromatography coupled with Mass Spectrometry (GC-MS), and their presence in the EO and in the formulations verified by Fourier Transform Infrared Spectroscopy (FTIR) and UV-visible spectrophotometry was observed the encapsulation efficiency (EE%), with colloidal stability. Nuclear magnetic resonance (NMR) was used to study cashew gum. Dynamic light scattering analysis (DLS) determined the nanoemulsion Z means, polydispersity index and the Zeta potential value, nanoparticle tracking analysis (NTA) were determined. The nanostructured EO showed better antibacterial action against the pathogenic gastroenteritis species Staphylococcus aureus, Escherichia coli and Salmonella enterica when compared to free EO. Atomic Force Microscopy (AFM) was used for morphological analysis of the nanoparticle and study of the action of the nanoemulsion through images of the cellular morphology of S. enterica. The antioxidant activity was evaluated against the ABTS radical (2,2'-azino-bis diazonium salt (3-ethylbenzothiazoline-6-sulfonic acid)). The encapsulation of EO in a nanostructured system improved its antibacterial and antioxidant activity, the low energy synthesis showed greater storage stability, remaining stable for 37 days.
Collapse
|
13
|
Gao Y, Liu Q, Wang Z, Zhuansun X, Chen J, Zhang Z, Feng J, Jafari SM. Cinnamaldehyde nanoemulsions; physical stability, antibacterial properties/mechanisms, and biosafety. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
de Oliveira Felipe L, Bicas JL, Bouhoute M, Nakajima M, Neves MA. Comprehensive study of α-terpineol-loaded oil-in-water (O/W) nanoemulsion: interfacial property, formulation, physical and chemical stability. NPJ Sci Food 2021; 5:31. [PMID: 34782642 PMCID: PMC8593137 DOI: 10.1038/s41538-021-00113-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, the interfacial ability of α-terpineol (α-TOH) was reported, followed by its trapping into oil-in-water (O/W) nanoemulsion as active-ingredient and the long-term observation of this nanosystem influenced by the storage-time (410-days) and temperature (5, 25, 50 °C). The results indicated that the α-TOH can reduce the interfacial tension on the liquid-liquid interface (ΔG°m = -1.81 KJ mol-1; surface density = 8.19 × 10-6 mol m-2; polar head group area = 20.29 Å2), in the absence or presence of surfactant. The O/W nanoemulsion loaded with a high amount of α-TOH (90 mg mL-1; 9α-TOH-NE) into the oil phase was successfully formulated. Among the physical parameters, the mean droplet diameter (MDD) showed a great thermal dependence influenced by the storage-temperature, where the Ostwald ripening (OR) was identified as the main destabilizing phenomena that was taking place on 9α-TOH-NE at 5 and 25 °C along with time. Despite of the physical instability, the integrity of both nanoemulsion at 5 °C and 25 °C was fully preserved up to 410th day, displaying a homogeneous and comparable appearance by visual observation. On contrary, a non-thermal dependence was found for chemical stability, where over 88% of the initial amount of the α-TOH nanoemulsified remained in both 9α-TOH-NE at 5 and 25 °C, up to 410th day. Beyond the key data reported for α-TOH, the importance of this research relies on the long-term tracking of a nanostructured system which can be useful for scientific community as a model for a robust evaluation of nanoemulsion loaded with flavor oils.
Collapse
Affiliation(s)
- Lorena de Oliveira Felipe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
| | - Juliano Lemos Bicas
- School of Food Engineering, Department of Food Science, University of Campinas, Rua Monteiro Lobato, 80. CEP: 13083-862. Campinas-São Paulo, São Paulo, Brazil
| | - Meryem Bouhoute
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
| | - Mitsutoshi Nakajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
| | - Marcos A Neves
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan.
| |
Collapse
|
15
|
Jamali SN, Assadpour E, Feng J, Jafari SM. Natural antimicrobial-loaded nanoemulsions for the control of food spoilage/pathogenic microorganisms. Adv Colloid Interface Sci 2021; 295:102504. [PMID: 34384999 DOI: 10.1016/j.cis.2021.102504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Both consumers and producers of food products are looking for natural ingredients and efficient formulation strategies to improve the shelf life of final products. Natural antimicrobial ingredients such as essential oils can be applied as alternatives to synthetic preservatives, but their main challenge is low stability, adverse effects on sensory properties, low solubility, high needed doses, etc. Formulation of these bioactive compounds into nanoemulsions can be an efficient strategy to improve their properties and practical applications in food products. In this review, after an overview on nanoemulsion formulation, ingredients and fabrication methods, different types of natural antimicrobial agents have been discussed briefly. In addition, properties and action mechanisms of antimicrobial-loaded nanoemulsions, along with their application in preservation and shelf life improvement of different food products have been explained. Finally, safety and regulatory issues of antimicrobial delivery via nanoemulsions have been examined. As a conclusion antimicrobial-loaded nanoemulsions can be promising candidates and alternatives for common synthetic preservatives in real food systems.
Collapse
|
16
|
Moazeni M, Davari A, Shabanzadeh S, Akhtari J, Saeedi M, Mortyeza-Semnani K, Abastabar M, Nabili M, Moghadam FH, Roohi B, Kelidari H, Nokhodchi A. In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Jin Z, Solanki S, Ameen G, Gross T, Poudel RS, Borowicz P, Brueggeman RS, Schwarz P. Expansion of Internal Hyphal Growth in Fusarium Head Blight-Infected Grains Contributes to the Elevated Mycotoxin Production During the Malting Process. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:793-802. [PMID: 33720745 DOI: 10.1094/mpmi-01-21-0024-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium head blight (FHB) and the occurrence of mycotoxins is the largest food safety threat to malting and brewing grains. Worldwide surveys of commercial beers have reported that the trichothecene mycotoxin deoxynivalenol (DON) is the most frequent contaminant in beer. Although the DON content of grain generally declines during steeping due to its solubilization, Fusarium spp. can continue to grow and produce DON from steeping through the early kilning stage of malting. DON present on malt is largely extracted into beer. The objective of the current study was to localize the growth of Fusarium spp. within FHB-infected kernels by developing an improved method and to associate fungal growth with the production of DON during malting. FHB-infected barley, wheat, rye, and triticale grains that exhibited large increases in the amount of Fusarium Tri5 DNA and trichothecene mycotoxins following malting were screened for hyphal localization. The growth of fungal hyphae associated with grain and malt was imaged by scanning electron microscopy and confocal laser-scanning microscopy assisted with WGA-Alexa Fluor 488 staining, respectively. In barley, hyphae were present on or within the husk, vascular bundle, and pericarp cavities. Following malting, vast hyphal growth was observed not only in these regions but also in the aleurone layer, endosperm, and embryo. Extensive fungal growth was also observed following malting of wheat, rye, and triticale. However, these grains already had an extensive internal presence of Fusarium hyphae in the unmalted grain, thus representing an enhanced chance of fungal expansion during the malting.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, U.S.A
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Gazala Ameen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, U.S.A
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Thomas Gross
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Pawel Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, U.S.A
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Paul Schwarz
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
18
|
Jain A, Dasgupta N, Ranjan S, Singh V, Singh H, Purohit SD, Mishra NC, Yadav NP, Haque S, Mishra BN, Samanta SK. Whey protein based electrosprayed nanospheres for encapsulation and controlled release of bioactive compounds from Tinospora cordifolia extract. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Koroleva MY, Yurtov EV. Ostwald ripening in macro- and nanoemulsions. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Mirza Alizadeh A, Golzan SA, Mahdavi A, Dakhili S, Torki Z, Hosseini H. Recent advances on the efficacy of essential oils on mycotoxin secretion and their mode of action. Crit Rev Food Sci Nutr 2021; 62:4726-4751. [PMID: 33523705 DOI: 10.1080/10408398.2021.1878102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Essential oils, as extracted compounds from plants, are volatile and aromatic liquids which their unique aromatic compounds give each essential oil its distinctive essence. Fungi toxins can induce various adverse health effects like allergy, cancer, and immunosuppression. Moreover, fungal spoilage impacts pharmaceutical and food industries economic state. A drop in the utilization of synthetic compounds as food prophylaxis has occurred due to several factors such as hygiene agents' alerts and stricter legal regulations. Therefore, the applications of natural substances such as essential oils have increased in recent years. Oregano, cinnamon, thyme, rosemary, fennel, clove, palmarosa, and eucalyptus have been the highest employed essential oils against mycotoxigenic fungi and their mycotoxins in studies conducted in the past decade. Essential oils inhibit fungi growth and mycotoxin synthesis via diverse pathways including modified fungal growth rate and extended lag phase, disruption of cell permeability, disruption of the electron transport chain and manipulating gene expression patterns and metabolic processes. In the present review, we will investigate the implications and efficacy of essential oils in preventing the growth of mycotoxigenic fungi, eliminating mycotoxins and their mechanism of actions conducted in the last decade. HighlightsThe most investigated toxigenic genera are Aspergillus, Fusarium and Penicillium Spp.AB1, AG1, OTA and AB2 are the most frequently studied toxinsOregano, cinnamon and thyme are mostly exploited EOs on toxigenic fungi & mycotoxinsOregano, thyme & cinnamon are the most significant antifungals on toxigenic generaCinnamon, oregano & cinnamaldehyde are the fittest antimycotoxins on DON, OTA & AFB1.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Mahdavi
- Department of Food Science and Technology, Takestan Branch, Islamic Azad University, Qazvin, Iran
| | - Samira Dakhili
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Torki
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Singh P, Dasgupta N, Singh V, Chandra Mishra N, Singh H, Purohit SD, Srivastava N, Ranjan S, Yadav NP, Mishra BN. Inhibitory effect of clove oil nanoemulsion on fumonisin isolated from maize kernels. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Guo M, Zhang L, He Q, Arabi SA, Zhao H, Chen W, Ye X, Liu D. Synergistic antibacterial effects of ultrasound and thyme essential oils nanoemulsion against Escherichia coli O157:H7. ULTRASONICS SONOCHEMISTRY 2020; 66:104988. [PMID: 32222643 DOI: 10.1016/j.ultsonch.2020.104988] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 05/05/2023]
Abstract
Essential oil nanoemulsions have been proven to have stronger antimicrobial effects compared to the essential oil alone or coarse emulsion. Sonoporation could be the promising candidate to trigger a synergistic effect with thyme essential oil nanoemulsion (TEON) and produce a more effective antibacterial efficacy. Therefore, in this study, the bactericidal effects of ultrasound (US) in combination with TEON treatments against Escherichia coli (E. coli) O157:H7 were investigated. The remarkable synergistic effects of US (20 kHz, 255 W/cm2, 9 min) and TEON (0.375 mg/mL) treatments at 22 °C reduced E. coli O157:H7 populations by 7.42 ± 0.27 log CFU/mL. The morphological changes of cells exposed to different treatments were observed by scanning electron microscopy and transmission electron microscopy. The results showed that the synergistic effects of the ultrasound and TEON treatments altered the morphology and interior microstructure of organism cells. Laser scanning confocal microscopy (LSCM) images revealed that the combination treatments of ultrasound and TEON altered the permeability of cell membranes, and this affected the integrity of E. coli O157:H7 cells. This was further indicated by the high amounts of nucleic acids and proteins released from these cells following treatment. The results from this study illustrated the mechanisms of the synergistic effects of sonoporation and TEON treatments and provided valuable information for their potential in food pasteurization.
Collapse
Affiliation(s)
- Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058; Ningbo Research Institute, Zhejiang University, Ningbo 315100
| | - Lianjiao Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058
| | | | - Huanhuan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058
| | - Weijun Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058; Ningbo Research Institute, Zhejiang University, Ningbo 315100
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058; Ningbo Research Institute, Zhejiang University, Ningbo 315100.
| |
Collapse
|
23
|
Wan J, Chen B, Rao J. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr Rev Food Sci Food Saf 2020; 19:928-953. [PMID: 33331688 DOI: 10.1111/1541-4337.12546] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022]
Abstract
Mycotoxins contamination in cereal-based food is ubiquitous according to systematic review of the scientific documentation of worldwide mycotoxin contamination in cereal and their products between 2008 and 2018, thus representing food safety issue especially in developing tropical countries. Food processing plays a vital role to prevent mycotoxin contamination in food. Therefore, it is with great urgency to develop strategies to inhibit fungi growth and mycotoxin production during food processing. This review begins by discussing physicochemical properties of five most common mycotoxins (aflatoxins, fumonisins, ochratoxins, deoxynivalenol, and zearalenone) found in cereal grains, regulation for mycotoxins in food, and their potential negative impact on human health. The fate of mycotoxins during major cereal-based food processing including milling, breadmaking, extrusion, malting, and brewing was then summarized. In the end, traditional mitigation strategies including physical and chemical and potential application of biocontrol agent and essential oil nanoemulsions that can be applied during food processing were discussed. It indicated that no single method is currently available to completely prevent mycotoxin contamination in cereal foods.
Collapse
Affiliation(s)
- Jing Wan
- Department of Plant Sciences, North Dakota State University, Fargo, ND.,School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
24
|
Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E135. [PMID: 31940900 PMCID: PMC7023169 DOI: 10.3390/nano10010135] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
The interest around essential oils is constantly increasing thanks to their biological properties exploitable in several fields, from pharmaceuticals to food and agriculture. However, their widespread use and marketing are still restricted due to their poor physico-chemical properties; i.e., high volatility, thermal decomposition, low water solubility, and stability issues. At the moment, the most suitable approach to overcome such limitations is based on the development of proper formulation strategies. One of the approaches suggested to achieve this goal is the so-called encapsulation process through the preparation of aqueous nano-dispersions. Among them, micro- and nanoemulsions are the most studied thanks to the ease of formulation, handling and to their manufacturing costs. In this direction, this review intends to offer an overview of the formulation, preparation and stability parameters of micro- and nanoemulsions. Specifically, recent literature has been examined in order to define the most common practices adopted (materials and fabrication methods), highlighting their suitability and effectiveness. Finally, relevant points related to formulations, such as optimization, characterization, stability and safety, not deeply studied or clarified yet, were discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Cespi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (D.R.P.); (G.B.); (G.F.P.)
| | | |
Collapse
|
25
|
Abd-Elsalam KA, El-Naggar MA, Ghannouchi A, Bouqellah NA. Nanomaterials and ozonation. NANOMYCOTOXICOLOGY 2020:285-308. [DOI: 10.1016/b978-0-12-817998-7.00013-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
26
|
Wan J, Jin Z, Zhong S, Schwarz P, Chen B, Rao J. Clove oil-in-water nanoemulsion: Mitigates growth of Fusarium graminearum and trichothecene mycotoxin production during the malting of Fusarium infected barley. Food Chem 2019; 312:126120. [PMID: 31901827 DOI: 10.1016/j.foodchem.2019.126120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 01/12/2023]
Abstract
Fusarium mycotoxin contamination in malting barley is of great concerns in malting industry. Our recent study found that clove oil nanoemulsions can act as highly efficient antifungal agents in vitro. Therefore, we explored the efficacy of clove oil nanoemulsions on Fusarium growth and mycotoxin during malting process. The impact of emulsifier types (Tween 80, BSA and quillaja saponins) on the formation of clove oil nanoemulsion, the mitigation effects on mycotoxin levels and fungal biomass, and the clove oil flavor residues on malts were measured. We observed that 1.5 mg clove oil/g nanoemulsion showed a negligible influence on germinative energy of barley, while still efficiently eliminated the DON levels and toxicogenic fungal biomass as quantified by Tri5 DNA content. Tween 80-stablized clove oil nanoemulsion displayed higher mycotoxin inhibitory activity and less flavor impact on the final malt. The results indicated the potential application of essential oil nanoemulsion during the malting process.
Collapse
Affiliation(s)
- Jing Wan
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, United States
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, United States
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, United States
| | - Paul Schwarz
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, United States
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
27
|
Wan J, Zhong S, Schwarz P, Chen B, Rao J. Enhancement of antifungal and mycotoxin inhibitory activities of food-grade thyme oil nanoemulsions with natural emulsifiers. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106709] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Wu D, Lu J, Zhong S, Schwarz P, Chen B, Rao J. Influence of nonionic and ionic surfactants on the antifungal and mycotoxin inhibitory efficacy of cinnamon oil nanoemulsions. Food Funct 2019; 10:2817-2827. [PMID: 31049507 DOI: 10.1039/c9fo00470j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The influence of ionic surfactants (cationic surfactant lauric arginate and anionic surfactant lysolecithin) on the physical properties, antifungal and mycotoxin inhibitory efficacy of Tween 80 stabilized cinnamon oil-in-water nanoemulsions was investigated. Nanoemulsion droplets of similar particle diameter (∼100 nm), but variable electrical characteristics, were formed by mixing 0.1 wt% ionic surfactant with 0.9 wt% Tween 80 before homogenization. The nanoemulsions were physically stable over 28 days at 23 °C. The antifungal activity (against mycelial growth and spore germination) and mycotoxin inhibitory activity of cinnamon oil nanoemulsions bearing positive, neutral, and negative charge surface was then evaluated against two chemotypes of Fusarium graminearum. In general, the cinnamon oil played a decisive role in the resulting antifungal and mycotoxin inhibitory activities. The surfactant charge had a limited impact on the antifungal mycotoxin inhibitory activities of cinnamon oil in the nanoemulsions. Both ionic surfactant-based cinnamon oil nanoemulsions showed greater activity in inhibiting mycelial growth and mycotoxin production of F. graminearum than those based on Tween 80. Treatment of mycelium with cinnamon oil nanoemulsions resulted in the loss of cytoplasm from fungal hyphae, and accounted for the antifungal action. These results have important implications for the design of essential oil based nanoemulsions as effective antifungal delivery systems in foods.
Collapse
Affiliation(s)
- Dianhui Wu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: Impact of oil compositions and processing parameters. Food Chem 2019; 291:199-206. [DOI: 10.1016/j.foodchem.2019.04.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 11/18/2022]
|
30
|
Montes C, Villaseñor MJ, Ríos Á. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Wu D, Lu J, Zhong S, Schwarz P, Chen B, Rao J. Effect of chitosan coatings on physical stability, antifungal and mycotoxin inhibitory activities of lecithin stabilized cinnamon oil-in-water emulsions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Kamel R. Nanotherapeutics as promising approaches to combat fungal infections. Drug Dev Res 2019. [DOI: 10.1002/ddr.21533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rabab Kamel
- Department of Pharmaceutical TechnologyNational Research Centre Cairo Egypt
| |
Collapse
|
33
|
Rao J, Chen B, McClements DJ. Improving the Efficacy of Essential Oils as Antimicrobials in Foods: Mechanisms of Action. Annu Rev Food Sci Technol 2019; 10:365-387. [DOI: 10.1146/annurev-food-032818-121727] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The consumer preference for clean-label products is requiring the food industry to reformulate their products by replacing artificial additives with natural alternatives. Essential oils are natural antimicrobials isolated from plant sources that have the potential to combat many foodborne pathogens and spoilage organisms. This review begins by discussing the antimicrobial properties of essential oils, the relationships between their chemical structure and antimicrobial efficacy, and their potential limitations for commercial applications (such as strong flavor, volatility, and chemical instability). We then review the commonly used methods for screening the antimicrobial efficacy of essential oils and elucidating their mechanisms of action. Finally, potential applications of essential oils as antimicrobials in foods are reviewed and the major types of food-grade delivery systems available for improving their efficacy are discussed.
Collapse
Affiliation(s)
- Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, USA
| | | |
Collapse
|