1
|
Gonçalves RC, Oliveira MB, Mano JF. Exploring the potential of all-aqueous immiscible systems for preparing complex biomaterials and cellular constructs. MATERIALS HORIZONS 2024; 11:4573-4599. [PMID: 39010747 DOI: 10.1039/d4mh00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
All-aqueous immiscible systems derived from liquid-liquid phase separation of incompatible hydrophilic agents such as polymers and salts have found increasing interest in the biomedical and tissue engineering fields in the last few years. The unique characteristics of aqueous interfaces, namely their low interfacial tension and elevated permeability, as well as the non-toxic environment and high water content of the immiscible phases, confer to these systems optimal qualities for the development of biomaterials such as hydrogels and soft membranes, as well as for the preparation of in vitro tissues derived from cellular assembly. Here, we overview the main properties of these systems and present a critical review of recent strategies that have been used for the development of biomaterials with increased levels of complexity using all-aqueous immiscible phases and interfaces, and their potential as cell-confining environments for micropatterning approaches and the bioengineering of cell-rich structures. Importantly, due to the relatively recent emergence of these areas, several key design considerations are presented, in order to guide researchers in the field. Finally, the main present challenges, future directions, and adaptability to develop advanced materials with increased biomimicry and new potential applications are briefly evaluated.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Bai Y, Zhu Y, He X, Huang R, Xu X, Yang L, Wang Z, Zhu R. Size-Optimized Layered Double Hydroxide Nanoparticles Promote Neural Progenitor Cells Differentiation of Embryonic Stem Cells Through the Regulation of M 6A Methylation. Int J Nanomedicine 2024; 19:4181-4197. [PMID: 38766656 PMCID: PMC11100968 DOI: 10.2147/ijn.s463141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Ruiqi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Li Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| |
Collapse
|
3
|
Ma Q, Song Y, Sun W, Cao J, Yuan H, Wang X, Sun Y, Shum HC. Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid-Liquid Phase Separation toward Advanced Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903359. [PMID: 32274317 PMCID: PMC7141073 DOI: 10.1002/advs.201903359] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Indexed: 05/24/2023]
Abstract
Living cells have evolved over billions of years to develop structural and functional complexity with numerous intracellular compartments that are formed due to liquid-liquid phase separation (LLPS). Discovery of the amazing and vital roles of cells in life has sparked tremendous efforts to investigate and replicate the intracellular LLPS. Among them, all-aqueous emulsions are a minimalistic liquid model that recapitulates the structural and functional features of membraneless organelles and protocells. Here, an emerging all-aqueous microfluidic technology derived from micrometer-scaled manipulation of LLPS is presented; the technology enables the state-of-art design of advanced biomaterials with exquisite structural proficiency and diversified biological functions. Moreover, a variety of emerging biomedical applications, including encapsulation and delivery of bioactive gradients, fabrication of artificial membraneless organelles, as well as printing and assembly of predesigned cell patterns and living tissues, are inspired by their cellular counterparts. Finally, the challenges and perspectives for further advancing the cell-inspired all-aqueous microfluidics toward a more powerful and versatile platform are discussed, particularly regarding new opportunities in multidisciplinary fundamental research and biomedical applications.
Collapse
Affiliation(s)
- Qingming Ma
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Yang Song
- Wallace H Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory School of MedicineAtlantaGA30332USA
| | - Wentao Sun
- Center for Basic Medical ResearchTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China
| | - Jie Cao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Hao Yuan
- Institute of Applied MechanicsNational Taiwan UniversityTaipei10617Taiwan
| | - Xinyu Wang
- Institute of Thermal Science and TechnologyShandong UniversityJinan250061China
| | - Yong Sun
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Ho Cheung Shum
- Department of Mechanical EngineeringUniversity of Hong KongPokfulam RoadHong Kong
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI)Shenzhen518000China
| |
Collapse
|
4
|
Thakuri PS, Gupta M, Joshi R, Singh S, Tavana H. Synergistic Inhibition of Kinase Pathways Overcomes Resistance of Colorectal Cancer Spheroids to Cyclic Targeted Therapies. ACS Pharmacol Transl Sci 2019; 2:275-284. [PMID: 32259061 DOI: 10.1021/acsptsci.9b00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Cancer cells often adapt to single-agent treatments with chemotherapeutics. Activation of alternative survival pathways is a major mechanism of drug resistance. A potential approach to block this feedback signaling is using combination treatments of a pair of drugs, although toxicity has been a limiting factor. Preclinical tumor models to identify mechanisms of drug resistance and determine low but effective combination doses are critical to effectively suppress tumor growth with reduced toxicity to patients. Using our aqueous two-phase system microtechnology, we developed colorectal tumor spheroids in high-throughput and evaluated resistance of cancer cells to three mitogen-activated protein kinase inhibitors (MAPKi) in long-term cyclic treatments. Our quantitative analysis showed that the efficacy of MAPKi significantly reduced over time, leading to an increase in proliferation of HCT116 colorectal cancer cells and growth of spheroids. We established that resistance was due to feedback activation of PI3K/AKT/mTOR pathway. Using high-throughput, dose-dependent combinations of each MAPKi and a PI3K/mTOR inhibitor, we identified low-dose, synergistic combinations that blocked resistance to MAPKi and effectively suppressed the growth of colorectal tumor spheroids in long-term treatments. Our approach to study drug resistance offers the potential to determine high priority treatments to test in animal models.
Collapse
Affiliation(s)
- Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Megha Gupta
- Department of Arts and Sciences, The University of Akron, Akron, Ohio 44325, United States
| | - Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Sunil Singh
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
5
|
Joshi R, Fuller B, Mosadegh B, Tavana H. Stem cell colony interspacing effect on differentiation to neural cells. J Tissue Eng Regen Med 2018; 12:2041-2054. [PMID: 30058271 DOI: 10.1002/term.2739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/20/2018] [Accepted: 07/11/2018] [Indexed: 01/30/2023]
Abstract
Efforts to enhance the efficiency of neural differentiation of stem cells are primarily focused on exogenous modulation of physical niche parameters such as surface topography and extracellular matrix proteins, or addition of certain growth factors or small molecules to culture media. We report a novel neurogenic niche to enhance the neural differentiation of embryonic stem cells (ESCs) without any external intervention by micropatterning ESCs into spatially organized colonies of controlled size and interspacing. Using an aqueous two-phase system cell microprinting technology, we generated pairs of uniformly sized isolated ESC colonies at defined interspacing distances over a layer of differentiation-inducing stromal cells. Our comprehensive analysis of temporal expression of neural genes and proteins of cells in colony pairs showed that interspacing two colonies at approximately 0.66 times the colony diameter (0.66D) significantly enhanced neural differentiation of ESCs. Cells in these colonies displayed higher expression of neural genes and proteins and formed thick neurite bundles between the two colonies. A computational model of spatial distribution of soluble factors of cells in interspaced colony pairs showed that the enhanced neural differentiation is due to the presence of stable concentration gradients of soluble signalling factors between the two colonies. Our results indicate that culturing ESCs in colony pairs with defined interspacing is a promising approach to efficiently derive neural cells. Additionally, this approach provides a platform for quantitative studies of molecular mechanisms that regulate neurogenesis of stem cells.
Collapse
Affiliation(s)
- Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| | - Brendan Fuller
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| | - Bobak Mosadegh
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| |
Collapse
|
6
|
Rico-Varela J, Ho D, Wan LQ. In Vitro Microscale Models for Embryogenesis. ADVANCED BIOSYSTEMS 2018; 2:1700235. [PMID: 30533517 PMCID: PMC6286056 DOI: 10.1002/adbi.201700235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 12/15/2022]
Abstract
Embryogenesis is a highly regulated developmental process requiring complex mechanical and biochemical microenvironments to give rise to a fully developed and functional embryo. Significant efforts have been taken to recapitulate specific features of embryogenesis by presenting the cells with developmentally relevant signals. The outcomes, however, are limited partly due to the complexity of this biological process. Microtechnologies such as micropatterned and microfluidic systems, along with new emerging embryonic stem cell-based models, could potentially serve as powerful tools to study embryogenesis. The aim of this article is to review major studies involving the culturing of pluripotent stem cells using different geometrical patterns, microfluidic platforms, and embryo/embryoid body-on-a-chip modalities. Indeed, new research opportunities have emerged for establishing in vitro culture for studying human embryogenesis and for high-throughput pharmacological testing platforms and disease models to prevent defects in early stages of human development.
Collapse
Affiliation(s)
- Jennifer Rico-Varela
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Dominic Ho
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Leo Q. Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| |
Collapse
|
7
|
Joshi R, Thakuri PS, Buchanan JC, Li J, Tavana H. Microprinted Stem Cell Niches Reveal Compounding Effect of Colony Size on Stromal Cells-Mediated Neural Differentiation. Adv Healthc Mater 2018; 7:10.1002/adhm.201700832. [PMID: 29193846 PMCID: PMC5842135 DOI: 10.1002/adhm.201700832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/02/2017] [Indexed: 01/30/2023]
Abstract
Microenvironmental factors have a major impact on differentiation of embryonic stem cells (ESCs). Here, a novel phenomenon that size of ESC colonies has a significant regulatory role on stromal cells induced differentiation of ESCs to neural cells is reported. Using a robotic cell microprinting technology, defined densities of ESCs are confined within aqueous nanodrops over a layer of supporting stromal cells immersed in a second, immiscible aqueous phase to generate ESC colonies of defined sizes. Temporal protein and gene expression studies demonstrate that larger ESC colonies generate disproportionally more neural cells and longer neurite processes. Unlike previous studies that attribute neural differentiation of ESCs solely to interactions with stromal cells, it is found that increased intercellular signaling of ESCs significantly enhances neural differentiation. This study offers an approach to generate neural cells with improved efficiency for potential use in translational research.
Collapse
Affiliation(s)
- Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - James C Buchanan
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Jun Li
- Department of Mathematical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, 260 S. Forge St., Akron, OH, 44325, USA
| |
Collapse
|
8
|
Song L, Tsai AC, Yuan X, Bejoy J, Sart S, Ma T, Li Y. Neural Differentiation of Spheroids Derived from Human Induced Pluripotent Stem Cells-Mesenchymal Stem Cells Coculture. Tissue Eng Part A 2018; 24:915-929. [PMID: 29160172 DOI: 10.1089/ten.tea.2017.0403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Organoids, the condensed three-dimensional (3D) tissues emerged at the early stage of organogenesis, are a promising approach to regenerate functional and vascularized organ mimics. While incorporation of heterotypic cell types, such as human mesenchymal stem cells (hMSCs) and human induced pluripotent stem cells (hiPSCs)-derived neural progenitors aid neural organ development, the interactions of secreted factors during neurogenesis have not been well understood. The objective of this study is to investigate the impact of the composition and structure of 3D hybrid spheroids of hiPSCs and hMSCs on dorsal cortical differentiation and the secretion of extracellular matrices and trophic factors in vitro. The hybrid spheroids were formed at different hiPSC:hMSC ratios (100:0, 75:25, 50:50, 25:75, 0:100) using direct mixing or pre-hiPSC aggregation method, which generated dynamic spheroid structure. The cellular organization, proliferation, neural marker expression, and the secretion of extracellular matrix proteins and the cytokines were characterized. The incorporation of MSCs upregulated Nestin and β-tubulin III expression (the dorsal cortical identity was shown by Pax6 and TBR1 expression), matrix remodeling proteins, and the secretion of transforming growth factor-β1 and prostaglandin E2. This study indicates that the appropriate composition and structure of hiPSC-MSC spheroids promote neural differentiation and trophic factor and matrix secretion due to the heterotypic cell-cell interactions.
Collapse
Affiliation(s)
- Liqing Song
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| | - Ang-Chen Tsai
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| | - Xuegang Yuan
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| | - Julie Bejoy
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| | - Sébastien Sart
- 2 Hydrodynamics Laboratory (LadHyX) , Department of Mechanics, Ecole Polytechnique, CNRS-UMR7646, Palaiseau, France
| | - Teng Ma
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| | - Yan Li
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| |
Collapse
|