1
|
Matsuo S, Yamazaki K, Yasui M, Abe Y, Uchida T. Cooling-rate dependence of the cryopreservation of aquaporin-overexpressing cells with a non-permeable cryoprotectant. Cryobiology 2025; 119:105237. [PMID: 40157198 DOI: 10.1016/j.cryobiol.2025.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Dehydration of intracellular water is an important factor in the cryopreservation of cells, but questions remain as to the appropriate amount and timing of dehydration and the detailed mechanism of the freezing process. Answering these questions will lead to improvements in cryopreservation methods that have remained unchanged for more than half a century and to an increase in the number of cell types that can be cryopreserved. Therefore, we aimed to reveal the time point when cells were dehydrated in their cooling process and how much their viabilities were improved by dehydration. We conducted cryopreservation experiments using cells with enhanced water permeability due to membrane overexpression of the water transport channel protein (AQP4). The AQP4-expressing cells or non-AQP4-expressing cells were cryopreserved under different cooling rates after addition of the membrane-permeable cryoprotectant (CPA) Me2SO, the non-membrane-permeable CPA trehalose, or no CPA. The results showed that no cryopreservation was successful without CPAs, even in the AQP4-expressing cells with increased water permeability. At slow freezing rates below 35 °C/min, viability with Me2SO was maintained with decreasing in the cooling rate, but with trehalose, the viability decreased. At cooling rates above 80 °C/min, the viability of AQP4-expressing cells was significantly higher than that of AQP4-non-expressing cells. These results suggest that dehydration due to the osmotic-pressure difference generated after extracellular freezing is fatal to cells.
Collapse
Affiliation(s)
- Sumire Matsuo
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-0628, Japan.
| | - Kenji Yamazaki
- Faculty of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-0628, Japan
| | - Masato Yasui
- School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Youichiro Abe
- School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tsutomu Uchida
- Faculty of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-0628, Japan
| |
Collapse
|
2
|
Golchin A, Shams F, Moradi F, Sadrabadi AE, Parviz S, Alipour S, Ranjbarvan P, Hemmati Y, Rahnama M, Rasmi Y, Aziz SGG. Single-cell Technology in Stem Cell Research. Curr Stem Cell Res Ther 2025; 20:9-32. [PMID: 38243989 DOI: 10.2174/011574888x265479231127065541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing on the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Moradi
- Department of Tissue Engineering, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Shima Parviz
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Hemmati
- Department of Prosthodontics, Dental Faculty, Urmia University of Medical Science, Urmia, Iran
| | - Maryam Rahnama
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Hong J, He H, Xu Y, Wang S, Luo C. An integrative temperature-controlled microfluidic system for budding yeast heat shock response analysis at the single-cell level. LAB ON A CHIP 2024; 24:3658-3667. [PMID: 38915274 DOI: 10.1039/d4lc00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cells can respond and adapt to complex forms of environmental change. Budding yeast is widely used as a model system for these stress response studies. In these studies, the precise control of the environment with high temporal resolution is most important. However, there is a lack of single-cell research platforms that enable precise control of the temperature and form of cell growth. This has hindered our understanding of cellular coping strategies in the face of diverse forms of temperature change. Here, we developed a novel temperature-controlled microfluidic platform that integrates a microheater (using liquid metal) and a thermocouple (liquid metal vs. conductive PDMS) on a chip. Three forms of temperature changes (step, gradient, and periodical oscillations) were realized by automated equipment. The platform has the advantages of low cost and a simple fabrication process. Moreover, we investigated the nuclear entry and exit behaviors of the transcription factor Msn2 in yeast in response to heat stress (37 °C) with different heating modes. The feasibility of this temperature-controlled platform for studying the protein dynamic behavior of yeast cells was demonstrated.
Collapse
Affiliation(s)
- Jie Hong
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Hao He
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Yinjia Xu
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
| | - Shujing Wang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Amontree J, Chen K, Varillas J, Fan ZH. A Capillary-Force-Driven, Single-Cell Transfer Method for Studying Rare Cells. Bioengineering (Basel) 2024; 11:542. [PMID: 38927778 PMCID: PMC11200440 DOI: 10.3390/bioengineering11060542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The characterization of individual cells within heterogeneous populations (e.g., rare tumor cells in healthy blood cells) has a great impact on biomedical research. To investigate the properties of these specific cells, such as genetic biomarkers and/or phenotypic characteristics, methods are often developed for isolating rare cells among a large number of background cells before studying their genetic makeup and others. Prior to using real-world samples, these methods are often evaluated and validated by spiking cells of interest (e.g., tumor cells) into a sample matrix (e.g., healthy blood) as model samples. However, spiking tumor cells at extremely low concentrations is challenging in a standard laboratory setting. People often circumvent the problem by diluting a solution of high-concentration cells, but the concentration becomes inaccurate after series dilution due to the fact that a cell suspension solution can be inhomogeneous, especially when the cell concentration is very low. We report on an alternative method for low-cost, accurate, and reproducible low-concentration cell spiking without the use of external pumping systems. By inducing a capillary force from sudden pressure drops, a small portion of the cellular membrane was aspirated into the reservoir tip, allowing for non-destructive single-cell transfer. We investigated the surface membrane tensions induced by cellular aspiration and studied a range of tip/tumor cell diameter combinations, ensuring that our method does not affect cell viability. In addition, we performed single-cell capture and transfer control experiments using human acute lymphoblastic leukemia cells (CCRF-CEM) to develop calibrated data for the general production of low-concentration samples. Finally, we performed affinity-based tumor cell isolation using this method to generate accurate concentrations ranging from 1 to 15 cells/mL.
Collapse
Affiliation(s)
- Jacob Amontree
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Kangfu Chen
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA;
- Department of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Jose Varillas
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Z. Hugh Fan
- Interdisciplinary Microsystems Group (IMG), Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA;
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Murakami T, Teratani H, Aoki D, Noguchi M, Tsugane M, Suzuki H. Single-cell trapping and retrieval in open microfluidics. iScience 2023; 26:108323. [PMID: 38026163 PMCID: PMC10656270 DOI: 10.1016/j.isci.2023.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Among various single-cell analysis platforms, hydrodynamic cell trapping systems remain relevant because of their versatility. Among those, deterministic hydrodynamic cell-trapping systems have received significant interest; however, their applications are limited because trapped cells are kept within the closed microchannel, thus prohibiting access to external cell-picking devices. In this study, we develop a hydrodynamic cell-trapping system in an open microfluidics architecture to allow external access to trapped cells. A technique to render only the inside of a polydimethylsiloxane (PDMS) microchannel hydrophilic is developed, which allows the precise confinement of spontaneous capillary flow in the open-type microchannel with a width on the order of several tens of micrometers. Efficient trapping of single beads and single cells is achieved, in which trapped cells can be retrieved via automated robotic pipetting. The present system can facilitate the development of new single-cell analytical systems by bridging between microfluidic devices and macro-scale apparatus used in conventional biology.
Collapse
Affiliation(s)
- Tomoki Murakami
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroto Teratani
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Dai’ichiro Aoki
- Aeternus Co., Ltd, Minamidai 2-1-14, Fujimino, Saitama 356-0036, Japan
| | - Masao Noguchi
- Caravell Co., Ltd, Surugadai 1-29-39, Funabashi, Chiba 273-0862, Japan
| | - Mamiko Tsugane
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
6
|
Feng H, Shen S, Jin M, Zhang Q, Liu M, Wu Z, Chen J, Yi Z, Zhou G, Shui L. Microwell Confined Electro-Coalescence for Rapid Formation of High-Throughput Droplet Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302998. [PMID: 37449335 DOI: 10.1002/smll.202302998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Droplet array is widely applied in single cell analysis, drug screening, protein crystallization, etc. This work proposes and validates a method for rapid formation of uniform droplet array based on microwell confined droplets electro-coalescence of screen-printed emulsion droplets, namely electro-coalescence droplet array (ECDA). The electro-coalescence of droplets is according to the polarization induced electrostatic and dielectrophoretic forces, and the dielectrowetting effect. The photolithographically fabricated microwells are highly regular and reproducible, ensuring identical volume and physical confinement to achieve uniform droplet array, and meanwhile the microwell isolation protects the paired water droplets from further fusion and broadens its feasibility to different fluidic systems. Under optimized conditions, a droplet array with an average diameter of 85 µm and a throughput of 106 in a 10 cm × 10 cm chip can be achieved within 5 s at 120 Vpp and 50 kHz. This ECDA chip is validated for various microwell geometries and functional materials. The optimized ECDA are successfully applied for digital viable bacteria counting, showing comparable results to the plate culture counting. Such an ECDA chip, as a digitizable and high-throughput platform, presents excellent potential for high-throughput screening, analysis, absolute quantification, etc.
Collapse
Affiliation(s)
- Haoqiang Feng
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shitao Shen
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mingliang Jin
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qilin Zhang
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mengjun Liu
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zihao Wu
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jiamei Chen
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen, 518133, P. R. China
| | - Zichuan Yi
- College of Electron and Information, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, P. R. China
| | - Guofu Zhou
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lingling Shui
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
7
|
Färber N, Reitler J, Schäfer J, Westerhausen C. Transport Across Cell Membranes is Modulated by Lipid Order. Adv Biol (Weinh) 2023; 7:e2200282. [PMID: 36651118 DOI: 10.1002/adbi.202200282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Indexed: 01/19/2023]
Abstract
This study measures the uptake of various dyes into HeLa cells and determines simultaneously the degree of membrane lipid chain order on a single cell level by spectral analysis of the membrane-embedded dye Laurdan. First, this study finds that the mean generalized polarization (GP) value of single cells varies within a population in a range that is equivalent to a temperature variation of 9 K. This study exploits this natural variety of membrane order to examine the uptake as a function of GP at constant temperature. It is shown that transport across the cell membrane correlates with the membrane phase state. Specifically, higher membrane transport with increasing lipid chain order is observed. As a result, hypothermal-adapted cells with reduced lipid membrane order show less transport. Environmental factors influence transport as well. While increasing temperature reduces lipid order, it is found that locally high cell densities increase lipid order and in turn lead to increased dye uptake. To demonstrate the physiological relevance, membrane state and transport during an in vitro wound healing process are analyzed. While the uptake within a confluent cell layer is high, it decreases toward the center where the membrane lipid chain order is lowest.
Collapse
Affiliation(s)
- Nicolas Färber
- Experimental Physics I, Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Universitätsstraße 2, 86159, Augsburg, Germany
| | - Jonas Reitler
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Universitätsstraße 2, 86159, Augsburg, Germany
| | - Julian Schäfer
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Universitätsstraße 2, 86159, Augsburg, Germany
| | - Christoph Westerhausen
- Experimental Physics I, Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Universitätsstraße 2, 86159, Augsburg, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799, Munich, Germany
| |
Collapse
|
8
|
Yang P, Bao S, Xiao S, Feng J, Lu X. QCM sensor provides insight into the role of pivotal ions in cellular regulatory volume decrease. Anal Bioanal Chem 2023; 415:245-254. [PMID: 36399229 DOI: 10.1007/s00216-022-04415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
All vertebrate cells generally self-regulate for sustaining homeostasis and cell functions. As a major regulatory mechanism, regulatory volume decrease (RVD) occurs in hypotonicity-induced cell swelling, and then shrinking by the efflux of intracellular osmolytes and water, in which the ions K+, Cl-, and Ca2+ play a key role in the RVD process. We observed that these pivotal ions could result in novel RVD behaviors under repeatedly hypotonic stimulation. However, there is a lack of valid means for assessing the effect of pivotal ions on RVD. In this work, we proposed an effective measurement process based on a quartz crystal microbalance (QCM) combined with cell function of RVD for revealing acute variations in cell volume regulation induced by the pivotal ions. A QCM sensor was implemented by adhering MCF-7 cells to a poly-l-lysine-modified gold chip and cyclic stimulation with hypotonic NaCl medium, in which a frequency shift (Δf) showed the superior feasibility of the technique in exhibiting RVD behaviors. With the increase in the number of cycles, the RVD values decreased progressively under three stimulation cycles with hypotonic NaCl alone. Compared with the first cycle, the RVD level in the second and third cycles declined by 60.7±1.7% and 82.1±1.6% (n=3), respectively; conversely, it recovered in NaCl-KCl solution, but was significantly enhanced by 52.2±0.8% in NaCl-CaCl2 solution. Moreover, the inhibition of chloride channels to block Cl- efflux also decreased the RVD level by 56.2±3.0%. The results indicate that these ions (K+, Cl-, Ca2+) are all able to affect the function of RVD, among which intracellular Cl- depletion reduced RVD during measurement, but which recovered with K+ supplement, and Ca2+ enhanced RVD due to activation of ion channels. Therefore, this work provides a comprehensive assessment of cellular behavior and offers an innovative method for gaining insight into cellular functions and mechanisms. A novel strategy was conducted by integrating a quartz crystal microbalance (QCM) with the function of cell volume regulation for analyzing the role of the pivotal ions ( K+, Cl-, Ca2+) in NaCl media on the behaviors of regulatory cell volume decrease (RVD).
Collapse
Affiliation(s)
- Peihui Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Shan Bao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Suting Xiao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jingwei Feng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xinxin Lu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
9
|
Solenov EI, Baturina GS, Katkova LE, Yang B, Zarogiannis SG. Methods to Measure Water Permeability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:343-361. [PMID: 36717506 DOI: 10.1007/978-981-19-7415-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water permeability is a key feature of the cell plasma membranes, and it has seminal importance for several cell functions such as cell volume regulation, cell proliferation, cell migration, and angiogenesis to name a few. The transport of water occurs mainly through plasma membrane water channels, aquaporins. Aquaporins have very important function in physiological and pathophysiological states. Due to the above, the experimental assessment of the water permeability of cells and tissues is necessary. The development of new methodologies of measuring water permeability is a vibrant scientific field that constantly develops during the last three decades along with the advances in imaging mainly. In this chapter we describe and critically assess several methods that have been developed for the measurement of water permeability both in living cells and in tissues with a focus in the first category.
Collapse
Affiliation(s)
- Evgeniy I Solenov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia.
- Novosibirsk State Technical University, Novosibirsk, Russia.
| | | | | | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
10
|
Bryant SJ, Awad MN, Elbourne A, Christofferson AJ, Martin AV, Meftahi N, Drummond CJ, Greaves TL, Bryant G. Deep eutectic solvents as cryoprotective agents for mammalian cells. J Mater Chem B 2022; 10:4546-4560. [PMID: 35670530 DOI: 10.1039/d2tb00573e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cryopreservation has facilitated numerous breakthroughs including assisted reproductive technology, stem cell therapies, and species preservation. Successful cryopreservation requires the addition of cryoprotective agents to protect against freezing damage and dehydration. For decades, cryopreservation has largely relied on the same two primary agents: dimethylsulfoxide and glycerol. However, both of these are toxic which limits their use for cells destined for clinical applications. Furthermore, these two agents are ineffective for hundreds of cell types, and organ and tissue preservation has not been achieved. The research presented here shows that deep eutectic solvents can be used as cryoprotectants. Six deep eutectic solvents were explored for their cryoprotective capacity towards mammalian cells. The solvents were tested for their thermal properties, including glass transitions, toxicity, and permeability into mammalian cells. A deep eutectic solvent made from proline and glycerol was an effective cryoprotective agent for all four cell types tested, even with extended incubation prior to freezing. This deep eutectic solvent was more effective and less toxic than its individual components, highlighting the importance of multi-component systems. Cells were characterised post-thawing using atomic force microscopy and confocal microscopy. Molecular dynamics simulations support the biophysical parameters obtained by experimentation. This is one of the first times that this class of solvents has been systematically tested for cryopreservation of mammalian cells and as such this research opens the way for the development of potentially thousands of new cryoprotective agents that can be tailored to specific cell types. The demonstrated capacity of cells to be incubated with the deep eutectic solvent at 37 °C for hours prior to freezing without significant loss of viability is a major step toward the storage of organs and tissues.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Miyah N Awad
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Andrew J Christofferson
- School of Science, College of STEM, RMIT University, Melbourne, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, College of STEM, RMIT University, Melbourne, Australia.
| | - Andrew V Martin
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, College of STEM, RMIT University, Melbourne, Australia.
| | - Calum J Drummond
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| |
Collapse
|
11
|
Chen CJ, Kao MH, Alvarado NAS, Ye YM, Tseng HY. Microfluidic Determination of Distinct Membrane Transport Properties between Lung Adenocarcinoma Cells CL1-0 and CL1-5. BIOSENSORS 2022; 12:bios12040199. [PMID: 35448259 PMCID: PMC9030283 DOI: 10.3390/bios12040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
The cell membrane permeability of a cell type to water (Lp) and cryoprotective agents (Ps), is the key factor that determines the optimal cooling and mass transportation during cryopreservation. The human lung adenocarcinoma cell line, CL1, has been widely used to study the invasive capabilities or drug resistance of lung cancer cells. Therefore, providing accurate databases of the mass transport properties of this specific cell line can be crucial for facilitating either flexible and optimal preservation, or supply. In this study, utilizing our previously proposed noncontact-based micro-vortex system, we focused on comparing the permeability phenomenon between CL1-0 and its more invasive subline, CL1-5, under several different ambient temperatures. Through the assay procedure, the cells of favor were virtually trapped in a hydrodynamic circulation to provide direct inspection using a high-speed camera, and the images were then processed to achieve the observation of a cell’s volume change with respect to time, and in turn, the permeability. Based on the noncontact nature of our system, we were able to manifest more accurate results than their contact-based counterparts, excluding errors involved in estimating the cell geometry. As the results in this experiment showed, the transport phenomena in the CL1-0 and CL1-5 cell lines are mainly composed of simple diffusion through the lipid bilayer, except for the case where CL1-5 were suspended in the cryoprotective agent (CPA) solution, which also demonstrated higher Ps values. The deviated behavior of CL1-5 might be a consequence of the altered expression of aquaporins and the coupling of a cryoprotective agent and water, and has given a vision on possible studies over these properties, and their potential relationship to invasiveness and metastatic stability of the CL1 cell line.
Collapse
|
12
|
Tseng HY, Chen CJ, Wu ZL, Ye YM, Huang GZ. The non-contact-based determination of the membrane permeability to water and dimethyl sulfoxide of cells virtually trapped in a self-induced micro-vortex. LAB ON A CHIP 2022; 22:354-366. [PMID: 34908084 DOI: 10.1039/d1lc00846c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The cell-membrane permeabilities of a cell type toward water (Lp) and cryoprotective agents (Ps) provide crucial cellular information for achieving optimal cryopreservation in the biobanking industry. In this work, cell membrane permeability was successfully determined via directly visualizing the transient profile of the cell volume change in response to a sudden osmotic gradient instantaneously applied between the intracellular and extracellular environments. A new micro-vortex system was developed to virtually trap the cells of interest in flow-driven hydrodynamic circulation passively formed at the expansion region in a microfluidic channel, where trapped cells remain in suspension and flow with the streamline of the localized vortex, involving no physical contact between cells and the device structure; furthermore, this supports a pragmatic assumption of 100% sphericity and allows for the calculation of the active surface area of the cell membrane for estimating the actual cell volume from two-dimensional images. For an acute T-cell lymphoma cell line (Jurkat), moderately higher values (Lp = 0.34 μm min-1 atm-1 for a binary system, and Lp = 0.16 μm min-1 atm-1 and Ps = 0.55 × 10-3 cm min-1 for a ternary system) were measured than those obtained from prior methods utilizing contact-based cell-trapping techniques, manifesting the influence of physical contact on accuracy during the determination of cell membrane permeability.
Collapse
Affiliation(s)
- Hsiu-Yang Tseng
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Chiu-Jen Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Zong-Lin Wu
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Yong-Ming Ye
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Guo-Zhen Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
13
|
Sevenler D, Bean H, Toner M, Sandlin RD. Slow-delivery and distributed exchange of cryoprotective agents with hydrogel beads. Cryobiology 2021; 103:150-152. [PMID: 34560067 DOI: 10.1016/j.cryobiol.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Intracellular loading of cryoprotective agents (CPAs) into target cells is a critical step for cryopreservation. However, biological membranes are usually much less permeable to CPAs than to water, resulting in high osmotic pressures and osmotic damage during the CPA loading and unloading phases of cryopreservation. Here, we show that calcium alginate hydrogel beads several millimeters in diamater containing CPAs can be admixed with a cell suspension to spontaneously release CPAs in a gradual and distributed manner. We demonstrate that beads containing cell media enable the gradual removal of CPA from Jurkat cells equilibrated in a typical cryopreservation solution of 15% glycerol, protecting the cells from hypotonic damage. We show that the dynamics of CPA exchange are accurately described by a numerical model of free diffusion within the gel. This approach may enable semiautomated and closed methods of gradual CPA exchange from large volume cell suspensions.
Collapse
Affiliation(s)
- Derin Sevenler
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Hailey Bean
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Rebecca D Sandlin
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Bryant SJ, Brown SJ, Martin AV, Arunkumar R, Raju R, Elbourne A, Bryant G, Drummond CJ, Greaves TL. Cryopreservation of mammalian cells using protic ionic liquid solutions. J Colloid Interface Sci 2021; 603:491-500. [PMID: 34214724 DOI: 10.1016/j.jcis.2021.06.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Cryopreservation has facilitated considerable advances in both medical technology and scientific research. However, further developments have been limited by the relatively low number of effective cryoprotective agents. Even after fifty years of research, most protocols rely on the same two toxic agents, i.e. dimethylsulfoxide or glycerol. Ionic liquids are a class of promising solvents which are known glass formers and may offer a less-toxic alternative. The research presented here investigates ten protic ionic liquids as potential cryoprotective agents. The liquids are screened for key properties including cellular toxicity, permeability and thermal behaviour. The most promising, ethylammonium acetate, was then tested as a cryoprotective agent on a model cell line and was found to be as effective as the common cryoprotectant, dimethylsulfoxide. This work reports the first use of a protic ionic liquid as an effective cryoprotective agent for a mammalian cell line. This will inform the development of a suite of potential new ionic liquid-based cryoprotectants that could potentially allow the cryopreservation of new cell types.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Stuart J Brown
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Andrew V Martin
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Radhika Arunkumar
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Rekha Raju
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Gary Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia.
| |
Collapse
|
15
|
Yang T, Peng J, Fang C, Li S, Gao D. Numerical Modeling of Temperature-Dependent Cell Membrane Permeability to Water Based on a Microfluidic System with Dynamic Temperature Control. SLAS Technol 2021; 26:477-487. [PMID: 34041975 DOI: 10.1177/24726303211015199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to describe temperature-dependent cell osmotic behaviors in a more reliable method, a novel mathematical mass transfer model coupled with dynamic temperature change has been established based on the combination of a time domain to temperature domain transformation equation and a constant temperature mass transfer model. This novel model is numerically simulated under multiple temperature changing rates and extracellular osmolarities. A microfluidic system that can achieve single-cell osmotic behavior observation and provide dynamic and swift on-chip temperature control was built and tested in this paper. Utilizing the temperature control system, the on-chip heating processes are recorded and then described as polynomial time-temperature relationships. These dynamic temperature changing profiles were performed by obtaining cell membrane properties by parameter fitting only one set of testing experimental data to the mathematical model with a constant temperature changing rate. The numerical modeling results show that predicting the osmotic cell volume change using selected dynamic temperature profiles is more suitable for studies concerning cell membrane permeability determination and cryopreservation process than tests using constant temperature changing rates.
Collapse
Affiliation(s)
- Tianhang Yang
- Department of Fluid Control and Automation, Harbin Institute of Technology, Harbin, Heilongjiang, People's Republic of China
| | - Ji Peng
- Mechanical Engineering, University of Washington, Seattle, WA, USA
| | | | - Songjing Li
- Department of Fluid Control and Automation, Harbin Institute of Technology, Harbin, Heilongjiang, People's Republic of China
| | - Dayong Gao
- Mechanical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Fajrial AK, Liu K, Gao Y, Gu J, Lakerveld R, Ding X. Characterization of Single-Cell Osmotic Swelling Dynamics for New Physical Biomarkers. Anal Chem 2021; 93:1317-1325. [PMID: 33253534 DOI: 10.1021/acs.analchem.0c02289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Characterization of cell physical biomarkers is vital to understand cell properties and applicable for disease diagnostics. Current methods used to analyze physical phenotypes involve external forces to deform the cells. Alternatively, internal tension forces via osmotic swelling can also deform the cells. However, an established assumption contends that the forces generated during hypotonic swelling concentrated on the plasma membrane are incapable of assessing the physical properties of nucleated cells. Here, we utilized an osmotic swelling approach to characterize different types of nucleated cells. Using a microfluidic device for cell trapping arrays with truncated hanging micropillars (CellHangars), we isolated single cells and evaluated the swelling dynamics during the hypotonic challenge at 1 s time resolution. We demonstrated that cells with different mechanical phenotypes showed unique swelling dynamics signature. Different types of cells can be classified with an accuracy of up to ∼99%. We also showed that swelling dynamics can detect cellular mechanical property changes due to cytoskeleton disruption. Considering its simplicity, swelling dynamics offers an invaluable label-free physical biomarker for cells with potential applications in both biological studies and clinical practice.
Collapse
Affiliation(s)
- Apresio K Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Kun Liu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Yu Gao
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Junhao Gu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States.,Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
17
|
Dettinger P, Wang W, Ahmed N, Zhang Y, Loeffler D, Kull T, Etzrodt M, Lengerke C, Schroeder T. An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation. LAB ON A CHIP 2020; 20:4246-4254. [PMID: 33063816 DOI: 10.1039/d0lc00687d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell fates are controlled by environmental stimuli that rapidly change the activity of intracellular signaling. Studying these processes requires rapid manipulations of micro-environmental conditions while continuously observing single cells over long periods of time. Current microfluidic devices are unable to simultaneously i) efficiently capture and concentrate rare cells, ii) conduct automated rapid media exchanges via diffusion without displacing non-adherent cells, and iii) allow sensitive high-throughput long-term time-lapse microscopy. Hematopoietic stem and progenitor cells pose a particular challenge for these types of experiments as they are impossible to obtain in very large numbers and are displaced by the fluid flow usually used to change culture media, thus preventing cell tracking. Here, we developed a programmable automated system composed of a novel microfluidic device for efficient capture of rare cells in independently addressable culture chambers, a custom incubation system, and user-friendly control software. The chip's culture chambers are optimized for efficient and sensitive fluorescence microscopy and their media can be individually and quickly changed by diffusion without non-adherent cell displacement. The chip allows efficient capture, stimulation, and sensitive high-frequency time-lapse observation of rare and sensitive murine and human primary hematopoietic stem cells. Our 3D-printed humidification and incubation system minimizes gas consumption, facilitates chip setup, and maintains stable humidity and gas composition during long-term cell culture. This approach now enables the required continuous long-term single-cell quantification of rare non-adherent cells with rapid environmental manipulations, e.g. of rapid signaling dynamics and the later stem cell fate choices they control.
Collapse
Affiliation(s)
- Philip Dettinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Weijia Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Yang Zhang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Martin Etzrodt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
18
|
Chen S, Lu Q. Self-Assembled GO Honeycomb Microarray for Selective Cancer Cell Capture and Single Cell Analysis of Proteolytic Expression. Adv Healthc Mater 2020; 9:e2001006. [PMID: 32902186 DOI: 10.1002/adhm.202001006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Proteolytic enzymes expressed by circulating tumor cells are proved to facilitate their invasion into multiple organs via cleaving natural ECM networks, leading to consequent metastasis colonization and malignant lethality. Recent evidence suggests the rare metastasis initiating cells with higher proteolytic levels among circulating tumor cells (CTCs) may strongly increase the risk of metastasis. Beyond selective CTC capture, the heterogeneity in proteases expression provides a promising indicator for metastasis happening. To this end, the graphene oxide (GO) honeycomb microarray with single CTC matched sizes is fabricated via the self-assembly breath figure approach, which serves as an integrated protocol for selective CTC capture and single-cell analysis of protease activity. Contributing to synergistic effects of structure and chemistry, CTCs can be efficiently isolated and individually trapped in each honeycomb hole. Meanwhile, the crosstalk among CTCs can be erased by blocking direct cell-to-cell contact, which offers promising potentials in the single-cell analysis of protease expression. Integrating specific capture and in situ analysis of single CTCs on GO micropatterned surface is of significant importance in various biological and clinical applications such as cancer diagnostics and cancer therapeutic evaluation.
Collapse
Affiliation(s)
- Shuangshuang Chen
- School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Qinghua Lu
- School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| |
Collapse
|
19
|
Raju R, Bryant SJ, Wilkinson BL, Bryant G. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim Biophys Acta Gen Subj 2020; 1865:129749. [PMID: 32980500 DOI: 10.1016/j.bbagen.2020.129749] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cryopreservation is a key method of preservation of biological material for both medical treatments and conservation of endangered species. In order to avoid cellular damage, cryopreservation relies on the addition of a suitable cryoprotective agent (CPA). However, the toxicity of CPAs is a serious concern and often requires rapid removal on thawing which is time consuming and expensive. SCOPE OF REVIEW The principles of Cryopreservation are reviewed and recent advances in cryopreservation methods and new CPAs are described. The importance of understanding key biophysical properties to assess the cryoprotective potential of new non-toxic compounds is discussed. MAJOR CONCLUSIONS Knowing the biophysical properties of a particular cell type is crucial for developing new cryopreservation protocols. Similarly, understanding how potential CPAs interact with cells is key for optimising protocols. For example, cells with a large osmotically inactive volume may require slower addition of CPAs. Similarly, a cell with low permeability may require a longer incubation time with the CPA to allow adequate penetration. Measuring these properties allows efficient optimisation of cryopreservation protocols. GENERAL SIGNIFICANCE Understanding the interplay between cells and biophysical properties is important not just for developing new, and better optimised, cryopreservation protocols, but also for broader research into topics such as dehydration and desiccation tolerance, chilling and heat stress, as well as membrane structure and function.
Collapse
Affiliation(s)
- Rekha Raju
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Brendan L Wilkinson
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
20
|
|
21
|
Luan Q, Macaraniag C, Zhou J, Papautsky I. Microfluidic systems for hydrodynamic trapping of cells and clusters. BIOMICROFLUIDICS 2020; 14:031502. [PMID: 34992704 PMCID: PMC8719525 DOI: 10.1063/5.0002866] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 05/07/2023]
Abstract
Microfluidic devices have been widely applied to trapping and isolation of cells and clusters for controllable intercellular environments and high-throughput analysis, triggering numerous advances in disease diagnosis and single-cell analysis. Passive hydrodynamic cell trapping is one of the simple and effective methods that has been gaining attention in recent years. Our aim here is to review the existing passive microfluidic trapping approaches, including microposts, microfiltration, microwells, and trapping chambers, with emphasis on design principles and performance. We summarize the remarkable advances that hydrodynamic trapping methods offer, as well as the existing challenges and prospects for development. Finally, we hope that an improved understanding of hydrodynamic trapping approaches can lead to sophisticated and useful platforms to advance medical and biological research.
Collapse
Affiliation(s)
- Qiyue Luan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Celine Macaraniag
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | - Ian Papautsky
- Author to whom correspondence should be addressed:. Tel.: +1 312 413 3800
| |
Collapse
|
22
|
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian M. Freed
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66044, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66044, United States
| |
Collapse
|
23
|
Chen Z, Memon K, Cao Y, Zhao G. A microfluidic approach for synchronous and nondestructive study of the permeability of multiple oocytes. MICROSYSTEMS & NANOENGINEERING 2020; 6:55. [PMID: 34567666 PMCID: PMC8433209 DOI: 10.1038/s41378-020-0160-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 05/11/2023]
Abstract
Investigation of oocyte membrane permeability plays a crucial role in fertility preservation, reproductive medicine, and reproductive pharmacology. However, the commonly used methods have disadvantages such as high time consumption, low efficiency, and cumbersome data processing. In addition, the developmental potential of oocytes after measurement has not been fully validated in previous studies. Moreover, oocytes can only maintain their best status in vitro within a very limited time. To address these limitations, we developed a novel multichannel microfluidic chip with newly designed micropillars that provide feasible and repeatable oocyte capture. The osmotic responses of three oocytes at different or the same cryoprotectant (CPA) concentrations were measured simultaneously, which greatly improved the measurement efficiency. Importantly, the CPA concentration dependence of mouse oocyte membrane permeability was found. Moreover, a neural network algorithm was employed to improve the efficiency and accuracy of data processing. Furthermore, analysis of fertilization and embryo transfer after perfusion indicated that the microfluidic approach does not damage the developmental potential of oocytes. In brief, we report a new method based on a multichannel microfluidic chip that enables synchronous and nondestructive measurement of the permeability of multiple oocytes.
Collapse
Affiliation(s)
- Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027 China
| | - Kashan Memon
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027 China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, Hefei, 230022 China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, Hefei, 230022 China
| |
Collapse
|
24
|
Hu K, Yang L, Jin D, Li J, Ji S, Xin C, Hu Y, Wu D, Zhang L, Chu J. Tunable microfluidic device fabricated by femtosecond structured light for particle and cell manipulation. LAB ON A CHIP 2019; 19:3988-3996. [PMID: 31663093 DOI: 10.1039/c9lc00759h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Smart devices made of stimuli-responsive (SR) hydrogel can realize accurate shape control with high repeatability attributed to their fast swelling and shrinking upon the change of external stimuli. Integrating these devices into microfluidic chips and utilizing their controllable deformation capability are highly promising approaches to enrich the functions of microfluidic devices and reduce their external apparatuses. Herein we propose and demonstrate a tunable microfluidic device (TMFD) by integrating a pH-sensitive hydrogel microring array into a microchannel. Instantaneous and reversible deformation of the microrings can be finished in less than 200 ms. The array gaps of the microrings are reversibly switched to realize the capture or release of microobjects. In addition, a femtosecond laser holographic processing method is firstly used to pattern and integrate the pH-sensitive hydrogel microrings into a microchannel, and the pH-responsive properties of the hydrogel affected by laser processing dosages are theoretically and experimentally investigated. With this method, the height, diameter (6-16 μm), swelling ratio (35-65%), and diameter change (2-5 μm) can be precisely controlled. As a proof of concept, the filtering of polystyrene particles with multiple sizes and complete trapping of PS particles and cells are demonstrated by these TMFDs. The developed TMFD can be easily integrated by the femtosecond laser holographic processing method, and operates robustly without the need for external precision apparatuses, which hold great promise in the applications of microobject manipulation and biomedical analysis.
Collapse
Affiliation(s)
- Kai Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Liang Yang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Dongdong Jin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jiawen Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Shengyun Ji
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Chen Xin
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Yanlei Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Dong Wu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jiaru Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
25
|
Wang JZ, Zhu LL, Zhang F, Herman RA, Li WJ, Zhou XJ, Wu FA, Wang J. Microfluidic tools for lipid production and modification: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35482-35496. [PMID: 31327140 DOI: 10.1007/s11356-019-05833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Microfluidics has great potential as an efficient tool for a large range of applications in industry. The ability of such devices to deal with an extremely small amount of fluid has additional benefits, including superlatively fast and efficient mass and heat transfer. These characteristics of microfluidics have attracted an enormous amount of interest in their use as a novel tool for lipid production and modification. In addition, lipid resources have a close relationship with energy resources, and lipids are an alternative renewable energy source. Here, recent advances in the application of microfluidics for lipid production and modification, especially in the discovery, culturing, harvesting, separating, and monitoring of lipid-producing microorganisms, will be reviewed. Other applications of microfluidics, such as the modification of lipids from microorganisms, will also be discussed. The novel microfluidic tools in this review will be useful in applications to improve lipid production and modification in the future.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Lin-Lin Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Fan Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Richard Ansah Herman
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Wen-Jing Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Xue-Jiao Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, People's Republic of China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang, 212018, People's Republic of China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, People's Republic of China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, People's Republic of China.
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang, 212018, People's Republic of China.
| |
Collapse
|
26
|
Zhu JY, Suarez SA, Thurgood P, Nguyen N, Mohammed M, Abdelwahab H, Needham S, Pirogova E, Ghorbani K, Baratchi S, Khoshmanesh K. Reconfigurable, Self-Sufficient Convective Heat Exchanger for Temperature Control of Microfluidic Systems. Anal Chem 2019; 91:15784-15790. [PMID: 31726823 DOI: 10.1021/acs.analchem.9b04066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here, we demonstrate a modular, reconfigurable, and self-sufficient convective heat exchanger for regulation of temperature in microfluidic systems. The heat exchanger consists of polymer tubes wrapped around a plastic pole and fully embedded in an elastomer block, which can be easily mounted onto the microfluidic structure. It is compatible with various microfluidic geometries and materials. Miniaturized, battery-powered piezoelectric pumps are utilized to drive the heat carrying liquid through the heat exchanger at desired flow rates and temperatures. Customized temperature profiles can be generated by changing the configuration of the heat exchanger with respect to the microfluidic structure. Tailored dynamic temperature profiles can be generated by changing the temperature of the heat carrying liquid in successive cycles. This feature is used to study the calcium signaling of endothelial cells under successive temperature cycles of 24 to 37 °C. The versatility, simplicity, and self-sufficiency of the heat exchanger makes it suitable for various microfluidic based cellular assays.
Collapse
Affiliation(s)
- Jiu Yang Zhu
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
| | | | - Peter Thurgood
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
| | - Ngan Nguyen
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
| | - Mokhaled Mohammed
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
| | - Haneen Abdelwahab
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
| | - Scott Needham
- Leading Technology Group , Camberwell , VIC 3124 , Australia
| | - Elena Pirogova
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
| | - Kamran Ghorbani
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences , RMIT University , Bundoora , VIC 3083 , Australia
| | | |
Collapse
|
27
|
On-chip label-free determination of cell survival rate. Biosens Bioelectron 2019; 148:111820. [PMID: 31706174 DOI: 10.1016/j.bios.2019.111820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
Abstract
Cell survival rate (CSR) is a very important parameter in biological and medical fields. Today, the routine method to determine this parameter is time-consuming; it also makes the labeled cells no longer useable for subsequent experiments. Here, we developed an on-chip label-free method for determining the CSR. For the method, a hypertonic stimulus was designed to create volume differences between living and dead cells, and then, the differences were characterized with measurements of impedance as the cells flowed through two electrodes. Based on the method, a microfluidic hypertonic stimulus-based impedance flow cytometry chip (HSIFC) was designed, and the localized function of the HSIFC was verified. Finally, the performance of the HSIFC was confirmed by measuring the different CSRs for the different types of cells. The results show that the HSIFC can accurately determine the CSR, and the accuracy is comparable to that of flow cytometry. This work paves the way for the label-free evaluation of CSR after various cell manipulations and treatments on the chip and promotes the versatility of lab-on-a-chip devices.
Collapse
|
28
|
de Vries RJ, Banik PD, Nagpal S, Weng L, Ozer S, van Gulik TM, Toner M, Tessier SN, Uygun K. Bulk Droplet Vitrification: An Approach to Improve Large-Scale Hepatocyte Cryopreservation Outcome. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7354-7363. [PMID: 30514081 PMCID: PMC6548701 DOI: 10.1021/acs.langmuir.8b02831] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Loss of hepatocyte viability and metabolic function after cryopreservation is still a major issue. Although vitrification is a promising alternative, it has generally been proven to be unsuitable for vitrification of large cell volumes which is required for clinical applications. Here, we propose a novel bulk droplet (3-5 mm diameter) vitrification method which allows high throughput volumes (4 mL/min), while using a low preincubated CPA concentration (15% v/v) to minimize toxicity and loss of cell viability and function. We used rapid (1.25 s) osmotic dehydration to concentrate a low preincubated intracellular CPA concentration ahead of vitrification, without the need of fully equilibrating toxic CPA concentrations. We compared direct postpreservation viability, long-term viability, and metabolic function of bulk droplet vitrified, cryopreserved, and fresh hepatocytes. Simulations and cooling rate measurements confirmed an adequate concentration of the intracellular CPA concentration (up to 8.53 M) after dehydration in combination with high cooling rates (960-1320 °C/min) for successful vitrification. In comparison to cryopreserved hepatocytes, bulk droplet vitrified hepatocytes had a significantly higher viability, directly after preservation and after 1 day in culture. Moreover, bulk droplet vitrified hepatocytes had evidently better morphology and showed significantly higher metabolic activity than cryopreserved hepatocytes in long-term collagen sandwich cultures. In conclusion, we developed a novel bulk droplet vitrification method of which we validated the theoretical background and demonstrated the feasibility to use this method to vitrify large cell volumes. Moreover, we showed that this method results in improved hepatocyte viability and metabolic function as compared to cryopreservation.
Collapse
Affiliation(s)
- Reinier J. de Vries
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine, Harvard Medical School, Boston MA, USA
- Department of Surgery, University of Amsterdam, Amsterdam, the Netherlands
| | - Peony D. Banik
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine, Harvard Medical School, Boston MA, USA
| | - Sonal Nagpal
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine, Harvard Medical School, Boston MA, USA
| | - Lindong Weng
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine, Harvard Medical School, Boston MA, USA
| | - Sinan Ozer
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine, Harvard Medical School, Boston MA, USA
| | | | - Mehmet Toner
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine, Harvard Medical School, Boston MA, USA
| | - Shannon N. Tessier
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine, Harvard Medical School, Boston MA, USA
| | - Korkut Uygun
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
29
|
Lei Z, Xie D, Mbogba MK, Chen Z, Tian C, Xu L, Zhao G. A microfluidic platform with cell-scale precise temperature control for simultaneous investigation of the osmotic responses of multiple oocytes. LAB ON A CHIP 2019; 19:1929-1940. [PMID: 31038148 DOI: 10.1039/c9lc00107g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The temperature-dependent oocyte membrane permeability plays a significant role in oocyte cryopreservation, such as optimizing the addition/removal of cryoprotective agents and the rate of cooling/rewarming. However, the systems for studying the temperature dependence of oocyte membrane permeability are either too complicated or unable to achieve wide-range precise temperature control. In addition, these systems cannot achieve the simultaneous observation of multiple oocytes. Here, we report a novel microfluidic platform that combines a precise local temperature heater/detector and a simple global water bath to achieve wide-range accurate temperature control without increasing the difficulty of fabrication, and it also realizes non-interfering, position-controllable and non-missing capture of multiple oocytes for parallel experiments to increase throughput. The permeability coefficients (Lp, Ps) of the mouse oocyte membrane exposed to cryoprotective agents (1.5 M EG and 1.5 M PG) at four temperatures (4, 15, 25 and 37 °C) are consistent with those reported in previous works, which proves the feasibility and practicality of the microfluidic platform in this study.
Collapse
Affiliation(s)
- Zeling Lei
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Dongcheng Xie
- School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China. and Hefei National Laboratory for Physical Sciences at the Microscale and School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Momoh Karmah Mbogba
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Conghui Tian
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Lei Xu
- School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China. and Hefei National Laboratory for Physical Sciences at the Microscale and School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
30
|
Weng L. IVF-on-a-Chip: Recent Advances in Microfluidics Technology for In Vitro Fertilization. SLAS Technol 2019; 24:373-385. [PMID: 31145861 DOI: 10.1177/2472630319851765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vitro fertilization (IVF) has been one of the most exciting modern medical technologies. It has transformed the landscape of human infertility treatment. However, current IVF procedures still provide limited accessibility and affordability to most infertile couples because of the multiple cumbersome processes and heavy dependence on technically skilled personnel. Microfluidics technology offers unique opportunities to automate IVF procedures, reduce stress imposed upon gametes and embryos, and minimize the operator-to-operator variability. This article describes the rapidly evolving state of the application of microfluidics technology in the field of IVF, summarizes the diverse angles of how microfluidics has been complementing or transforming current IVF protocols, and discusses the challenges that motivate continued innovation in this field.
Collapse
|
31
|
Gao D, Jin F, Zhou M, Jiang Y. Recent advances in single cell manipulation and biochemical analysis on microfluidics. Analyst 2019; 144:766-781. [PMID: 30298867 DOI: 10.1039/c8an01186a] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single cell analysis has become of great interest with unprecedented capabilities for the systematic investigation of cell-to-cell variation in large populations. Rapid and multi-parametric analysis of intercellular biomolecules at the single-cell level is imperative for the improvement of early disease diagnosis and personalized medicine. However, the small size of cells and the low concentration levels of target biomolecules are critical challenges for single cell analysis. In recent years, microfluidic platforms capable of handling small-volume fluid have been demonstrated to be powerful tools for single cell analysis. In addition, microfluidic techniques allow for precise control of the localized microenvironment, which yield more accurate outcomes. Many different microfluidic techniques have been greatly improved for highly efficient single-cell manipulation and highly sensitive detection over the past few decades. To date, microfluidics-based single cell analysis has become the hot research topic in this field. In this review, we particularly highlight the advances in this field during the past three years in the following three aspects: (1) microfluidic single cell manipulation based on microwells, micropatterns, droplets, traps and flow cytometric methods; (2) detection methods based on fluorescence, mass spectrometry, electrochemical, and polymerase chain reaction-based analysis; (3) applications in the fields of small molecule detection, protein analysis, multidrug resistance analysis, and single cell sequencing with droplet microfluidics. We also discuss future research opportunities by focusing on key performances of throughput, multiparametric target detection and data processing.
Collapse
Affiliation(s)
- Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China.
| | | | | | | |
Collapse
|
32
|
Wang C, Yang L, Hu Y, Rao S, Wang Y, Pan D, Ji S, Zhang C, Su Y, Zhu W, Li J, Wu D, Chu J. Femtosecond Mathieu Beams for Rapid Controllable Fabrication of Complex Microcages and Application in Trapping Microobjects. ACS NANO 2019; 13:4667-4676. [PMID: 30865422 DOI: 10.1021/acsnano.9b00893] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Structured laser beam based microfabrication technology provides a rapid and flexible way to create some special microstructures. As an important member in the propagation of invariant structured optical fields, Mathieu beams (MBs) exhibit regular intensity distribution and diverse controllable parameters, which makes it extremely suitable for flexible fabrication of functional microstructures. In this study, MBs are generated by a phase-only spatial light modulator (SLM) and used for femtosecond laser two-photon polymerization (TPP) fabrication. Based on structured beams, a dynamic holographic processing method for controllable three-dimensional (3D) microcage fabrication has been presented. MBs with diverse intensity distributions are generated by controlling the phase factors imprinted on MBs with a SLM, including feature parity, ellipticity parameter q, and integer m. The focusing properties of MBs in a high numerical aperture laser microfabrication system are theoretically and experimentally investigated. On this basis, complex two-dimensional microstructures and functional 3D microcages are rapidly and flexibly fabricated by the controllable patterned focus, which enhances the fabrication speed by 2 orders of magnitude compared with conventional single-point TPP. The fabricated microcages act as a nontrivial tool for trapping and sorting microparticles with different sizes. Finally, culturing of budding yeasts is investigated with these microcages, which demonstrates its application as 3D cell culture scaffolds.
Collapse
Affiliation(s)
- Chaowei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Liang Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Yanlei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Shenglong Rao
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Yulong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Deng Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Shengyun Ji
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Chenchu Zhang
- Institute of Industry and Equipment Technology , Hefei University of Technology , Hefei 230009 , China
| | - Yahui Su
- School of Electronics and Information Engineering , Anhui University , Hefei 230601 , China
| | - Wulin Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Jiawen Li
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Dong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Jiaru Chu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
33
|
Zhu JY, Nguyen N, Baratchi S, Thurgood P, Ghorbani K, Khoshmanesh K. Temperature-Controlled Microfluidic System Incorporating Polymer Tubes. Anal Chem 2019; 91:2498-2505. [PMID: 30592407 DOI: 10.1021/acs.analchem.8b05365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Here, we demonstrate a multilayered microfluidic system integrated with commercially available polymer tubes for controlling the temperature of the sample under various static and dynamic conditions. Highly controllable temperature profiles can be produced by modulating the flow rate or inlet temperature of the water passing through the tubes. Customised temperature gradients can be created across the length or width of a channel by mismatching the inlet temperature of the tubes. Temperature cycles can also be produced by repeatedly switching the tubes between hot and cold flasks. Proof-of-concept experiments demonstrate the utility of this system for studying the drug-induced calcium signaling of human monocytes under dynamic thermal conditions. The versatility and simplicity of our system provides opportunities for studying temperature-sensitive chemical, biochemical, and biological samples under various operating conditions.
Collapse
Affiliation(s)
- Jiu Yang Zhu
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Ngan Nguyen
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences , RMIT University , Bundoora , Victoria 3083 , Australia
| | - Peter Thurgood
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Kamran Ghorbani
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | | |
Collapse
|
34
|
Affiliation(s)
- Pieter E. Oomen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
| | - Mohaddeseh A. Aref
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
| | - Ibrahim Kaya
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Nhu T. N. Phan
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
- University of Göttingen Medical Center, Institute of Neuro- and Sensory Physiology, Göttingen 37073, Germany
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
| |
Collapse
|
35
|
Wu Y, Ren Y, Tao Y, Hou L, Jiang H. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array. Anal Chem 2018; 90:11461-11469. [DOI: 10.1021/acs.analchem.8b02628] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Cheng D, Yu Y, Han C, Cao M, Yang G, Liu J, Chen X, Peng Z. A simple microdevice for single cell capture, array, release, and fast staining using oscillatory method. BIOMICROFLUIDICS 2018; 12:034105. [PMID: 29861808 PMCID: PMC5955720 DOI: 10.1063/1.5025677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Microchips that perform single cell capture, array, and identification have become powerful tools for single cell studies, which can reveal precise underlying mechanisms among bulk cell populations. However, current single cell capture and on-chip immunostaining methods consume more time and reagent than desired. To optimize this technology, we designed a novel trap structure for single cell capture, array, and release, and meanwhile an oscillatory method was used to perform rapid on-chip cell immunostaining. The trap structure array used equal distribution of lateral flow to achieve single cell array in high velocity flows and decrease the risk of clogging. A length of glass capillary with a sealed bubble was inserted into the outlet so that it could act in a manner analogous to that of a capacitor in an RC circuit. By applying one periodic air pressure to the inlet, oscillation motion was generated, which significantly enhanced the on-chip reaction efficiency. In addition, the oscillation performance could be easily regulated by changing the length of the capillary. The trapped cells could maintain their positions during oscillation; hence, they were able to be tracked in real time. Through our trap microchip, 12 μm microbeads were successfully trapped to form a microarray with a capture efficiency of ∼92.7% and 2 μm microbeads were filtered. With an optimized oscillation condition (Ppush = 0.03 MPa, f = 1 Hz, L = 3 cm), fast on-chip immunostaining was achieved with the advantages of less time (5 min) and reagent (2 μl) consumption. The effectiveness of this method was demonstrated through quantitative microbead and qualitative Caco-2 cell experiments. The device is simple, flexible, and efficient, which we believe provides a promising approach to single cell heterogeneity studies, drug screening, and clinical diagnosis.
Collapse
Affiliation(s)
- Dantong Cheng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Mengjia Cao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
37
|
Wu T, Zhang D, Qiao Q, Qin X, Yang C, Kong M, Deng H, Zhang Z. Biomimetic Nanovesicles for Enhanced Antitumor Activity of Combinational Photothermal and Chemotherapy. Mol Pharm 2018; 15:1341-1352. [PMID: 29397741 DOI: 10.1021/acs.molpharmaceut.7b01142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The combination of multiple modalities has shown great potential in cancer treatment with improved therapeutic effects and minimized side effects. Here, we fabricated a type of doxorubicin-encapsulated biomimetic nanovesicle (NV) by a facile method with near-infrared dye insertion in the membrane for combinatorial photothermal and chemotherapy. With innate biomimetic properties, NVs enhanced the uptake by tumor cells while reducing the phagocytosis of macrophages. Upon laser irradiation, NVs can convert the absorbed fluorescent energy into heat for effective tumor killing. Hyperthermia can further induce membrane ablation of NVs to accelerate the release of chemotherapeutic drug for potent cytotoxicity to tumor cells. The NVs improved drug accumulation and showed a more efficient in vivo photothermal effect with a rapid temperature increase in tumors. Moreover, the NV-based combinational photothermal and chemotherapy exhibited significant tumor growth suppression with a high inhibitory rate of 91.6% and negligible systemic toxicity. The results indicate that NVs could be an appealing vehicle for combinational cancer treatment.
Collapse
|