1
|
Zhang L, Su L, Wu L, Zhou W, Xie J, Fan Y, Zhou X, Zhou C, Cui Y, Sun J. Versatile hydrogels prepared by microfluidics technology for bone tissue engineering applications. J Mater Chem B 2025; 13:2611-2639. [PMID: 39876639 DOI: 10.1039/d4tb02314e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration. This study describes the classification of microfluidic devices based on the nature of flow and channel type, as well as the materials and techniques required. An overview of microfluidic methods used to prepare hydrogels and the advantages of using these hydrogels in bone tissue engineering (BTE) combining several basic elements of BTE to highlight its advantages is provided. Furthermore, this work emphasizes the benefits of using hydrogels prepared via microfluidics over conventional hydrogels in BTE because of their controlled release of cargo, they can be used for in situ injection, simplify the steps of single-cell encapsulation and have the advantages of high-throughput and precise preparation. Additionally, organ-on-a-chip models fabricated via microfluidics offer a platform for studying cell and tissue behaviors in an authentic and dynamic environment. Moreover, microfluidic devices can be utilized for noninvasive diagnosis and therapy. Finally, this paper summarizes the preclinical and clinical applications of hydrogels prepared via microfluidics for bone regeneration by focusing on their current developmental status, limitations associated with their application, and future challenges, which underscore their potential impacts on advancing regenerative medicine practices.
Collapse
Affiliation(s)
- Luyue Zhang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Liqian Su
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lina Wu
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Weikai Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jing Xie
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Yi Fan
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujia Cui
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jianxun Sun
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Xia W, Lin H, Zhou X, Wang Y, Cao S, Liu J, Xu A, Dong W, Jiang M. Screening of polyurethane-degrading microbes using a quenching fluorescence probe by microfluidic droplet sorting. CHEMOSPHERE 2024; 364:143060. [PMID: 39121966 DOI: 10.1016/j.chemosphere.2024.143060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Excessive use of polyurethane (PU) polymers has led contributed to serious environmental pollution. The plastic recycling technology using microorganisms and enzymes as catalysts offers a promising green and low-carbon approach for managing plastic waste. However, current methods for screening PU-degrading strains suffer from drawbacks such as being time-consuming and inefficient. Herein, we present a novel approach for screening PU-degrading microorganisms using a quenching fluorescent probe along with the fluorescence-activated droplet sorting (FADS). The FPAP could specifically recognize the 4,4'-methylenedianiline (MDA) derivates released from PU degradation, with fluorescence quenching as a response. Based on the approach, we successfully screen two PU-degrading strains (Burkholderia sp. W38 and Bacillus sp. C1). After 20 d of cultivation, strain W38 and C1 could degrade 41.58% and 31.45% of polyester-PU film, respectively. Additionally, three metabolites were identified during the degradation of PU monomer (2,4-toluene diamine, 2,4-TDA) and a proposed degradation pathway was established. Consequently, the fluorescence probe integrated with microfluidic droplet systems, demonstrates potential for the development of innovative PU-biocatalysts. Furthermore, the identification of the 2,4-TDA degradation pathway provides valuable insights that can propel advancements in the field of PU biodegradation.
Collapse
Affiliation(s)
- Wei Xia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Haohong Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xinyu Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yihu Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shixiang Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiawei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Anming Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
3
|
Guo X, Ren J, Zhou X, Zhang M, Lei C, Chai R, Zhang L, Lu D. Strategies to improve the efficiency and quality of mutant breeding using heavy-ion beam irradiation. Crit Rev Biotechnol 2024; 44:735-752. [PMID: 37455421 DOI: 10.1080/07388551.2023.2226339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/15/2023] [Indexed: 07/18/2023]
Abstract
Heavy-ion beam irradiation (HIBI) is useful for generating new germplasm in plants and microorganisms due to its ability to induce high mutagenesis rate, broad mutagenesis spectrum, and excellent stability of mutants. However, due to the random mutagenesis and associated mutant breeding modalities, it is imperative to improve HIBI-based mutant breeding efficiency and quality. This review discusses and summarizes the findings of existing theoretical and technical studies and presents a set of tandem strategies to enable efficient and high-quality HIBI-based mutant breeding practices. These strategies: adjust the mutation-inducing techniques, regulate cellular response states, formulate high-throughput screening schemes, and apply the generated superior genetic elements to genetic engineering approaches, thereby, improving the implications and expanding the scope of HIBI-based mutant breeding. These strategies aim to improve the mutagenesis rate, screening efficiency, and utilization of positive mutations. Here, we propose a model based on the integration of these strategies that would leverage the advantages of HIBI while compensating for its present shortcomings. Owing to the unique advantages of HIBI in creating high-quality genetic resources, we believe this review will contribute toward improving HIBI-based breeding.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Chai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lingxi Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Mika T, Kalnins M, Spalvins K. The use of droplet-based microfluidic technologies for accelerated selection of Yarrowia lipolytica and Phaffia rhodozyma yeast mutants. Biol Methods Protoc 2024; 9:bpae049. [PMID: 39114747 PMCID: PMC11303513 DOI: 10.1093/biomethods/bpae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Microorganisms are widely used for the industrial production of various valuable products, such as pharmaceuticals, food and beverages, biofuels, enzymes, amino acids, vaccines, etc. Research is constantly carried out to improve their properties, mainly to increase their productivity and efficiency and reduce the cost of the processes. The selection of microorganisms with improved qualities takes a lot of time and resources (both human and material); therefore, this process itself needs optimization. In the last two decades, microfluidics technology appeared in bioengineering, which allows for manipulating small particles (from tens of microns to nanometre scale) in the flow of liquid in microchannels. The technology is based on small-volume objects (microdroplets from nano to femtolitres), which are manipulated using a microchip. The chip is made of an optically transparent inert to liquid medium material and contains a series of channels of small size (<1 mm) of certain geometry. Based on the physical and chemical properties of microparticles (like size, weight, optical density, dielectric constant, etc.), they are separated using microsensors. The idea of accelerated selection of microorganisms is the application of microfluidic technologies to separate mutants with improved qualities after mutagenesis. This article discusses the possible application and practical implementation of microfluidic separation of mutants, including yeasts like Yarrowia lipolytica and Phaffia rhodozyma after chemical mutagenesis will be discussed.
Collapse
Affiliation(s)
- Taras Mika
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Martins Kalnins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Kriss Spalvins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| |
Collapse
|
5
|
Wu M, Luo Y, Yao Y, Ji W, Xia X. Multidimensional analysis of wheat original crucial endogenous enzymes driving microbial communities metabolism during high-temperature Daqu fermentation. Int J Food Microbiol 2024; 413:110589. [PMID: 38281434 DOI: 10.1016/j.ijfoodmicro.2024.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Knowledge of the metabolism of functional enzymes is the key to accelerate the transformation and utilization of raw materials during high temperature Daqu (HTD) manufacturing. However, the metabolic contribution of raw materials-wheat is always neglected. In this research, the relationship between the metabolism of wheat and microorganisms was investigated using physicochemical and sequencing analysis method. Results showed that the process of Daqu generation was divided into three stages based on temperature. In the early stage, a positive correlation was found between Monascus, Rhizopus and glucoamylase metabolism (r > 0.8, p < 0.05). Meanwhile, the glucoamylase metabolism in wheat occupied 63.8 % of the total matrix at the day 4. In the middle to later stages, the wheat metabolism of proteases, α-amylases and lipases in gradually reached their peak. Additionally, Lactobacillus and α-amylases presented a positive correlation (r > 0.7, p < 0.05), and the α-amylases metabolism in wheat occupied 22.18 % of the total matrix during the same time period. More importantly, the changes of enzyme activity metabolic pathway in wheat and microorganism were reflected by respiratory entropy (RQ). Overall, these results guide the choice of substrate during Daqu production.
Collapse
Affiliation(s)
- Mengyao Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yongqi Yao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Ji
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300000, PR China.
| |
Collapse
|
6
|
Shan M, Xiao M, Xu J, Sun W, Wang Z, Du W, Liu X, Nie M, Wang X, Liang Z, Liu H, Hao Y, Xia Y, Zhu L, Song K, Feng C, Meng T, Wang Z, Cao W, Wang L, Zheng Z, Wang Y, Huang Y. Multi-omics analyses reveal bacteria and catalase associated with keloid disease. EBioMedicine 2024; 99:104904. [PMID: 38061241 PMCID: PMC10749884 DOI: 10.1016/j.ebiom.2023.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND The pathology of keloid and especially the roles of bacteria on it were not well understood. METHODS In this study, multi-omics analyses including microbiome, metaproteomics, metabolomic, single-cell transcriptome and cell-derived xenograft (CDX) mice model were used to explore the roles of bacteria on keloid disease. FINDINGS We found that the types of bacteria are significantly different between keloid and healthy skin. The 16S rRNA sequencing and metaproteomics showed that more catalase (CAT) negative bacteria, Clostridium and Roseburia existed in keloid compared with the adjacent healthy skin. In addition, protein mass spectrometry shows that CAT is one of the differentially expressed proteins (DEPs). Overexpression of CAT inhibited the proliferation, migration and invasion of keloid fibroblasts, and these characteristics were opposite when CAT was knocked down. Furthermore, the CDX model showed that Clostridium butyricum promote the growth of patient's keloid fibroblasts in BALB/c female nude mice, while CAT positive bacteria Bacillus subtilis inhibited it. Single-cell RNA sequencing verified that oxidative stress was up-regulated and CAT was down-regulated in mesenchymal-like fibroblasts of keloid. INTERPRETATION In conclusion, our findings suggest that bacteria and CAT contribute to keloid disease. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jiyu Xu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zerui Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Meng Nie
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Xing Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lin Zhu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Kexin Song
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Cheng Feng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Tian Meng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhi Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Weifang Cao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Zheng
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.
| | - Yongsheng Huang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; School of Basic Medical Science, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
7
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Current achievements, strategies, obstacles, and overcoming the challenges of the protein engineering in Pichia pastoris expression system. World J Microbiol Biotechnol 2023; 40:39. [PMID: 38062216 DOI: 10.1007/s11274-023-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Yeasts serve as exceptional hosts in the manufacturing of functional protein engineering and possess industrial or medical utilities. Considerable focus has been directed towards yeast owing to its inherent benefits and recent advancements in this particular cellular host. The Pichia pastoris expression system is widely recognized as a prominent and widely accepted instrument in molecular biology for the purpose of generating recombinant proteins. The advantages of utilizing the P. pastoris system for protein production encompass the proper folding process occurring within the endoplasmic reticulum (ER), as well as the subsequent secretion mediated by Kex2 as a signal peptidase, ultimately leading to the release of recombinant proteins into the extracellular environment of the cell. In addition, within the P. pastoris expression system, the ease of purifying recombinant protein arises from its restricted synthesis of endogenous secretory proteins. Despite its achievements, scientists often encounter persistent challenges when attempting to utilize yeast for the production of recombinant proteins. This review is dedicated to discussing the current achievements in the usage of P. pastoris as an expression host. Furthermore, it sheds light on the strategies employed in the expression system and the optimization and development of the fermentative process of this yeast. Finally, the impediments (such as identifying high expression strains, improving secretion efficiency, and decreasing hyperglycosylation) and successful resolution of certain difficulties are put forth and deliberated upon in order to assist and promote the expression of complex proteins in this prevalent recombinant host.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Jiang J, Yang G, Ma F. Fluorescence coupling strategies in fluorescence-activated droplet sorting (FADS) for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Biotechnol Adv 2023; 66:108173. [PMID: 37169102 DOI: 10.1016/j.biotechadv.2023.108173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Fluorescence-activated droplet sorting (FADS) has emerged as a powerful tool for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Fluorescence coupling strategies (FCSs) are key to the development of new FADS methods through their coupling of analyte properties such as concentration, activities, and affinity with fluorescence signals. Over the last decade, a series of FCSs have been developed, greatly expanding applications of FADS. Here, we review recent advances in FCS for different analyte types, providing a critical comparison of the available FCSs and further classification into four categories according to their principles. We also summarize successful FADS applications employing FCSs in enzymes, metabolites, and antibodies. Further, we outline possible future developments in this area.
Collapse
Affiliation(s)
- Jingjie Jiang
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Guangyu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fuqiang Ma
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
9
|
Sun G, Qu L, Azi F, Liu Y, Li J, Lv X, Du G, Chen J, Chen CH, Liu L. Recent progress in high-throughput droplet screening and sorting for bioanalysis. Biosens Bioelectron 2023; 225:115107. [PMID: 36731396 DOI: 10.1016/j.bios.2023.115107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Owing to its ability to isolate single cells and perform high-throughput sorting, droplet sorting has been widely applied in several research fields. Compared with flow cytometry, droplet allows the encapsulation of single cells for cell secretion or lysate analysis. With the rapid development of this technology in the past decade, various droplet sorting devices with high throughput and accuracy have been developed. A droplet sorter with the highest sorting throughput of 30,000 droplets per second was developed in 2015. Since then, increased attention has been paid to expanding the possibilities of droplet sorting technology and strengthening its advantages over flow cytometry. This review aimed to summarize the recent progress in droplet sorting technology from the perspectives of device design, detection signal, actuating force, and applications. Technical details for improving droplet sorting through various approaches are introduced and discussed. Finally, we discuss the current limitations of droplet sorting for single-cell studies along with the existing gap between the laboratory and industry and provide our insights for future development of droplet sorters.
Collapse
Affiliation(s)
- Guoyun Sun
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Lisha Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology GTIIT, Shantou, Guangdong, 515063, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Ali M, Park J. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance. ULTRASONICS SONOCHEMISTRY 2023; 93:106305. [PMID: 36706667 PMCID: PMC9938309 DOI: 10.1016/j.ultsonch.2023.106305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
In droplet-based microfluidic platforms, precise separation of microscale droplets of different chemical composition is increasingly necessary for high-throughput combinatorial chemistry in drug discovery and screening assays. A variety of droplet sorting methods have been proposed, in which droplets of the same kind are translocated. However, there has been relatively less effort in developing techniques to separate the uniform-sized droplets of different chemical composition. Most of the previous droplet sorting or separation techniques either rely on the droplet size for the separation marker or adopt on-demand application of a force field for the droplet sorting or separation. The existing droplet microfluidic separation techniques based on the in-droplet chemical composition are still in infancy because of the technical difficulties. In this study, we propose an acoustofluidic method to simultaneously separate microscale droplets of the same volume and dissimilar acoustic impedance using ultrasonic surface acoustic wave (SAW)-induced acoustic radiation force (ARF). For extensive investigation on the SAW-induced ARF acting on both cylindrical and spherical droplets, we first performed a set of the droplet sorting experiments under varying conditions of acoustic impedance of the dispersed phase fluid, droplet velocity, and wave amplitude. Moreover, for elucidation of the underlying physics, a new dimensionless number ARD was introduced, which was defined as the ratio of the ARF to the drag force acting on the droplets. The experimental results were comparatively analyzed by using a ray acoustics approach and found to be in good agreement with the theoretical estimation. Based on the findings, we successfully demonstrated the simultaneous separation of uniform-sized droplets of the different acoustic impedance under continuous application of the acoustic field in a label-free and detection-free manner. Insomuch as on-chip, precise separation of multiple kinds of droplets is critical in many droplet microfluidic applications, the proposed acoustofluidic approach will provide new prospects for microscale droplet separation.
Collapse
Affiliation(s)
- Mushtaq Ali
- Department of Mechanical Engineering, Chonnam National University, Yongbong-ro 77, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jinsoo Park
- Department of Mechanical Engineering, Chonnam National University, Yongbong-ro 77, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
11
|
Xu P, Yang H, Tian L, Guo Q, Chen H, Wei X, Liu Y, He Z, Zhang J, Luo J, Li D, Guan T. Function and safety evaluation of Staphylococcus epidermidis with high esterase activity isolated from strong flavor Daqu. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Sun G, Wu Y, Huang Z, Liu Y, Li J, Du G, Lv X, Liu L. Directed evolution of diacetylchitobiose deacetylase via high-throughput droplet sorting with a novel, bacteria-based biosensor. Biosens Bioelectron 2023; 219:114818. [PMID: 36327560 DOI: 10.1016/j.bios.2022.114818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Numerous biological disciplines rely on high-throughput cell sorting. Flow cytometry, the current gold standard, is capable of ultrahigh-throughput cell sorting, but measurements are primarily limited to cell size and surface marker. Droplet sorting technology is gaining increasing attention with the ability to provide an individual environment for the analysis of single-cell secretion. Although various droplet detecting methods, such as fluorescence, absorbance, mass spectrum, imaging analysis, have been developed for droplet sorting, it remains challenging to establish high-throughput sorting methods for numerous analytes. We aim to develop a high-throughput sorting system based on the glucosamine (GlcN) measurement for the directed evolution of diacetylchitobiose deacetylase (Dac), the key enzyme for GlcN production. To overcome the limitation that no high-throughput sorting system existed for GlcN, we designed a novel bacteria-based biosensor capable of converting GlcN to a positively correlated fluorescence signal. Through characterization and optimization, it was possible to detect GlcN in droplets for high-throughput droplet sorting. We recovered the best Dac mutant S60I/R157T/F168S after sorting ∼0.2 million Dac mutants; its activity was 48.6 ± 1.5 U/mL, which was 1.8-times that of our previously discovered Dac mutant R157T (27.2 ± 1.8 U/mL). This result successfully demonstrated the combination of high-throughput droplet sorting technology and a bacteria-based biosensor, which could facilitate the industrial production of GlcN and serve as a model for similar droplet sorting applications.
Collapse
Affiliation(s)
- Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Ziyang Huang
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Yuan H, Zhou Y, Lin Y, Tu R, Guo Y, Zhang Y, Wang Q. Microfluidic screening and genomic mutation identification for enhancing cellulase production in Pichia pastoris. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:50. [PMID: 35568955 PMCID: PMC9107654 DOI: 10.1186/s13068-022-02150-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Pichia pastoris is a widely used host organism for heterologous production of industrial proteins, such as cellulases. Although great progress has been achieved in improving protein expression in P. pastoris, the potential of the P. pastoris expression system has not been fully explored due to unknown genomic impact factors. Recently, whole-cell directed evolution, employing iterative rounds of genome-wide diversity generation and high-throughput screening (HTS), has been considered to be a promising strategy in strain improvement at the genome level.
Results
In this study, whole-cell directed evolution of P. pastoris, employing atmospheric and room temperature plasma (ARTP) mutagenesis and droplet-based microfluidic HTS, was developed to improve heterogenous cellulase production. The droplet-based microfluidic platform based on a cellulase-catalyzed reaction of releasing fluorescence was established to be suitable for methanol-grown P. pastoris. The validation experiment showed a positive sorting efficiency of 94.4% at a sorting rate of 300 droplets per second. After five rounds of iterative ARTP mutagenesis and microfluidic screening, the best mutant strain was obtained and exhibited the cellulase activity of 11,110 ± 523 U/mL, an approximately twofold increase compared to the starting strain. Whole-genome resequencing analysis further uncovered three accumulated genomic alterations in coding region. The effects of point mutations and mutant genes on cellulase production were verified using reconstruction of point mutations and gene deletions. Intriguingly, the point mutation Rsc1G22V was observed in all the top-performing producers selected from each round, and gene deletion analysis confirmed that Rsc1, a component of the RSC chromatin remodeling complex, might play an important role in cellulase production.
Conclusions
We established a droplet-based microfluidic HTS system, thereby facilitating whole-cell directed evolution of P. pastoris for enhancing cellulase production, and meanwhile identified genomic alterations by whole-genome resequencing and genetic validation. Our approaches and findings would provide guides to accelerate whole-cell directed evolution of host strains and enzymes of high industrial interest.
Collapse
|
14
|
Jing X, Gong Y, Pan H, Meng Y, Ren Y, Diao Z, Mu R, Xu T, Zhang J, Ji Y, Li Y, Wang C, Qu L, Cui L, Ma B, Xu J. Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature. ISME COMMUNICATIONS 2022; 2:106. [PMID: 37938284 PMCID: PMC9723661 DOI: 10.1038/s43705-022-00188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023]
Abstract
Due to the challenges in detecting in situ activity and cultivating the not-yet-cultured, functional assessment and mining of living microbes from nature has typically followed a 'culture-first' paradigm. Here, employing phosphate-solubilizing microbes (PSM) as model, we introduce a 'screen-first' strategy that is underpinned by a precisely one-cell-resolution, complete workflow of single-cell Raman-activated Sorting and Cultivation (scRACS-Culture). Directly from domestic sewage, individual cells were screened for in-situ organic-phosphate-solubilizing activity via D2O intake rate, sorted by the function via Raman-activated Gravity-driven Encapsulation (RAGE), and then cultivated from precisely one cell. By scRACS-Culture, pure cultures of strong organic PSM including Comamonas spp., Acinetobacter spp., Enterobacter spp. and Citrobacter spp., were derived, whose phosphate-solubilizing activities in situ are 90-200% higher than in pure culture, underscoring the importance of 'screen-first' strategy. Moreover, employing scRACS-Seq for post-RACS cells that remain uncultured, we discovered a previously unknown, low-abundance, strong organic-PSM of Cutibacterium spp. that employs secretary metallophosphoesterase (MPP), cell-wall-anchored 5'-nucleotidase (encoded by ushA) and periplasmic-membrane located PstSCAB-PhoU transporter system for efficient solubilization and scavenging of extracellular phosphate in sewage. Therefore, scRACS-Culture and scRACS-Seq provide an in situ function-based, 'screen-first' approach for assessing and mining microbes directly from the environment.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Huihui Pan
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yishang Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Runzhi Mu
- Qingdao Zhang Cun River Water Co., Ltd, Qingdao, Shandong, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- Qingdao Single-Cell Biotechnology Co., Ltd, Qingdao, Shandong, China
| | - Yuandong Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Chen Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Lingyun Qu
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Energy Institute, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China.
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Energy Institute, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China.
| |
Collapse
|
15
|
Breukers J, Op de Beeck H, Rutten I, López Fernández M, Eyckerman S, Lammertyn J. Highly flexible and accurate serial picoinjection in droplets by combined pressure and flow rate control. LAB ON A CHIP 2022; 22:3475-3488. [PMID: 35943442 DOI: 10.1039/d2lc00368f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Picoinjection is a robust method for reagent addition into microfluidic droplets and has enabled the implementation of numerous multistep droplet assays. Although serial picoinjectors allow to screen many conditions in one run by injecting different combinations of reagents, their use is limited because it is complex to accurately control each injector independently. Here, we present a novel method for flexible, individual picoinjector control that allows to inject a predefined range of volumes by controlling the flow rate of the injector as well as turning off injection by setting the equilibrium pressure, which resulted in a stable interface of the injector liquid with the main microfluidic channel. Robust setting of the equilibrium pressure of an injector was achieved by applying accurate (R2 > 0.94) linear models between the injector and oil pressure in real-time. To illustrate the flexibility of this method, we performed several proof-of-concepts using 1, 2 or 3 picoinjectors loaded with fluorescent dyes. We successfully demonstrated picoinjection approaches using time-invariant settings, in which an injector setting was applied for prolonged times, and time-variant picoinjection, in which the injector settings were continuously varied in order to sweep the injected volumes, both resulting in monodisperse (CV < 3.4%) droplet libraries with different but reproducible fluorescent intensities. To illustrate the potential of the technology for fast compound concentration screenings, we studied the effect of a concentration range of a detergent on single-cell lysis. We anticipate that this robust and versatile methodology will make the serial picoinjection technology more accessible to researchers, allowing its wide implementation in numerous life science applications.
Collapse
Affiliation(s)
- Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Hannah Op de Beeck
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Iene Rutten
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Montserrat López Fernández
- Confo Therapeutics, Technologiepark-Zwijnaarde 30, Ghent 9052, Belgium
- Center for Medical Biotechnology, VIB-Ghent University, Technologiepark-Zwijnaarde 75, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent 9052, Belgium
| | - Sven Eyckerman
- Center for Medical Biotechnology, VIB-Ghent University, Technologiepark-Zwijnaarde 75, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent 9052, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|
16
|
Using gel microdroplets to develop a simple high-throughput screening platform for oleaginous microorganisms. J Biotechnol 2022; 358:46-54. [PMID: 36041515 DOI: 10.1016/j.jbiotec.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022]
Abstract
The oleaginous yeast Lipomyces starkeyi is expected to be a new lipid source since this microorganism is capable of accumulating more than 85% lipid per dry cell weight. For effective utilization of oleaginous yeast, mutants with improved lipid production compared to the wild-type have been screened by methods such as single-cell sorting and Percoll density gradient centrifugation. Because these methods need to reculture all mutated oleaginous yeasts together in a flask, it is difficult to evaluate the growth of each individual mutant. Thus, screening for the slow-growing mutants with high-throughput has never been performed by conventional methods. In this study, we developed a high-throughput method using gel microdroplets (GMD). With this method, the growth and lipid production of L. starkeyi can be evaluated simultaneously. L. starkeyi grew in GMD and the size of these microcolonies was evaluated by scattered light. Finally, a mutant with a 10-fold delay in growth compared to the wild-type was obtained. Analysis of genetic information in this mutant could reveal valuable information about critical genes involved in the growth of these microorganisms, which could then be utilized further.
Collapse
|
17
|
Yu Y, Wen H, Li S, Cao H, Li X, Ma Z, She X, Zhou L, Huang S. Emerging microfluidic technologies for microbiome research. Front Microbiol 2022; 13:906979. [PMID: 36051769 PMCID: PMC9424851 DOI: 10.3389/fmicb.2022.906979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of the microbiome is increasingly prominent. For example, the human microbiome has been proven to be strongly associated with health conditions, while the environmental microbiome is recognized to have a profound influence on agriculture and even the global climate. Furthermore, the microbiome can serve as a fascinating reservoir of genes that encode tremendously valuable compounds for industrial and medical applications. In the past decades, various technologies have been developed to better understand and exploit the microbiome. In particular, microfluidics has demonstrated its strength and prominence in the microbiome research. By taking advantage of microfluidic technologies, inherited shortcomings of traditional methods such as low throughput, labor-consuming, and high-cost are being compensated or bypassed. In this review, we will summarize a broad spectrum of microfluidic technologies that have addressed various needs in the field of microbiome research, as well as the achievements that were enabled by the microfluidics (or technological advances). Finally, how microfluidics overcomes the limitations of conventional methods by technology integration will also be discussed.
Collapse
Affiliation(s)
- Yue Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Wen
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sihong Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haojie Cao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuefei Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoyi She
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuqiang Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Xu A, Liu J, Cao S, Xu B, Guo C, Yu Z, Chen X, Zhou J, Dong W, Jiang M. Application of a novel fluorogenic polyurethane analogue probe in polyester-degrading microorganisms screening by microfluidic droplet. Microb Biotechnol 2022; 16:474-480. [PMID: 35881631 PMCID: PMC9871523 DOI: 10.1111/1751-7915.14121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Application of polyester-degrading microorganisms or enzymes should be considered as an eco-friendly alternative to chemical recycling due to the huge plastic waste disposal nowadays. However, current impranil DLN-based screening of polyester-degrading microorganisms is time-consuming, labour-intensive and unable to distinguish polyesterases from other protease- or amidase-like enzymes. Herein, we present an approach that combined a novel synthetic fluorescent polyurethane analogue probe (FPAP), along with the droplet-based microfluidics to screen polyurethane-degrading microorganisms through fluorescence-activated droplet sorting (FADS) pipeline. The fluorescent probe FPAP exhibited a fluorescence enhancement effect once hydrolysed by polyesterases, along with a strong specificity in discriminating polyesterases from other non-active enzymes. Application of FPAP in a microfluidic droplet system demonstrated that this probe exhibited high sensitivity and efficiency in selecting positive droplets containing leaf-branch compost cutinase (LCC) enzymes. This novel fluorogenic probe, FPAP, combined with the droplet microfluidic system has the potential to be used in the exploitation of novel PUR-biocatalysts for biotechnological and environmental applications.
Collapse
Affiliation(s)
- Anming Xu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Jiawei Liu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Shixiang Cao
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Bin Xu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Chengzhi Guo
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Ziyi Yu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Xiaoqiang Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Jie Zhou
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina,State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina,State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Min Jiang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina,State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina
| |
Collapse
|
19
|
Xu A, Zhang X, Cao S, Zhou X, Yu Z, Qian X, Zhou J, Dong W, Jiang M. Transcription-Associated Fluorescence-Activated Droplet Sorting for Di-rhamnolipid Hyperproducers. ACS Synth Biol 2022; 11:1992-2000. [PMID: 35640073 DOI: 10.1021/acssynbio.1c00622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhamnolipids (RLs) are biosurfactants with great economic significance that have been used extensively in multiple industries. Pseudomonas aeruginosa is a promising microorganism for sustainable RL production. However, current CTAB-MB based screening of RL-producing strains is time-consuming, labor-intensive, and unable to distinguish mono- and di-RL. In this study, we developed a novel transcription-associated fluorescence-activated droplet sorting (FADS) method to specifically target the di-RL hyperproducers. We first investigated critical factors associated with this method, including the specificity and sensitivity for discriminating di-RL overproducers from other communities. Validation of genotype-phenotype linkage between the GFP intensity, rhlC transcription, and di-RL production showed that rhlC transcription is closely correlated with di-RL production, and the GFP intensity is responsive to rhlC transcription, respectively. Using this platform, we screened out ten higher di-RL producing microorganisms, which produced 54-208% more di-RL than the model P. aeruginosa PAO1. In summary, the droplet-based microfluidic platform not only facilitates a more specific, reliable, and rapid screening of P. aeruginosa colonies with desired phenotypes, but also shows that intracellular transcription-associated GFP intensity can be used to measure the yield of di-RL between populations of droplets containing different environmental colonies. This method also can be integrated with transposon mutation libraries to target P. aeruginosa mutants.
Collapse
Affiliation(s)
- Anming Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoxiao Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shixiang Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoli Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiujuan Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
20
|
Alma'abadi A, Behzad H, Alarawi M, Conchouso D, Saito Y, Hosokawa M, Nishikawa Y, Kogawa M, Takeyama H, Mineta K, Gojobori T. Identification of Lipolytic Enzymes Using High-Throughput Single-cell Screening and Sorting of a Metagenomic Library. N Biotechnol 2022; 70:102-108. [PMID: 35636700 DOI: 10.1016/j.nbt.2022.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022]
Abstract
The demand for novel, robust microbial biocatalysts for use in industrial and pharmaceutical applications continues to increase rapidly. As a result, there is a need to develop advanced tools and technologies to exploit the vast metabolic potential of unculturable microorganisms found in various environments. Single-cell and functional metagenomics studies can explore the enzymatic potential of entire microbial communities in a given environment without the need to culture the microorganisms. This approach has contributed substantially to the discovery of unique microbial genes for industrial and medical applications. Functional metagenomics involves the extraction of microbial DNA directly from environmental samples, constructing expression libraries comprising the entire microbial genome, and screening of the libraries for the presence of desired phenotypes. In this study, lipolytic enzymes from the Red Sea were targeted. A high-throughput single-cell microfluidic platform combined with a laser-based fluorescent screening bioassay was employed to discover new genes encoding lipolytic enzymes. Analysis of the metagenomic library led to the identification of three microbial genes encoding lipases based on their functional similarity and sequence homology to known lipases. The results demonstrated that microfluidics is a robust technology that can be used for screening in functional metagenomics. The results also indicate that the Red Sea is a promising, under-investigated source of new genes and gene products.
Collapse
Affiliation(s)
- Amani Alma'abadi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, National Center of Biotechnology, P.O Box 6086, Riyadh 11442, Saudi Arabia
| | - Hayedeh Behzad
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohammed Alarawi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - David Conchouso
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Puebla 72453, Mexico
| | - Yoshimoto Saito
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Marine Open Innovation (MaOI) Institute, 9-25, Hinodecho, Shimizu-ku, Shizuoka 424-0922, Japan
| | - Masahito Hosokawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan
| | - Yohei Nishikawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan
| | - Masato Kogawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Haruko Takeyama
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan
| | - Katsuhiko Mineta
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
21
|
Zhang Z, Ge M, Guo Q, Jiang Y, Jia W, Gao L, Hu J. Ultrahigh-Throughput Screening of High-β-Xylosidase-Producing Penicillium piceum and Investigation of the Novel β-Xylosidase Characteristics. J Fungi (Basel) 2022; 8:jof8040325. [PMID: 35448556 PMCID: PMC9024563 DOI: 10.3390/jof8040325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
A droplet-based microfluidic ultrahigh-throughput screening technology has been developed for the selection of high-β-xylosidase-producing Penicillium piceum W6 from the atmospheric and room-temperature plasma-mutated library of P. piceum. β-xylosidase hyperproducers filamentous fungi, P. piceum W6, exhibited an increase in β-xylosidase activity by 7.1-fold. A novel β-D-xylosidase was purified from the extracellular proteins of P. piceum W6 and designated as PpBXL. The optimal pH and temperature of PpBXL were 4.0 and 70 °C, respectively. PpBXL had high stability an acidic pH range of 3.0-5.0 and exhibited good thermostability with a thermal denaturation half-life of 10 days at 70 °C. Moreover, PpBXL showed the bifunctional activities of α-L-arabinofuranosidase and β-xylosidase. Supplementation with low-dose PpBXL (100 μg/g substrate) improved the yields of glucose and xylose generated from delignified biomass by 36-45%. The synergism between PpBXL and lignocellulolytic enzymes enhanced delignified biomass saccharification, increased the Xyl/Ara ratio, and decreased the strength of hydrogen bonds.
Collapse
Affiliation(s)
- Zhaokun Zhang
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
| | - Mingyue Ge
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (M.G.); (Q.G.); (Y.J.); (W.J.)
| | - Qi Guo
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (M.G.); (Q.G.); (Y.J.); (W.J.)
| | - Yi Jiang
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (M.G.); (Q.G.); (Y.J.); (W.J.)
| | - Wendi Jia
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (M.G.); (Q.G.); (Y.J.); (W.J.)
| | - Le Gao
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (M.G.); (Q.G.); (Y.J.); (W.J.)
- Correspondence: (L.G.); (J.H.)
| | - Jianhua Hu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
- Correspondence: (L.G.); (J.H.)
| |
Collapse
|
22
|
Qiao Y, Hu R, Chen D, Wang L, Wang Z, Yu H, Fu Y, Li C, Dong Z, Weng YX, Du W. Fluorescence-activated droplet sorting of PET degrading microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127417. [PMID: 34673397 DOI: 10.1016/j.jhazmat.2021.127417] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Enzymes that can decompose synthetic plastics such as polyethylene terephthalate (PET) are urgently needed. Still, a bottleneck remains due to a lack of techniques for detecting and sorting environmental microorganisms with vast diversity and abundance. Here, we developed a fluorescence-activated droplet sorting (FADS) pipeline for high-throughput screening of PET-degrading microorganisms or enzymes (PETases). The pipeline comprises three steps: generation and incubation of droplets encapsulating single cells, picoinjection of fluorescein dibenzoate (FDBz) as the fluorogenic probe, and screening of droplets to obtain PET-degrading cells. We characterized critical factors associated with this method, including specificity and sensitivity for discriminating PETase from other enzymes. We then optimized its performance and compatibility with environmental samples. The system was used to screen a wastewater sample from a PET textile mill. We successfully obtained PET-degrading species from nine different genera. Moreover, two putative PETases from isolates Kineococcus endophyticus Un-5 and Staphylococcus epidermidis Un-C2-8 were genetically derived, heterologously expressed, and preliminarily validated for PET-degrading activities. We speculate that the FADS pipeline can be widely adopted to discover new plastic-degrading microorganisms and enzymes in various environments and may be utilized in the directed evolution of degrading enzymes using synthetic biology.
Collapse
Affiliation(s)
- Yuxin Qiao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongwei Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiyi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Fu
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Chunli Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Xuan Weng
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China.
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China; Department of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Tian F, Cai L, Liu C, Sun J. Microfluidic technologies for nanoparticle formation. LAB ON A CHIP 2022; 22:512-529. [PMID: 35048096 DOI: 10.1039/d1lc00812a] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functional nanoparticles (NPs) hold immense promise in diverse fields due to their unique biological, chemical, and physical properties associated with size or morphology. Microfluidic technologies featuring precise fluid manipulation have become versatile toolkits for manufacturing NPs in a highly controlled manner with low batch-to-batch variability. In this review, we present the fundamentals of microfluidic fabrication strategies, including mixing-, droplet-, and multiple field-based microfluidic methods. We highlight the formation of functional NPs using these microfluidic reactors, with an emphasis on lipid NPs, polymer NPs, lipid-polymer hybrid NPs, supramolecular NPs, metal and metal-oxide NPs, metal-organic framework NPs, covalent organic framework NPs, quantum dots, perovskite nanocrystals, biomimetic NPs, etc. we discuss future directions in microfluidic fabrication for accelerated development of functional NPs, such as device parallelization for large-scale NP production, highly efficient optimization of NP formulations, and AI-guided design of multi-step microfluidic reactors.
Collapse
Affiliation(s)
- Fei Tian
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Cai
- Department of Laboratory Medicine, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Zhu X, Wang K, Yan H, Liu C, Zhu X, Chen B. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:711-731. [PMID: 34985862 DOI: 10.1021/acs.est.1c03899] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigating environmental processes, especially those occurring in soils, calls for innovative and multidisciplinary technologies that can provide insights at the microscale. The heterogeneity, opacity, and dynamics make the soil a "black box" where interactions and processes are elusive. Recently, microfluidics has emerged as a powerful research platform and experimental tool which can create artificial soil micromodels, enabling exploring soil processes on a chip. Micro/nanofabricated microfluidic devices can mimic some of the key features of soil with highly controlled physical and chemical microenvironments at the scale of pores, aggregates, and microbes. The combination of various techniques makes microfluidics an integrated approach for observation, reaction, analysis, and characterization. In this review, we systematically summarize the emerging applications of microfluidic soil platforms, from investigating soil interfacial processes and soil microbial processes to soil analysis and high-throughput screening. We highlight how innovative microfluidic devices are used to provide new insights into soil processes, mechanisms, and effects at the microscale, which contribute to an integrated interrogation of the soil systems across different scales. Critical discussions of the practical limitations of microfluidic soil platforms and perspectives of future research directions are summarized. We envisage that microfluidics will represent the technological advances toward microscopic, controllable, and in situ soil research.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
25
|
Yuan H, Tu R, Tong X, Lin Y, Zhang Y, Wang Q. OUP accepted manuscript. J Ind Microbiol Biotechnol 2022; 49:6544676. [PMID: 35259275 PMCID: PMC9142201 DOI: 10.1093/jimb/kuac007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/20/2022] [Indexed: 11/12/2022]
Abstract
Droplet-based microfluidics has emerged as a powerful tool for single-cell screening with ultrahigh throughput, but its widespread application remains limited by the accessibility of a droplet microfluidic high-throughput screening (HTS) platform, especially to common laboratories having no background in microfluidics. Here, we first developed a microfluidic HTS platform based on fluorescence-activated droplet sorting technology. This platform allowed (i) encapsulation of single cells in monodisperse water-in-oil droplets; (ii) cell growth and protein production in droplets; and (iii) sorting of droplets based on their fluorescence intensities. To validate the platform, a model selection experiment of a binary mixture of Bacillus strains was performed, and a 45.6-fold enrichment was achieved at a sorting rate of 300 droplets per second. Furthermore, we used the platform for the selection of higher α-amylase-producing Bacillus licheniformis strains from a mutant library generated by atmospheric and room temperature plasma mutagenesis, and clones displaying over 50% improvement in α-amylase productivity were isolated. This droplet screening system could be applied to the engineering of other industrially valuable strains.
Collapse
Affiliation(s)
| | | | - Xinwei Tong
- Shandong Longkete Enzyme Preparations Co., Ltd, Linyi 276400, China
| | - Yuping Lin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yuanyuan Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Correspondence should be addressed to: Qinhong Wang. Phone: +86-22-24821950. Fax: +86-22-24821950. E-mail:
| |
Collapse
|
26
|
Nakamura A, Honma N, Tanaka Y, Suzuki Y, Shida Y, Tsuda Y, Hidaka K, Ogasawara W. 7-Aminocoumarin-4-acetic Acid as a Fluorescent Probe for Detecting Bacterial Dipeptidyl Peptidase Activities in Water-in-Oil Droplets and in Bulk. Anal Chem 2021; 94:2416-2424. [PMID: 34963280 PMCID: PMC8886566 DOI: 10.1021/acs.analchem.1c04108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Droplet-based
microfluidic systems are a powerful tool for biological
assays with high throughput. Water-in-oil droplets (WODLs) are typically
used in droplet-based microfluidic systems to culture microorganisms
and perform enzyme assays. However, because of the oil surrounding
the nanoliter and picoliter volumes of WODLs, availability of suitable
substrates is limited. For instance, although 7-amino-4-methylcoumarin
(AMC) is commonly used as a fluorescent probe of the substrate to
detect peptidase activity, AMC leaks from WODLs to the oil phase due
to its high hydrophobicity. Thus, AMC substrates cannot be used in
droplet-based microfluidic systems with WODLs. In this study, we developed
a peptidase substrate consisting of a dipeptide and 7-aminocoumarin-4-acetic
acid (ACA), an AMC-derived fluorogenic compound. ACA was retained
in the WODL for more than 7 days, and the dipeptidyl ACA substrate
detected dipeptidyl peptidase (DPP) activity in the WODL. Compared
to AMC substrates, the substrate specificity constants of DPPs for
ACA substrates increased up to 4.7-fold. Fluorescence-activated droplet
sorting made high-throughput screening of microorganisms based on
DPP activity using the dipeptidyl ACA substrate possible. Since ACA
could be applied to various substrates as a fluorescent probe, detectable
microbial enzyme activities for droplet-based microfluidic systems
can be largely expanded.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Nobuyuki Honma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yuma Tanaka
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yoshiyuki Suzuki
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yuko Tsuda
- Faculty of Pharmaceutical Sciences, Cooperative Research Center of Life Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Koushi Hidaka
- Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Wataru Ogasawara
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.,Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
27
|
Kim S, Jin SH, Lim HG, Lee B, Kim J, Yang J, Seo SW, Lee CS, Jung GY. Synthetic cellular communication-based screening for strains with improved 3-hydroxypropionic acid secretion. LAB ON A CHIP 2021; 21:4455-4463. [PMID: 34651155 DOI: 10.1039/d1lc00676b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although cellular secretion is important in industrial biotechnology, its assessment is difficult due to the lack of efficient analytical methods. This study describes a synthetic cellular communication-based microfluidic platform for screening strains with the improved secretion of 3-hydroxypropionic acid (3-HP), an industry-relevant platform chemical. 3-HP-secreting cells were compartmentalized in droplets, with receiving cells equipped with a genetic circuit that converts the 3-HP secretion level into an easily detectable signal. This platform was applied to identify Escherichia coli genes that enhance the secretion of 3-HP. As a result, two genes (setA, encoding a sugar exporter, and yjcO, encoding a Sel1 repeat-containing protein) found by this platform enhance the secretion of 3-HP and its production. Given the increasing design capability for chemical-detecting cells, this platform has considerable potential in identifying efflux pumps for not only 3-HP but also many important chemicals.
Collapse
Affiliation(s)
- Seungjin Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Si Hyung Jin
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Byungjin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jaesung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jina Yang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
28
|
Hu B, Ye S, Chen D, Xie B, Hu R, Qiao Y, Yu Y, Yu H, Zheng X, Lan Y, Du W. Tunable and Contamination-Free Injection with Microfluidics by Stepinjection. Anal Chem 2021; 93:13112-13117. [PMID: 34546041 DOI: 10.1021/acs.analchem.1c02721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Droplet microfluidics with picoinjection provides significant advantages to multistep reactions and screenings. The T-junction design for picoinjection is convenient in adding picoliter reagents into passing droplets to initiate reactions. However, conventional picoinjectors face difficulties in eliminating cross-contamination between droplets, preventing them from widespread use in sensitive biological and molecular assays. Here, we introduce stepinjection, which uses a T-junction with a stepped channel design to elevate the diffusional buffer zone into the main channel and consequently increases the pressure difference between droplets and the inlet of the injection channel. To demonstrate the stepinjector's ability to perform contamination-sensitive enzymatic assays, we inject casein fluorescein isothiocyanate (FITC-casein) into a mixture of savinase and savinase-free (labeled with a red fluorescent dye) droplets. We observe no cross-contamination using stepinjection but find a severe cross-talk using an optimal picoinjection design. We envision that the simple, tunable, and reliable stepinjector can be easily integrated in various droplet processing devices, and facilitate various biomedical and biochemical applications including multiplex digital PCR, single-cell sequencing, and enzymatic screening.
Collapse
Affiliation(s)
- Beiyu Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shun Ye
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Biomedical Engineering Department, College of Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dongwei Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingliang Xie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxin Qiao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanghuan Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyan Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
29
|
Liu Y, Yuan H, Ding D, Dong H, Wang Q, Zhang D. Establishment of a Biosensor-based High-Throughput Screening Platform for Tryptophan Overproduction. ACS Synth Biol 2021; 10:1373-1383. [PMID: 34081459 DOI: 10.1021/acssynbio.0c00647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the flexibility to fold into complex structures, RNA is well-suited to act as a cellular sensor to recognize environmental fluctuations and respond to changes by regulating the corresponding genes. In this study, we established a high-throughput screening platform to screen tryptophan high-producing strains from a large repertoire of candidate strains. This platform consists of a tryptophan-specific aptamer-based biosensor and fluorescence-activated droplet sorting technology. One mutant strain, with a 165.9% increase in Trp titer compared with the parental strain, was successfully screened from a random mutagenesis library. Sequencing results revealed that a total of 10 single-nucleotide polymorphisms were discovered in the genome of the mutant strain, among which CRP(T29K) was proven to significantly increase Trp production through improving the strain's tolerance of the harsh environment during the stationary phase of the fermentation process. Our results indicate that this strategy has great potential for improving the production of other amino acids in Escherichia coli.
Collapse
Affiliation(s)
- Yongfei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Huiling Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Dongqin Ding
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, China
| |
Collapse
|
30
|
Droplet-based microfluidic platform for high-throughput screening of Streptomyces. Commun Biol 2021; 4:647. [PMID: 34059751 PMCID: PMC8166820 DOI: 10.1038/s42003-021-02186-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Streptomyces are one of the most important industrial microorganisms for the production of proteins and small-molecule drugs. Previously reported flow cytometry-based screening methods can only screen spores or protoplasts released from mycelium, which do not represent the filamentous stationary phase Streptomyces used in industrial cultivation. Here we show a droplet-based microfluidic platform to facilitate more relevant, reliable and rapid screening of Streptomyces mycelium, and achieved an enrichment ratio of up to 334.2. Using this platform, we rapidly characterized a series of native and heterologous constitutive promoters in Streptomyces lividans 66 in droplets, and efficiently screened out a set of engineered promoter variants with desired strengths from two synthetic promoter libraries. We also successfully screened out several hyperproducers of cellulases from a random S. lividans 66 mutant library, which had 69.2–111.4% greater cellulase production than the wild type. Our method provides a fast, simple, and powerful solution for the industrial engineering and screening of Streptomyces in more industry-relevant conditions. Streptomyces are an important filamentous bacterium genus in industry, but most of the high-throughput techniques so far can only separate spores or protoplasts. Tu et al. develop an encapsulating method that allows screening of Streptomyces in the filamentous, stationary phase.
Collapse
|
31
|
Hu B, Xu P, Ma L, Chen D, Wang J, Dai X, Huang L, Du W. One cell at a time: droplet-based microbial cultivation, screening and sequencing. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:169-188. [PMID: 37073344 PMCID: PMC10077293 DOI: 10.1007/s42995-020-00082-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Microbes thrive and, in turn, influence the earth's environment, but most are poorly understood because of our limited capacity to reveal their natural diversity and function. Developing novel tools and effective strategies are critical to ease this dilemma and will help to understand their roles in ecology and human health. Recently, droplet microfluidics is emerging as a promising technology for microbial studies with value in microbial cultivating, screening, and sequencing. This review aims to provide an overview of droplet microfluidics techniques for microbial research. First, some critical points or steps in the microfluidic system are introduced, such as droplet stabilization, manipulation, and detection. We then highlight the recent progress of droplet-based methods for microbiological applications, from high-throughput single-cell cultivation, screening to the targeted or whole-genome sequencing of single cells.
Collapse
Affiliation(s)
- Beiyu Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Xu
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158 USA
| | - Liang Ma
- Department of Biomedical Devices, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320 China
| | - Dongwei Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- Department of Biomedical Devices, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
32
|
Fu X, Zhang Y, Xu Q, Sun X, Meng F. Recent Advances on Sorting Methods of High-Throughput Droplet-Based Microfluidics in Enzyme Directed Evolution. Front Chem 2021; 9:666867. [PMID: 33996758 PMCID: PMC8114877 DOI: 10.3389/fchem.2021.666867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Droplet-based microfluidics has been widely applied in enzyme directed evolution (DE), in either cell or cell-free system, due to its low cost and high throughput. As the isolation principles are based on the labeled or label-free characteristics in the droplets, sorting method contributes mostly to the efficiency of the whole system. Fluorescence-activated droplet sorting (FADS) is the mostly applied labeled method but faces challenges of target enzyme scope. Label-free sorting methods show potential to greatly broaden the microfluidic application range. Here, we review the developments of droplet sorting methods through a comprehensive literature survey, including labeled detections [FADS and absorbance-activated droplet sorting (AADS)] and label-free detections [electrochemical-based droplet sorting (ECDS), mass-activated droplet sorting (MADS), Raman-activated droplet sorting (RADS), and nuclear magnetic resonance-based droplet sorting (NMR-DS)]. We highlight recent cases in the last 5 years in which novel enzymes or highly efficient variants are generated by microfluidic DE. In addition, the advantages and challenges of different sorting methods are briefly discussed to provide an outlook for future applications in enzyme DE.
Collapse
Affiliation(s)
- Xiaozhi Fu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yueying Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Xu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaomeng Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fanda Meng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
33
|
Yang J, Tu R, Yuan H, Wang Q, Zhu L. Recent advances in droplet microfluidics for enzyme and cell factory engineering. Crit Rev Biotechnol 2021; 41:1023-1045. [PMID: 33730939 DOI: 10.1080/07388551.2021.1898326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Enzymes and cell factories play essential roles in industrial biotechnology for the production of chemicals and fuels. The properties of natural enzymes and cells often cannot meet the requirements of different industrial processes in terms of cost-effectiveness and high durability. To rapidly improve their properties and performances, laboratory evolution equipped with high-throughput screening methods and facilities is commonly used to tailor the desired properties of enzymes and cell factories, addressing the challenges of achieving high titer and the yield of the target products at high/low temperatures or extreme pH, in unnatural environments or in the presence of unconventional media. Droplet microfluidic screening (DMFS) systems have demonstrated great potential for exploring vast genetic diversity in a high-throughput manner (>106/h) for laboratory evolution and have been increasingly used in recent years, contributing to the identification of extraordinary mutants. This review highlights the recent advances in concepts and methods of DMFS for library screening, including the key factors in droplet generation and manipulation, signal sources for sensitive detection and sorting, and a comprehensive summary of success stories of DMFS implementation for engineering enzymes and cell factories during the past decade.
Collapse
Affiliation(s)
- Jianhua Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huiling Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Leilei Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
34
|
Deng J, Zhao S, Liu Y, Liu C, Sun J. Nanosensors for Diagnosis of Infectious Diseases. ACS APPLIED BIO MATERIALS 2020; 4:3863-3879. [DOI: 10.1021/acsabm.0c01247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Zhao
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Hengoju S, Tovar M, Man DKW, Buchheim S, Rosenbaum MA. Droplet Microfluidics for Microbial Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:129-157. [PMID: 32888037 DOI: 10.1007/10_2020_140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Droplet microfluidics has recently evolved as a prominent platform for high-throughput experimentation for various research fields including microbiology. Key features of droplet microfluidics, like compartmentalization, miniaturization, and parallelization, have enabled many possibilities for microbiology including cultivation of microorganisms at a single-cell level, study of microbial interactions in a community, detection and analysis of microbial products, and screening of extensive microbial libraries with ultrahigh-throughput and minimal reagent consumptions. In this book chapter, we present several aspects and applications of droplet microfluidics for its implementation in various fields of microbial biotechnology. Recent advances in the cultivation of microorganisms in droplets including methods for isolation and domestication of rare microbes are reviewed. Similarly, a comparison of different detection and analysis techniques for microbial activities is summarized. Finally, several microbial applications are discussed with a focus on exploring new antimicrobials and high-throughput enzyme activity screening. We aim to highlight the advantages, limitations, and current developments in droplet microfluidics for microbial biotechnology while envisioning its enormous potential applications in the future.
Collapse
Affiliation(s)
- Sundar Hengoju
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miguel Tovar
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - DeDe Kwun Wai Man
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - Stefanie Buchheim
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany.
| |
Collapse
|
36
|
Jin Z, Ding G, Yang G, Li G, Zhang W, Yang L, Li W. Rapid detection of antibiotic resistance genes in lactic acid bacteria using PMMA-based microreactor arrays. Appl Microbiol Biotechnol 2020; 104:6375-6383. [PMID: 32488313 DOI: 10.1007/s00253-020-10699-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 12/25/2022]
Abstract
The emergence of lactic acid bacteria (LABs) resistant to existing antimicrobial drugs is a growing health crisis. To decrease the overuse of antibiotics, molecular diagnostic systems that can rapidly determine the presence of antibiotic resistance (AR) genes in LABs from yogurt samples are needed. This paper describes a fully integrated, miniaturized plastic chip and closed-tube detection chemistry that performs multiplex nucleic acid amplification. High-throughput identification of AR genes was achieved through this approach, and six AR genes were analyzed simultaneously in < 2 h. This time-to-result included the time required for the extraction of DNA. The detection limit of the chip was 103 CFU mL-1, which was consistent with that of tube LAMP. We detected and identified multiple DNAs, including streptomycin, tetracycline, and vancomycin resistance-associated genes, with complete concordance to the Kirby-Bauer disk diffusion method.Key Points• A miniaturized chip was presented, and multiplex nucleic acid amplification was performed.• The device can be integrated with LAMP for rapid detection of antibiotic resistance genes.• The approach had a high throughput of AR gene analysis in lactic acid bacteria.
Collapse
Affiliation(s)
- Zengjun Jin
- School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei Province, China
| | - Guotao Ding
- Handan Municipal Centre for Disease Control and Prevention, Handan, 056000, Hebei Province, China
| | - Guoxing Yang
- Handan Municipal Centre for Disease Control and Prevention, Handan, 056000, Hebei Province, China
| | - Guiying Li
- School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei Province, China
| | - Wei Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Lixin Yang
- Hebei Centre for Disease Control and Prevention, Shijiazhuang, 050021, Hebei Province, China
| | - Weihao Li
- Handan Municipal Centre for Disease Control and Prevention, Handan, 056000, Hebei Province, China.
| |
Collapse
|
37
|
Bowman EK, Alper HS. Microdroplet-Assisted Screening of Biomolecule Production for Metabolic Engineering Applications. Trends Biotechnol 2020; 38:701-714. [DOI: 10.1016/j.tibtech.2019.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
|
38
|
Winning the numbers game in enzyme evolution - fast screening methods for improved biotechnology proteins. Curr Opin Struct Biol 2020; 63:123-133. [PMID: 32615371 DOI: 10.1016/j.sbi.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/02/2023]
Abstract
The booming demand for environmentally benign industrial processes relies on the ability to quickly find or engineer a biocatalyst suitable to ideal process conditions. Both metagenomic approaches and directed evolution involve the screening of huge libraries of protein variants, which can only be managed reasonably by flexible platforms for (ultra)high-throughput profiling against the desired criteria. Here, we review the most recent additions toward a growing toolbox of versatile assays using fluorescence, absorbance and mass spectrometry readouts. While conventional solution based high-throughput screening in microtiter plate formats is still important, the implementation of novel screening protocols for microfluidic cell or droplet sorting systems supports technological advances for ultra-high-frequency screening that now can dramatically reduce the timescale of engineering projects. We discuss practical issues of scope, scalability, sensitivity and stereoselectivity for the improvement of biotechnologically relevant enzymes from different classes.
Collapse
|
39
|
Hengoju S, Wohlfeil S, Munser AS, Boehme S, Beckert E, Shvydkiv O, Tovar M, Roth M, Rosenbaum MA. Optofluidic detection setup for multi-parametric analysis of microbiological samples in droplets. BIOMICROFLUIDICS 2020; 14:024109. [PMID: 32547676 PMCID: PMC7148121 DOI: 10.1063/1.5139603] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/27/2020] [Indexed: 05/03/2023]
Abstract
High-throughput microbiological experimentation using droplet microfluidics is limited due to the complexity and restricted versatility of the available detection techniques. Current detection setups are bulky, complicated, expensive, and require tedious optical alignment procedures while still mostly limited to fluorescence. In this work, we demonstrate an optofluidic detection setup for multi-parametric analyses of droplet samples by easily integrating micro-lenses and embedding optical fibers for guiding light in and out of the microfluidic chip. The optofluidic setup was validated for detection of absorbance, fluorescence, and scattered light. The developed platform was used for simultaneous detection of multiple parameters in different microbiological applications like cell density determination, growth kinetics, and antibiotic inhibition assays. Combining the high-throughput potential of droplet microfluidics with the ease, flexibility, and simplicity of optical fibers results in a powerful platform for microbiological experiments.
Collapse
Affiliation(s)
| | - S. Wohlfeil
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - A. S. Munser
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - S. Boehme
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - E. Beckert
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - O. Shvydkiv
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - M. Tovar
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - M. Roth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | | |
Collapse
|
40
|
Hu B, Xu B, Yun J, Wang J, Xie B, Li C, Yu Y, Lan Y, Zhu Y, Dai X, Huang Y, Huang L, Pan J, Du W. High-throughput single-cell cultivation reveals the underexplored rare biosphere in deep-sea sediments along the Southwest Indian Ridge. LAB ON A CHIP 2020; 20:363-372. [PMID: 31848560 DOI: 10.1039/c9lc00761j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microorganisms in the deep sea play vital roles in marine ecosystems. However, despite great advances brought by high throughput sequencing and metagenomics, only a small portion of microorganisms living in the environment can be cultivated in the laboratory and systematically studied. In this study, an improved high-throughput microfluidic streak plate (MSP) platform was developed to speed up the isolation of microorganisms from deep-sea sediments and evaluated with deep-sea sediments collected from the Southwest Indian Ridge (SWIR). Based on our previously reported MSP method, we improved its isolation efficiency with a semi-automated droplet picker and improved humidity control to enable long-term cultivation with a low-nutrient medium for up to five months according to the slow-growing nature of most deep-sea species. The improved MSP method allows the isolation of microbes by selection and investigation of microbial diversity by high throughput sequencing of the pooled sample cultures. By picking individual droplets and scale-up cultivation, a total of 772 strains that were taxonomically assigned to 70 species were isolated from the deep-sea sediments in the SWIR, including 15 potential novel species. On the other hand, based on 16S rRNA gene amplicon sequencing analysis, the microbial diversity of the SWIR was studied and documented with culture-dependent and independent methods in this study. The superiority of the MSP platform in revealing the rare biosphere was also evaluated based on amplicon sequencing. The results show that droplet-based single-cell cultivation of the MSP has a much higher ability than traditional agar plate cultivation in obtaining microbial species and more than 90% of operational taxonomic units (OTUs) detected in the MSP pool belong to the rare biosphere. Our results indicate the high robustness and efficiency of the improved MSP platform in revealing the environmentally rare biosphere, especially for slow-growing species. Overall, the MSP platform has a superior ability to recover microbial diversity than conventional agar plates and it was found to hold great potential for recovering rare microbial resources from various environments.
Collapse
Affiliation(s)
- Beiyu Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxue Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bingliang Xie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanghuan Yu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China and Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Novel mutagenesis and screening technologies for food microorganisms: advances and prospects. Appl Microbiol Biotechnol 2020; 104:1517-1531. [DOI: 10.1007/s00253-019-10341-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 12/19/2022]
|
42
|
Ma C, Tan ZL, Lin Y, Han S, Xing X, Zhang C. Gel microdroplet–based high-throughput screening for directed evolution of xylanase-producing Pichia pastoris. J Biosci Bioeng 2019; 128:662-668. [DOI: 10.1016/j.jbiosc.2019.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 01/24/2023]
|
43
|
Almeida JM, Alnoch RC, Souza EM, Mitchell DA, Krieger N. Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140320. [PMID: 31756433 DOI: 10.1016/j.bbapap.2019.140320] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
In recent years, metagenomic strategies have been widely used to isolate and identify new enzymes from uncultivable components of microbial communities. Among these enzymes, various lipases have been obtained from metagenomic libraries from different environments and characterized. Although many of these lipases have characteristics that could make them interesting for application in biocatalysis, relatively little work has been done to evaluate their potential to catalyze industrially important reactions. In the present article, we highlight the latest research on lipases obtained through metagenomic tools, focusing on studies of activity and stability and investigations of application in biocatalysis. We also discuss the challenges of metagenomic approaches for the bioprospecting of new lipases.
Collapse
Affiliation(s)
- Janaina Marques Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Robson Carlos Alnoch
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Emanuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - David Alexander Mitchell
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Cx.P. 19032 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil.
| |
Collapse
|
44
|
Fan G, Du Y, Fu Z, Chen M, Wang Z, Liu P, Li X. Characterisation of physicochemical properties, flavour components and microbial community in Chinese Guojing roasted sesame-like flavour Daqu. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
- Beijing Engineering and Technology Research Center of Food Additives; Beijing Technology & Business University; Beijing 100048 China
| | - Yihua Du
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Zhilei Fu
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Min Chen
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Zhou Wang
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Pengxiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
- Beijing Engineering and Technology Research Center of Food Additives; Beijing Technology & Business University; Beijing 100048 China
| |
Collapse
|
45
|
He R, Ding R, Heyman JA, Zhang D, Tu R. Ultra-high-throughput picoliter-droplet microfluidics screening of the industrial cellulase-producing filamentous fungus Trichoderma reesei. J Ind Microbiol Biotechnol 2019; 46:1603-1610. [PMID: 31375945 DOI: 10.1007/s10295-019-02221-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/16/2019] [Indexed: 11/26/2022]
Abstract
The selection of improved producers among the huge number of variants in mutant libraries is a key issue in filamentous fungi of industrial biotechnology. Here, we developed a droplet-based microfluidic high-throughput screening platform for selection of high-cellulase producers from filamentous fungus Trichoderma reesei. The screening system used a fluorogenic assay to measure amount of cellulase and its activity. The key effectors such as cellulase-inducing medium, spore germination, droplet cultivation time, droplet fluorescence signal detection, and droplet cell sorting were studied. An artificial pre-mixed library of high- and low-cellulase-producing T. reesei strains was screened successfully to verify the feasibility of our method. Finally, two cellulase hyperproducers exhibiting improvements in cellulase activity of 27% and 46% were isolated from an atmospheric and room-temperature plasma (ARTP)-mutated library. This high-throughput screening system could be applied to the engineering of T. reesei strains and other industrially valuable protein-producing filamentous fungi.
Collapse
Affiliation(s)
- Ronglin He
- Tianjin Key Laboratory of Industrial Biology Systems and Processing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ruihua Ding
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Heyman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Dongyuan Zhang
- Tianjin Key Laboratory of Industrial Biology Systems and Processing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Ran Tu
- Tianjin Key Laboratory of Industrial Biology Systems and Processing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
46
|
Fang T, Shang W, Liu C, Xu J, Zhao D, Liu Y, Ye A. Nondestructive Identification and Accurate Isolation of Single Cells through a Chip with Raman Optical Tweezers. Anal Chem 2019; 91:9932-9939. [PMID: 31251569 DOI: 10.1021/acs.analchem.9b01604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Raman optical tweezers (ROT) as a label-free technique plays an important role in single-cell study such as heterogeneity of tumor and microbial cells. Herein we designed a chip utilizing ROT to isolate a specific single cell. The chip was made from a polydimethylsiloxane (PDMS) slab and formed into a gourd-shaped reservoir with a connected channel on a cover glass. On the chip an individual cell could be isolated from a cell crowd and then extracted with ∼0.5 μL of phosphate-buffered saline (PBS) via pipet immediately after Raman spectral measurements of the same cell. As verification, we separated four different type of cells including BGC823 gastric cancer cells, erythrocytes, lymphocytes, and E. coli cells and quantifiably characterized the heterogeneity of the cancer cells, leukocyte subtype, and erythrocyte status, respectively. The average time of identifying and isolating a specific cell was 3 min. Cell morphology comparison and viability tests showed that the successful rate of single-cell isolation was about 90%. Thus, we believe our platform could further couple other single-cell techniques such as single-cell sequencing and become a multiperspective analytical approach at the level of a single cell.
Collapse
|
47
|
Fan G, Fu Z, Teng C, Wu Q, Liu P, Yang R, Minhazul KAHM, Li X. Comprehensive analysis of different grades of roasted-sesame-like flavored Daqu. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1635154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Zhilei Fu
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Qiuhua Wu
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Pengxiao Liu
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Ran Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Karim a H M Minhazul
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
48
|
Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a high-throughput screening method for environmental bacteria with various growth rates. PLoS One 2019; 14:e0214533. [PMID: 30995251 PMCID: PMC6469844 DOI: 10.1371/journal.pone.0214533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/14/2019] [Indexed: 11/25/2022] Open
Abstract
We have developed a new method for selectively sorting droplets containing growing bacteria using a fluorescence resonance energy transfer (FRET)-based RNA probe. Bacteria and the FRET-based RNA probe are encapsulated into nanoliter-scale droplets, which are incubated to allow for cell growth. The FRET-based RNA probe is cleaved by RNase derived from the bacteria propagated in the droplets, resulting in an increase in fluorescence intensity. The fluorescent droplets containing growing bacteria are distinguishable from quenching droplets, which contain no cells. We named this method FNAP-sort based on the use of a fluorescent nucleic acid probe in droplets for bacterial sorting. Droplets containing the FRET-based RNA probe and four species of pure cultures, which grew in the droplets, were selectively enriched on the basis of fluorescence emission. Furthermore, fluorescent droplets were sorted from more than 500,000 droplets generated using environmental soil bacteria and the FRET-based RNA probe on days 1, 3, and 7 with repeated incubation and sorting. The bacterial compositions of sorted droplets differed on days 1, 3, and 7; moreover, on day 7, the bacterial composition of the fluorescent droplets was drastically different from that of the quenching droplets. We believe that FNAP-sort is useful for high-throughput cultivation and sorting of environmental samples containing bacteria with various growth rates, including slow-growing microbes that require long incubation times.
Collapse
|
49
|
Chen D, Liu SJ, Du W. Chemotactic screening of imidazolinone-degrading bacteria by microfluidic SlipChip. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:512-519. [PMID: 30562663 DOI: 10.1016/j.jhazmat.2018.12.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The group of imidazolinone herbicides, widely used for weed control, is hazardous to some sensitive rotational crops. Thus, rapid elimination of imidazolinones from contaminated soil is significant for the environment. Biodegradation studies have demonstrated the ability of chemotaxis to enhance the biodegradation of pollutants. In this study, we used our newly developed SlipChip device for chemotactic sorting and a microfluidic streak plate device for bacterial cultivation as a new pipeline for screening imidazolinone degraders. The degradation efficiencies of an enrichment consortium and a chemotaxis consortium were determined by HPLC-MS/MS. Both consortia degraded all tested imidazolinones, with the highest efficiency (71.8%) for imazethapyr, and the chemotaxis consortium degraded these compounds approximately 10% more efficiently than the enrichment consortium. Moreover, the community diversities of the enrichment consortium and the chemotaxis consortium were analyzed by 16S rRNA gene amplicon sequencing. The results indicated that members of genus Ochrobactrum primarily contribute to the degradation of imidazolinones. This work proved that chemotaxis toward biodegradable pollutants increases their bioavailability and enhances the biodegradation rate. It also provided a new way to screen effective pollutant degraders and can be applied for the selective isolation of other chemotactic species from environmental samples.
Collapse
Affiliation(s)
- Dongwei Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|